2xddr4 на процессоре что такое
Разбираемся в обозначениях процессоров: что они могут сообщить о характеристиках
Большинство индексов или цифр имеют вполне конкретное значение. Обратите на них внимание, когда будете выбирать процессор!
Если вы хотите подобрать оптимальный процессор в свою сборку, то не спешите копаться в технических характеристиках. Много полезной информации скрывается в наименовании ЦПУ. Если знать, что означают все эти буквы и цифры, то можно сэкономить много время. Разобраться в этой теме не сложно, достаточно понимать ключевые моменты. О них и поговорим.
Маркировка процессоров Intel
За всю историю компания Intel выпустила огромное количество разных моделей процессоров, и, разумеется, многие из них сегодня уже устарели. На данный момент актуальными остаются только четыре линейки. Каждая из них имеет свою направленность.
Поскольку Intel Core охватывает большую часть рынка, разберем на её примере как линейка делится на классы.
После классификации процессор в названии имеет числовое обозначение. Первая цифра всегда означает поколение. На данный момент самым актуальным является 10-е. У каждого поколения имеется кодовое название. Например:
Как вы заметили, после поколения следуют ещё три цифры. Как правило, они отображают уровень производительности модели относительно других процессоров в одном поколении. Например:
В наименовании модели после цифр может быть расположена буква, которая указывает на отличительную характеристику процессора. Они могут комбинироваться различными способами.
Новые мобильные процессоры Intel Core 11-го поколения, а также некоторые 10-го поколения, имеют непривычную маркировку. К примеру, Intel Core i7-1165G7, где цифра после G обозначает класс мобильной графики: G7 — ее максимальная производительность, G4 — средний уровень производительности, а G1 — базовый.
Стоит упомянуть, что многие модели встречаются в двух вариантах исполнения: BOX и OEM. Первый имеет увеличенную гарантию, а также подразумевает наличие кулера в комплекте. Второй продается дешевле, но в комплект поставки ничего не входит. Кстати, процессоры с разблокированным множителем поставляются без кулера и его нужно будет покупать отдельно.
Маркировка процессоров AMD
Говоря про обозначения ЦПУ, следует понимать, что для каждой линейки применяются уникальные правила маркировки, которые не являются универсальными. Поэтому всё, что написано ниже применимо только для ныне актуальных процессоров.
Один vs Два канала ОЗУ в современных процессорах
В этой статье посмотрим на то как одноканал уменьшает скорость работы современных процессоров. Стоит напомнить, что во времена выхода DDR4 платформы с двумя каналами были у 4-х ядерных процессоров, тогда как сейчас есть 16 ядер у AMD и 10 ядер у Intel. И, естественно, шина к памяти теперь делиться на все эти ядра, тогда как и во времена 4-х ядер двухканал не был абсолютно достаточным.
Само собой производители в курсе проблемы. Так и Intel и AMD улучшают работу кеш памяти. Собственно следующее обновление AMD будет как бы минорным, то есть особо не инновационным, но благодаря трёхмерному кешу большого объёма от не самых архитектурно значимых изменений появится большой прирост в производительности. Intel же, кроме оптимизации работы с кешами, форсирует выход памяти DDR5, которая тоже немного уменьшит проблемы недостаточности двухканала для современных процессоров.
Уже есть первые тесты с DDR5 правда на диких таймингах и задержках, но в части пропускной способности — там всё сильно лучше. а для огромного числа ядер — пропускная способность это тоже очень важно, то есть надо смотреть не только на задержки.
Собственно в этой статье мы как раз и посмотрим на изменение пропускной способности, так как по задержкам разницы не будет.
Что такое каналы памяти?
Если кто не в курсе — коротко поясняю по тому что за каналы такие.
В современных процессорах контроллер оперативной памяти встроен в сам процессор и для обычных не серверных решений он имеет два канала.
То есть своего рода два независимых контроллера, каждый из которых работает со своими планками памяти. Естественно они на самом деле не независимые, так как общая адресация памяти и всё такое. Но в части работы с памятью — можно считать их раздельными.
И эта связь физическая, то есть контакты планок памяти физически приходят в разные контроллеры. Часть планок в один контроллер, часть во второй.
Ну и работают эти контроллеры параллельно, а значит и пропускная способность их работы — складывается.
Если же к одному из контроллеров память не подключена, то этот контроллер ничего и не делает.
Собственно и планки памяти зачастую продаются как раз таки комплектами по две штуки, а иногда и по 4, так как есть платформы с 4-х канальными контроллерами памяти в процессорах.
Почему изменение каналов влияет на производительность?
Дефицит данных из оперативной памяти приводит к очень нехорошим последствиям. И тут есть две нехороших вещи. Первая — это если процессор из-за голода информации не знает что ему делать. В этом случае — весь процессорный конвейер начинает пустовать, и от этого хуже удаётся заполнять исполнительные устройства. То есть падает производительность на такт, процессору нечего делать, он находится в ожиданиях задач.
Второе проявление этой проблемы — это отсутствие данных для работы. То есть что делать процессор знает, а вот значения того, с чем нужно производить операции процессору доступны только через оперативную память. В таком случае процессор периодически может допускать в исполнение то, для чего нет данных, потом это приходится повторять, есть и системы в процессоре, которые задерживают операции в очередях на выполнения. Но и очереди эти не резиновые. Так что если нет большого количества данных, то очереди просто забиваются невыполнимым для текущего момента мусором. В следствии чего падает производительность на такт. И по мониторингу точно так же это время вынужденных простоев в ожидании данных выглядит как занятое время. Естественно есть куча сложных оптимизаций как не допускать это замусоривание, но они не могут быть на 100% результативны и в их возможностях только снижение влияния на падение производительности. Но если недостаток информации катастрофический, то тут ничего уже не поможет. Процессор будет большую часть времени заниматься ничем, а при этом будут показываться какие-то проценты загрузки.
Как понять, что процессор ограничен ПСП памяти?
В общем и целом — никак, по мониторнгу это определить нельзя, но есть косвенные признаки.
Особенно это хорошо заметно в видеокартах некоторых моделей до тех поколений, где частоты динамически задаются от ограничения TDP. Там от разгона памяти увеличение энергопотребления самой памяти может составлять 2-3 Ватта, а при этом сама видеокарта начинает потреблять на 20-30 Ватт больше несмотря на то, что и до разгона памяти и после него показывалась загрузка в 100%. Просто раньше было 100%, но с простоями от ожидания информации, а после разгона памяти 100% стали с меньшими простоями. Сейчас с ограничением TPD и динамической частотой на картах от разгона памяти ситуация другая. Эффективная работа приводит к увеличению потребления из-за чего на 10-50 МГц режутся частоты ядер. Но при этом на меньших частотах видеокарта при разогнанной памяти всё равно быстрее, чем с более высокими, но с простоями от недостатка информации.
С процессорами это проявляется не так сильно и видно чаще у тех, кто вначале до предела разгоняет ядра, а после этого начинает до предела гнать память. И в этом случае чуть больший нагрев процессора от более эффективно работающей подсистемы памяти делает процессор менее стабильным в разгоне.
Ну и теперь приступим к практике.
Тестовая система
Процессор: intel i9 9900k в стоке,
Видеокарта: RTX 2070 в стоке.
Память во всех конфигурациях согласно базовому для DDR4 JEDEC стандарту на 2133 МГц. В одной группе тестов — две планки по 8 ГБ, в другой группе тестов — одна планка на 16 ГБ.
Бенчмарки.
Что касается самой памяти — для начала посмотрим на ПСП (пропускная способность памяти) и задержки.

По задержкам по цифрам есть небольшая разница, и она обусловлена тем, что на один контроллер всё таки больше нагрузки, но разница по задержкам мизерная и сильно повлиять на результаты она не может. А вот пропускная способность меняется очень сильно.
По чтению и записи падение практически двукратное.
Ну и теперь посмотрим как это отражается на производительности компьютера.
Тесты в архиваторах
Логично, что им нужны большие объёмы для работы, а значит широкая шина к памяти — это очень важно.
Добавление второго канала даёт прирост почти на 70%.
Возьмём другой архиватор. 7-Zip.
Тут прирост уже всего около 20%.
Бенчмарки
А есть задачи где прироста нет в принципе, то есть задача оптимизирована так, что максимально эффективно использует кеш процессора.
Например Cinebench R15.
Что с двумя, что с одним каналом — разницы в результатах — нет.
В общем — где-то есть огромная разница, а где-то её нет вообще.
Тесты в играх
Теория по играм
Ну и главный вопрос — к чему относятся игры. К той задаче, где есть разница или где её нет.
Понятное дело, что тут важна практика, но давайте всё таки цепанём немного теории.
В целом — процесс обработки игры для процессора можно разделить на два этапа:
Первый — просчёт игрового движка, то есть каждый кадр есть какая-то физика игровая, и периодически нужно отрабатывать какие-то алгоритмы сценария мира.
За имитацию обсчётов у нас будет CPU тест в 3D Mark.
В тесте анимация происходит не за счёт отрисовки элементов, а за счёт просчёта положения частиц.
В этом тесте разницы между системами — нет. Это, конечно, не значит, что это характерно для всех игр. Но в целом — для игровой физики не надо большого количества данных, вероятно тут кеша процессора было достаточно для того чтобы хватало и половины ширины шины.
Но это только первая часть работы процессора.
Вторая часть — это работа процессора на этапе отрисовки, то есть обработка вызовов на отрисовку для совместной работы с видеокартой.
Тут нам поможет тест 3D Mark API бенчмарк.
Он делает тесты в DX11, DX11 мультипоточном, DX 12 и Вулкане.
Начнём с однопоточного DX11.
Тут видно небольшое преимущество у двухканала. Вообще у теста большая погрешность — процентов 10. И в целом — можно сказать, что результаты в эту погрешность укладываются.
Дальше у нас DX11 мультипоток.
Тут уже точно это не погрешность. От двухканала прирост больше 35%.
Ну оно и логично. Одному ядру хватало ширины и половины от возможной, а вот 8-ми ядрам уже этого не хватает.
Однако — у этих вызовов на старых API есть свои задержки, собственно которые и устранятся в новых API. И из-за врождённых задержек — задержки от памяти становятся не столь критичными.
В новых API ситуация уже кардинально отличается.
На 12 DX прирост от второго канала — 80%
На вулкане прирост около 75%.
В общем — разница почти двукратная.
Что касается практики — стоит понимать, что и алгоритмы с обсчётами могут быть менее оптимизированы, но и в играх вызовов на отрисовку не так много, как в бенчмарке.
Но главное отличие, конечно, ещё и в том, что данные в видеопамять поступают через северный мост процессора. То есть в моменты, когда идёт подгрузка текстур ширина канала ещё сильнее начинает ограничивать производительность процессора.
Этот процесс в бенчмарках сложно было бы подловить. Но думаю все знакомы с какими-то подлагами игры на подгрузках и с одноканалом эти подлагивания будут сильнее.
И, конечно, результаты будут зависеть и от видеокарты. У меня в тесте 8-ми гиговая RTX 2070, и она реже производит какие-то подгрузки данных. Была бы в тесте 2-х гиговая, она бы постоянно лила свой трафик данных через северный мост процессора к памяти, и ухудшала бы работу процессора при голоде памяти.
Практические тесты в играх
Игр в тест я взял не много, но выбрал на разных движках и API. Есть на 11DX, есть на 12 и есть на вулкане. Всего игр 4. Во всех играх стоят максимальные настройки, но со сниженным разрешением рендеринга.
С 8-ми гиговой картой, когда данные для видеокарты не кешируются в оперативной памяти разница от одного или двухканала будет только при ограничении производительности процессора. Но, собственно, те тесты что будут показывать AMD презентуя большой кеш и Intel показывая прирост на такт в играх — будут показываться также с ограничением в процессор.
В тестах важно рассматривать как изменяются показатели в динамики в зависимости от текущей сцены, так что этот раздел статьи стоит смотреть в видео версии:



Выводы
И естественно, что чем больше ядер и чем они быстрее — тем выше требования к ширине шины к оперативной памяти. Но многое зависит и от задачи, в которой производится сравнение. Внутри одной и той же игры разница тоже очень сильно зависит от происходящего конкретно в текущий момент, поэтому назвать какую-то конкретную цифру влияния — не получится. Так же надо понимать, что в этом тесте и двухканал не был каким-то заоблачным, так как была стоковая память, и хороший разгон памяти ещё даст прирост до 15-20% в некоторых задачах. Собственно и большой кеш и переход на DDR5 как раз и смогут отбить эти самые проценты, и вдобавок сделать не бессмысленным дальнейший рост производительности ядер и увеличение их числа. Ну и так же — если вы заходили в статью с целью понять — стоит ли экономить на двухканале — очевидно, что не стоит. Прирост на десятки процентов, а разница по цене всей сборки компьютера от двух планок вместо одной единицы процентов.
Видео на YouTube канале «Этот компьютер»
2xddr4 на процессоре что такое
Сегодня российские пользователи столкнулись с дефицитом процессоров Intel Alder Lake. Вся первая партия разошлась за считанные часы, поэтому какое-то время придётся подождать. Обычно вторая партия приходит уже к началу следующей недели, поэтому ожидание будет недолгим, но томительным. Дело в том, что владельцы Core i9-12900K и других процессоров с разблокированным множителем могут получить значительное преимущество как перед 11-м поколением Intel, так и перед камнями производства AMD. Особенно радует, что цены остались почти без изменений между поколениями. Также инсайдеры указывают, что материнские платы в наличии, а вот оперативной памяти нового стандарта нет.
реклама
В связи с этим есть резонный вопрос: что будет, если не ждать появления в магазинах DDR5, а вместо этого взять материнскую плату на флагманском чипсете, но с поддержкой ОЗУ DDR4? Поскольку полномасштабных тестов на эту тему никто не проводил, ребята с канала Testing Games решили поставить в этом вопросе точку. Они взяли флагманский процессор Core i9-12900K, поместили его в материнскую плату MSI MPG Z690 Force и прогнали с комплектом памяти DDR5 и DDR4. Результаты представлены ниже.
В обоих случаях использовался комплект на 32 Гб, вот только более новый стоит 300 долларов, а старый 150 вечнозелёных. Ясно, что ожидать двукратного прироста не стоит, но мы явно надеялись не на 7-15% увеличения количества кадров в секунду. Получается, что, переплачивая 150 долларов, вы получаете незначительный буст, который можно заметить только в том случае, если вы смотрите на счётчик fps. Несомненно, что среди наших читателей есть такие, кто с лёгкостью замечает разницу между 137 и 134 кадрами в секунду на глаз, но большинство геймеров не обладает такими невероятными способностями.
Также стоит учитывать, что авторы теста использовали видеокарту GeForce RTX 3080. Таким образом, чтобы получить средний прирост fps на уровне 10%, нужно взять дорогую материнскую плату, переплатить 150 долларов за память, а после ещё и вооружиться флагманской видеокартой. Если у вас нет намерений взять весь комплект сразу, то можно с чистой совестью остаться на старой DDR4. Кстати, вы всегда можете разогнать оперативную память, что даст вам ещё несколько процентов. Кроме того, тесты проводились в разрешении 1080р, в то время как в 2К разница была бы ещё меньше.
Возможности четырехпроцессорных серверов на процессорах Xeon E7 v2
Современные двухпроцессорные серверы — стандартная рабочая лошадка в большинстве организаций. Производительность растет, памяти добавляется, PCIe ускоряется. Казалось бы, зачем в таком случае нужны многопроцессорные системы?
Как ни тривиально это звучит, но — большие данные и критически важные для бизнеса приложения. Ведь серверы на базе E7-4800 v2 — это не только полтора терабайта оперативной памяти на сокет, но и средства повышения надежности в пределах одной системы.
Мы тоже не забыли поддержать продукт
И подробней расскажем как о полезных возможностях платформы E7 v2 с ядром Ivy Bridge- EX, так и о сервере Hyperion RS530 G4.
Сам Intel позиционирует новые процессоры как альтернативу RISC системам, в первую очередь на основе IBM POWER. Основания для этого у них есть!
Слайд взят у Intel
Разберем каждый пункт подробней.
Увеличение оной в 2 раза приведено не просто так — это ускорение сервера по сравнению с предыдущим поколением E7, на основе Westmere-EX.
Производительность процессоров в мире принято измерять с помощью тестов SPEC (Standard Performance Evaluation Corporation) CPU, актуальная версия CPU2006. Тесты делятся на целочисленные CINT и с плавающей точкой CFP, но это однопоточный результат. Для сравнения многоядерных процессоров используется rate версия.
| Процессор | SPECint_rate_base2006 | SPECfp_rate_base2006 |
| 4x E7-4890 v2 | 2340 | 1730 |
| 4x E7-4870 | 1080 | 698 |
| 8x E7-8870 | 1930 | 1280 |
| IBM Power 750 Express (4.0 GHz, 32 core, SLES) | 1230 | 1050 |
Новый четырехпроцессорный сервер полностью заменяет старый восьмипроцессорный,
например, ETegro Hyperion RS830 G3. Потребляет меньше энергии, производительность выше, стоимость ниже. На его фоне и Power смотрится довольно бледно.
Необходимо отметить, что контроллер E7 работает с памятью не напрямую, а через SMI (scalable memory interconnect) и специальный буфер. Зачем?
Высокоскоростная последовательная шина радикально облегчает разводку материнской платы, позволяя вынести память на значительное удаление от процессора и при этом сохранить пропускную способность, так как электрическая нагрузка понижена. Также упрощается дизайн райзеров памяти, которые поддерживают горячую замену и добавление памяти «на ходу».
В модели предыдущего поколения Hyperion RS530 G3 было доступно 64 слота для оперативной памяти и поддерживалось 2 терабайта в сервере.
Новый процессор принес переработанный контроллер памяти с поддержкой 24 планок памяти на процессор (96 в сервере) и частоты модуля 1600 МГц (раньше было ограничение в 1066МГц).
Помимо большего объема памяти, поддерживается переключение режимов работы — Performance и
Lockstep.
По умолчанию стоит режим Performance, который устанавливает производительность SMI на 2667MT/s и работу с восемью каналами DDR на процессор. В сумме получается 340 гигабайт в секунду пропускной способности памяти на четыре процессора. Колоссальный результат! В тесте STREAM Triad получилось достичь 244GB/s, что в 2.4 раза больше 101GB/ s у системы с E7 v1.
Зеркалирование снижает доступный для системы объем памяти в два раза. Memory rank sparing резервирует один rank на канал, памяти доступно больше, но и надежность не так высока, как у зеркала.
Предыдущее поколение E7 v1 полагалось на возможности чипсета 7500, который имел 32 линии PCIe 2.0. В Hyperion RS530 G3 таких чипов стояло два, что позволяло снять 64 линии на сервер.
E7 v2 получили встроенный контроллер PCIe 3.0 с 32 двумя линиями. Несколько меньше, чем у Е5-2600 (40 линий на процессор), но их же четыре. 128 линий, каждая из которых примерно в два раза быстрее PCIe 2.0 — вот четыре раза на слайде и набежало.
Проще всего сводной таблицей описать, где Romley — E5-4600; Boxboro EX — E7 v1, Brickland — E7 v2.
Не будем расписывать каждую технологию, но пять девяток в итоге набирается, всего 5 минут простоя в год.
Теперь про нас и актуальный сервер
Расписывать долго и упорно спецификации не будем, они есть на сайте. Лучше показать самые приятные фишки на живом изделии 🙂
Горячее добавление памяти
Если заполнены не все райзеры памяти — то можно спокойно добавлять еще без остановки сервера:
Intel грозится доделать код для горячей замены памяти (работать будет только в режиме зеркалирования, в RS530 G3 работало), тогда можно будет менять сбойные планки на ходу.
Горячая замена PCIe
Слетел сетевой контроллер? FC карточка уехала крышей? Хочется добавить еще PCIe флеша? Сервер выключать не надо:
В нашей предыдущей статье, посвященной накопителям, мы упомянули о NVMe SSD и поддержке в этой модели, вот как это реализовано:
Как мы уже упоминали, разъем NVMe сделан совместимым с SAS, поэтому бэкплейн имеет контакты для подключения обычного SAS контроллера.
Живая тестовая машина с E7-4880 v2 есть у нас в лаборатории и доступна для тестирования.
PS Вместе с анонсом нового поколения мы предлагаем 2 системы Hyperion RS530 G3 с четырьмя процессорами Xeon E7-8837, контроллером LSI 9260-8i и 8 райзерами для памяти со скидкой в скромные 50%.























