3 что такое сабнеттинг

Subnetting. Разбиение сети на подсети, суммироваеие, нахождение адреса сети и широковещательного адреса.

При подготовке к CCIE RS Written есть тема, которая посвящена маскам подсети, и прочему.
Я напишу небольшую заметку о том как разбивать сети на подсети, как суммировать их, как найти адреса сети и широковещательных адресов и так далее.

Нахождение адреса сети, широковещательного адреса, первого и последнего допустимых адресов, которые могут быть назначены хостам.

Допустим нам дан некий IP адрес, с маской подсети, например 152.21.121.37 /26, нам необходимо найти адрес сети и широковещательный адрес, а так же первый и последний адреса которые можно присвоить хосту.

Алгоритм действий такой:

Префикс 26 нам говорит о том, что с последнего октета, под сеть выделено 2 бита, и на хосты у нас осталось 6 бит (64 хоста).

Представим этот префикс в двоичном виде и далее переведем последний октет в IP адресе в двоичную систему (нет смысла переводить весь IP адрес в бинарку)

Теперь можем определить адрес сети.
Для этого проведем линию по нашему префиксу. Теперь это будет выглядеть так.

И выпишем значения которые могут быть минимальным (все биты равны нулю) и максимальное (когда все биты равны единицы) в хостовой части.
это соответственно — 0 0 0 0 0 0 — что в 10-ной системе равно «0» и 1 1 1 1 1 1 что в 10-ой системе равно 63

Значит адрес нашей сети равен: 152.21.121.0.
Широковещательный адрес: 152.21.121.63
Соответственно первый IP адрес, который можно назначить хосту: 152.21.121.1
Последний IP адрес, который можно назначить хосту: 152.21.121.62

Нахождение IP адреса по номеру подсети и номеру хоста.
Не представляю особо где может понадобиться, но тем не менее 🙂

Дана сеть, скажем 49.0.0.0, которая поделена маской /25 на множество подсетей.
Необходимо найти IP адрес, если известно что он принадлежит 429 подсети и имеет номер 41.

49.0.0.0 согласно классификации сетей принадлежит классу А, следовательно префикс такой сети равен /8, Запишем его в бинарном виде.

Представим префикс /25 так же в бинарном виде:

Так как разрешено использовать для подсети все единицы и нули, то из требуемой подсети 429 вычитаем 1. Получаем 428, это число нам нужно представить в бинарном ввиде, на том месте где у нас «единички» в подсети.

Представим в бинарном виде 41 (номер нашего искомого хоста в нужной подсети).

41 — 0 0 1 0 1 0 0 0

Что у нас получилось?

Переведем весь адрес в десятичный вид:

Суммирование сетей очень важно уметь делать, ибо применяется в маршрутизации повсеместно, а именно там, где нам нужно объединить кучу сетей, в одну, тоесть иными словами «суммировать».
Давайте также разберемся на примере.

Дано:
Сети адреса которых:

* 140.176.2.128 / 25
* 140.176.3.0 / 25
* 140.176.3.192 / 26
* 140.176.3.128 / 26
* 140.176.2.0 / 25

Для правильного суммирования нам необходимо опять же поработать с бинарными числами, а именно перевести изменяемые части адреса в двоичный код.

В данном примере 140.176. является статичной, поэтому ее трогать не будем, будем переводить последние два октета:

Далее нам необходимо найти неизменяемые не в одной подсети значения, я отметил их жирным.
Таким образом получается что префикс новой сумированной сети будет: /23

Полностью суммированная сеть будет выглядеть так: 140.176.2.0/23

Разбиение сети на подсети.

Например, есть у нас сеть класса С, 192.168.0.0 / 24
Нам необходимо разбить эту сеть на две одинаковые подсети.
Разбиение осуществляется путем заимствования бита из поля, которое предназначено для хоста, в поле которое предназначено для маски.
Наша основная сеть имеет префикс 24 бита, мы добавляем к нему 1, и получаем новый префикс /25
Так как мы взяли всего один бит, следовательно и сетей у нас может быть только две (бит может принимать значение 1 или 0).
В каждой такой сети есть 128 адреса (2 в 7 степени (32 — 25 = 7 ) ).

Итак у нас получилось две подсети с адресами:

192.168.0.0 — 192.168.0.127 /25 (Доступные адреса для хостов: 192.168.0.1 — 192.168.0.126)
192.168.0.128 — 192.168.0.255/25 (Доступные адреса для хостов: 192.168.0.129 — 192.168.0.254)

Это был очень простой пример.

Так же каждую такую сеть вы можете еще разбить на несколько подсетей, не обязательно поровну, но и на различное количество хостов в каждой подсети.
Например, мы хотим разбить сеть 192.168.0.128/25 на одну сеть которая бы имела не менее 30 адресов, и другую сеть, которая имела бы не менее 60 адресов.

Для второй сети, 60 адресов, ближайшая степень двойки — 64, 2^6 = 64.
Тоесть для новой сети нам необходимо 6 бит (32-6 = 26), префикс будет /26

Ну и запишем что у нас получилось:

1. 192.168.0.128 — 192.168.0.159/27
2. 192.168.0.160 — 192.168.0.123/26

Когда перед нами стоят такие задачи, то нужно начинать разбиение сети с наибольшего количества, адресов, и так по убыванию (в моем примере наоборот).

Надеюсь данная заметка кому-то будет полезной.

Источник

Понимание основ TCP/IP-адресов и подсети

Эта статья предназначена как общее введение к понятиям сетей и подсетей протокола Интернета (IP). В конце статьи включается глоссарий.

Применяется к: Windows 10 — все выпуски
Исходный номер КБ: 164015

Сводка

При настройке протокола TCP/IP на компьютере Windows, параметры конфигурации TCP/IP требуют:

Чтобы правильно настроить TCP/IP, необходимо понять, как адресованы сети TCP/IP и разделены на сети и подсети.

Успех TCP/IP как сетевого протокола Интернета во многом объясняется его способностью подключать сети разных размеров и системы разных типов. Эти сети произвольно определяются на три основных класса (наряду с несколькими другими), которые имеют заранее определенные размеры. Каждая из них может быть разделена системными администраторами на более мелкие подсети. Маска подсети используется для разделения IP-адреса на две части. Одна часть определяет хост (компьютер), другая — сеть, к которой она принадлежит. Чтобы лучше понять, как работают IP-адреса и подсети, посмотрите IP-адрес и узнайте, как он организован.

IP-адреса: сети и хосты

IP-адрес — это 32-битный номер. Он уникально идентифицирует хост (компьютер или другое устройство, например принтер или маршрутизатор) в сети TCP/IP.

IP-адреса обычно выражаются в формате dotted-decimal с четырьмя номерами, разделенными периодами, такими как 192.168.123.132. Чтобы понять, как подсети используются для различия между хостами, сетями и подсетями, изучите IP-адрес в двоичной нотации.

Например, ip-адрес 192.168.123.132 (в двоичной нотации) — это 32-битный номер 110000000101000111101110000100. Это число может быть трудно понять, поэтому разделите его на четыре части из восьми двоичных цифр.

Эти 8-битные разделы называются octets. В этом примере IP-адрес становится 11000000.10101000.01111011.10000100. Это число имеет немного больше смысла, поэтому для большинства применений преобразуем двоичный адрес в формат dotted-decimal (192.168.123.132). Десятичные числа, разделенные периодами, — это октеты, преобразованные из двоичных в десятичные.

Чтобы сеть TCP/IP широкой области (WAN) эффективно работала в качестве коллекции сетей, маршрутизаторы, которые передают пакеты данных между сетями, не знают точного расположения хоста, для которого предназначен пакет информации. Маршрутизаторы знают только о том, какая сеть является членом хоста, и используют сведения, хранимые в таблице маршрутов, чтобы определить, как получить пакет в сеть принимающего пункта назначения. После доставки пакета в сеть назначения пакет доставляется соответствующему хосту.

Маска subnet

Второй элемент, необходимый для работы TCP/IP, — это маска подсети. Маска подсети используется протоколом TCP/IP для определения того, находится ли хост в локальной подсети или в удаленной сети.

В TCP/IP части IP-адреса, используемые в качестве сетевых и хост-адресов, не исправлены. Если у вас нет дополнительных сведений, то сетевые и хост-адреса выше не могут быть определены. Эта информация предоставляется в другом 32-битовом номере, называемом подсетевой маской. В этом примере маска подсети — 255.255.255.0. Это не очевидно, что это число означает, если вы не знаете 255 в двоичной нотации равно 11111111. Таким образом, подсетевая маска 1111111.1111111.11111111.000000000.

Разделять IP-адрес и подсетевую маску вместе, можно разделять сетевые и хост-части адреса:

Первые 24 бита (количество из них в подсети) определены как сетевой адрес. Последние 8 битов (количество оставшихся нулей в маске подсети) определены как адрес хоста. Он дает следующие адреса:

Итак, в этом примере с помощью маски подсети 255.255.255.0 используется сетевой ID 192.168.123.0, а адрес хоста — 0.0.0.132. Когда пакет поступает в подсеть 192.168.123.0 (из локальной подсети или удаленной сети) и имеет адрес назначения 192.168.123.132, компьютер получает его из сети и обрабатывает его.

Почти все маски десятичных подсетей преобразуются в двоичные числа, которые являются слева, и все нули справа. Некоторые другие распространенные подсети маски:

Десятичный двоичный 255.255.255.192 1111111.11111111.1111111.11000000 0 255.255.255.224 1111111.11111111.1111111.11100000

Internet RFC 1878 (доступна в InterNIC-Public Information Regarding Internet Domain Name Registration Services)описывает допустимые подсети и подсети, которые можно использовать в сетях TCP/IP.

Классы сети

Интернет-адреса выделяются организацией InterNIC,управляющей Интернетом. Эти IP-адреса делятся на классы. Наиболее распространенными из них являются классы A, B и C. Классы D и E существуют, но не используются конечными пользователями. Каждый из классов адресов имеет другую подсетевую маску по умолчанию. Класс IP-адреса можно определить, посмотрев его первый октет. Ниже следующую следующую линейку адресов Интернета класса A, B и C, каждый из которых имеет пример:

Сети класса A используют маску подсети по умолчанию 255.0.0.0 и имеют 0-127 в качестве первого октета. Адрес 10.52.36.11 — это адрес класса А. Его первый octet — 10, то есть от 1 до 126 включительно.

Сети класса B используют маску подсети по умолчанию 255.255.0.0 и имеют 128-191 в качестве первого октета. Адрес 172.16.52.63 — это адрес класса B. Его первый octet — 172, который составляет от 128 до 191 включительно.

Сети класса C используют маску подсети по умолчанию 255.255.255.0 и имеют 192-223 в качестве первого октета. Адрес 192.168.123.132 — это адрес класса C. Его первый octet 192, который находится между 192 и 223, включительно.

В некоторых сценариях значения маски подсети по умолчанию не соответствуют потребностям организации по одной из следующих причин:

В следующем разделе рассказывается, как можно разделить сети с помощью масок подсети.

Subnetting

Сеть TCP/IP класса A, B или C может быть дополнительно разделена системным администратором или подсети. Это становится необходимым при согласовании логической адресной схемы Интернета (абстрактного мира IP-адресов и подсетей) с физическими сетями, которые используются в реальном мире.

Системный администратор, которому выделен блок IP-адресов, может управлять сетями, которые не организованы таким образом, чтобы легко вписываться в эти адреса. Например, у вас есть широкая сеть с 150 хостами в трех сетях (в разных городах), подключенных маршрутизатором TCP/IP. Каждая из этих трех сетей имеет 50 хостов. Вам выделена сеть класса C 192.168.123.0. (Для иллюстрации этот адрес на самом деле из диапазона, который не выделяется в Интернете.) Это означает, что для 150 хостов можно использовать адреса 192.168.123.1 по 192.168.123.254.

Два адреса, которые не могут использоваться в вашем примере, являются 192.168.123.0 и 192.168.123.255, так как двоичные адреса с хост-частью всех и все нули недействительны. Нулевой адрес недействителен, так как используется для указания сети без указания хоста. 255-й адрес (в двоичной нотации— хост-адрес всех) используется для передачи сообщения каждому хосту в сети. Просто помните, что первый и последний адрес в любой сети или подсети не может быть назначен любому отдельному хосту.

Теперь вы можете предоставить IP-адреса 254 хостов. Он отлично работает, если все 150 компьютеров находятся в одной сети. Однако 150 компьютеров находятся в трех отдельных физических сетях. Вместо того, чтобы запрашивать дополнительные блоки адресов для каждой сети, вы разделите сеть на подсети, которые позволяют использовать один блок адресов в нескольких физических сетях.

В этом случае вы разделите сеть на четыре подсети, используя подсетевую маску, которая делает сетевой адрес больше и возможный диапазон адресов хостов меньше. Другими словами, вы «заимствуете» некоторые биты, используемые для хост-адреса, и используете их для сетевой части адреса. Подсетевая маска 255.255.255.192 предоставляет четыре сети по 62 хостов каждая. Он работает, так как в двоичной нотации 255.255.255.192 то же самое, что и 11111111.1111111.110000000. Первые две цифры последнего октета становятся сетевыми адресами, поэтому вы получаете дополнительные сети 00000000 (0), 010000000 (64), 10000000 (128) и 110000000 (192). (Некоторые администраторы будут использовать только две подсети с использованием 255.255.255.192 в качестве маски подсети. Дополнительные сведения по этому вопросу см. в разделе RFC 1878.) В этих четырех сетях последние шесть двоичных цифр можно использовать для хост-адресов.

Используя подсетевую маску 255.255.255.192, сеть 192.168.123.0 становится четырьмя сетями 192.168.123.0, 192.168.123.64, 192.168.123.128 и 192.168.123.192. Эти четыре сети будут иметь допустимые хост-адреса:

192.168.123.1-62 192.168.123.65-126 192.168.123.129-190 192.168.123.193-254

Помните, что двоичные хост-адреса со всеми или всеми нулями являются недействительными, поэтому нельзя использовать адреса с последним октетом 0, 63, 64, 127, 128, 191, 192 или 255.

Вы можете увидеть, как это работает, глядя на два хост-адреса, 192.168.123.71 и 192.168.123.133. Если используется маска подсети класса C по умолчанию 255.255.255.0, оба адреса находятся в сети 192.168.123.0. Однако, если вы используете подсетевую маску 255.255.255.192, они находятся в разных сетях; 192.168.123.71 на сети 192.168.123.64, 192.168.123.133 — на сети 192.168.123.128.

Шлюзы по умолчанию

Если компьютер tCP/IP должен общаться с хостом в другой сети, он обычно общается с помощью устройства, называемого маршрутизатором. В терминах TCP/IP маршрутизатор, указанный в хосте, который связывает подсеть хостов с другими сетями, называется шлюзом по умолчанию. В этом разделе объясняется, как TCP/IP определяет, отправлять ли пакеты в шлюз по умолчанию для достижения другого компьютера или устройства в сети.

Когда хост пытается взаимодействовать с другим устройством с помощью TCP/IP, он выполняет процесс сравнения с помощью определенной подсети и IP-адреса назначения по сравнению с подсети и собственным IP-адресом. В результате этого сравнения компьютеру сообщается, является ли назначение локальным хостом или удаленным хостом.

Если в результате этого процесса определяется назначение локального хоста, компьютер отправляет пакет в локальной подсети. Если в результате сравнения определяется назначение удаленного хоста, компьютер перенаправлен пакет в шлюз по умолчанию, определенный в свойствах TCP/IP. После этого маршрутизатор несет ответственность за перенаправку пакета в правильную подсеть.

Устранение неполадок

Проблемы сети TCP/IP часто возникают из-за неправильной конфигурации трех основных записей в свойствах TCP/IP компьютера. Понимая, как ошибки в конфигурации TCP/IP влияют на сетевые операции, можно решить множество распространенных проблем TCP/IP.

Неправильная маска подсети. Если сеть использует подсетевую маску, не подлежащую маске по умолчанию для своего класса адресов, и клиент по-прежнему настроен с помощью маски подсети по умолчанию для класса адресов, связь не будет работать с некоторыми соседними сетями, но не с удаленными. Например, если вы создаете четыре подсети (например, в примере подсетей), но используете неправильную подсетевую маску 255.255.255.0 в конфигурации TCP/IP, хосты не смогут определить, что некоторые компьютеры находятся на разных подсетях, чем их собственные. В этой ситуации пакеты, предназначенные для хостов различных физических сетей, которые являются частью одного и того же адреса класса C, не будут отправлены в шлюз по умолчанию для доставки. Распространенным симптомом этой проблемы является то, что компьютер может общаться с хостами, которые находятся в локальной сети, и может общаться со всеми удаленными сетями, за исключением тех сетей, которые находятся поблизости и имеют один и тот же адрес класса A, B или C. Чтобы устранить эту проблему, просто введите правильную подсетевую маску в конфигурации TCP/IP для этого хоста.

Неправильный IP-адрес. Если вы ставите компьютеры с IP-адресами, которые должны быть на отдельных подсетях в локальной сети друг с другом, они не смогут общаться. Они будут пытаться отправлять пакеты друг другу с помощью маршрутизатора, который не может переадретировать их правильно. Симптомом этой проблемы является компьютер, который может общаться с хостами в удаленных сетях, но не может общаться с некоторыми или всеми компьютерами в локальной сети. Чтобы устранить эту проблему, убедитесь, что все компьютеры одной физической сети имеют IP-адреса в одной подсети IP. Если в одном сегменте сети иссякли IP-адреса, существуют решения, которые выходят за рамки этой статьи.

Неправильный шлюз по умолчанию: компьютер, настроенный с неправильным шлюзом по умолчанию, может взаимодействовать с хостами в своем сетевом сегменте. Но он не сможет общаться с хостами в некоторых или всех удаленных сетях. Хост может общаться с некоторыми удаленными сетями, но не с другими, если верны следующие условия:

Эта проблема распространена, если в организации есть маршрутизатор к внутренней сети TCP/IP и другой маршрутизатор, подключенный к Интернету.

Ссылки

Две популярные ссылки на TCP/IP:

Рекомендуется, чтобы системный администратор, отвечающий за сети TCP/IP, мог иметь хотя бы одну из этих ссылок.

Глоссарий

Адрес трансляции— IP-адрес с хост-частью, которая является всеми.

Host—A computer or other device on a TCP/IP network.

Internet—Глобальная коллекция сетей, подключенных друг к другу и общих IP-адресов.

InterNIC—Организация, ответственная за администрирование IP-адресов в Интернете.

IP—Сетевой протокол, используемый для отправки сетевых пакетов через сеть TCP/IP или Интернет.

IP-адрес — уникальный 32-битный адрес для хоста в сети TCP/IP или в Интернете.

Network—Существует два использования сети терминов в этой статье. Одна из них — это группа компьютеров в одном физическом сегменте сети. Другой — диапазон адресов IP-сети, выделенный системным администратором.

Сетевой адрес— IP-адрес с хост-частью, которая имеет все нули.

Octet—8-bit number, 4 из которых состоят из 32-битного IP-адреса. Они имеют диапазон 000000000-1111111, соответствующий десятичных значениям 0-255.

RFC (Запрос на комментарий)—Документ, используемый для определения стандартов в Интернете.

Маршрутизатор— устройство, которое передает сетевой трафик между различными IP-сетями.

Subnet Mask — 32-битный номер, используемый для разграничеть сетевые и хост-части IP-адреса.

Subnet или Subnetwork — это сеть меньшего размера, созданная путем деления более крупной сети на равные части.

TCP/IP—Используется широко, набор протоколов, стандартов и утилит, обычно используемых в Интернете и крупных сетях.

Широкая сеть области (WAN)—Большая сеть, которая является коллекцией небольших сетей, разделенных маршрутизаторами. Интернет — пример большого WAN.

Источник

ИТ База знаний

Полезно

— Онлайн генератор устойчивых паролей

— Онлайн калькулятор подсетей

— Руководство администратора FreePBX на русском языке

— Руководство администратора Cisco UCM/CME на русском языке

— Руководство администратора по Linux/Unix

Навигация

Серверные решения

Телефония

FreePBX и Asterisk

Настройка программных телефонов

Корпоративные сети

Протоколы и стандарты

Разбиение сети на подсети: VLSM

Variable Length Subnet Mask

Допустим нам нужно отправить почтой посылку куда-то в Лондон. Что мы делаем? Идем в почту, берём специальный бланк и заполняем соответствующие поля. Отправитель Вася Пупкин, адрес: ул. Тверская, дом 40, кв. 36., Москва, Россия. Кому: Шерлок Холмс, Baker Street 221B, London, United Kingdom. То есть мы отправили посылку конкретному лицу, проживающему по конкретному адресу. Как и в реальном мире, в мире информационных технологий тоже есть своя адресация. В данном случае получателем выступает компьютер, за которым закреплён соответствующий IP адрес. IP aдрес это уникальный идентификатор устройства, подключённого к локальной сети или интернету.

Полный курс по Сетевым Технологиям

В курсе тебя ждет концентрат ТОП 15 навыков, которые обязан знать ведущий инженер или senior Network Operation Engineer

3 что такое сабнеттинг. Смотреть фото 3 что такое сабнеттинг. Смотреть картинку 3 что такое сабнеттинг. Картинка про 3 что такое сабнеттинг. Фото 3 что такое сабнеттинг

На данный момент существуют две версии IP адресов: IP версии 4 (IPv4) и IP версии 6 (IPv6). Смысл создания новой версии заключается в том, что IP адреса в 4-ой версии уже исчерпаны. А новые устройства в сети появляются с огромной скоростью и им всем нужно выделать свой уникальный адрес.

Длина же IPv6 адресов равна 128-битам. IPv6 адрес представляется в виде строки шестнадцатеричных цифр, разделенной двоеточиями на восемь групп, по 4 шестнадцатеричных цифрр в каждой. Например: 2003:00af:café:3daf:1000:edaf:1001:afad. Каждая группа равна 16 битам в двоичном представлении.

IP адреса принято делить на публичные и приватные. Публичный адрес это адрес, который виден в Интернете. Все сайты в глобальной сети имеют публичный или «белый» IP адрес. Для merionet.ru он равен 212.193.249.136. Да и ваш компьютер тоже имеет публичный адрес, который можете просмотреть либо на роутере, либо на специальных сайтах, например 2ip.ru. Но в вашем случае под одним IP адресом в Интернет могут выходить 10, 50, 100 пользователей из вашей же сети. Потому что на самом деле это адрес не конкретного компьютера в сети, а маршрутизатора, через который вы выходите в сеть. Публичные адреса должны быть уникальны в пределах всего Интернета.

Приватные же адреса это такой тип адресов, которые используют в пределах одной локальной сети и не маршрутизируются в Интернет. Существуют следующие диапазоны приватных IP адресов: 10.0.0.0-10.255.255.255, 172.16.0.0-172.31.255.255, 192.168.0.0-192.168.255.255. Посмотреть свой локальный приватный адрес можете либо в свойствах сетевого адаптера, либо в командной строке набрав команду ipconfig.

В начале зарождения Интернета IP адреса было принято делить на классы:

При этом адрес 0.0.0.0 зарезервирован, он назначается хосту, когда он только что подключен к сети и не имеет IP адреса. Если в сети имеется DHCP сервер, то хост в качестве адреса источника отправляет адрес 0.0.0.0. Адрес 255.255.255.255 это широковещательный адрес. А адреса начинающиеся на 127 зарезервированы для так называемой loopback адресации.

Адреса класса D зарезервированы для мультикаст соединений, адреса класса E для исследований (не только крысы страдают от исследований).

3 что такое сабнеттинг. Смотреть фото 3 что такое сабнеттинг. Смотреть картинку 3 что такое сабнеттинг. Картинка про 3 что такое сабнеттинг. Фото 3 что такое сабнеттинг

А теперь посмотрим как мы получаем 192 из суммы степеней двойки:

1 * 2 7 +1*2 6 +0*2 5 +0*2 4 +0*2 3 +0*2 7 +0*2 1 +0*2 0 = 1*2 7 +1*2 6 = 128 + 64 = 192. И так каждый октет может включать в себя следующие числа:

128 64 32 16 8 4 2 1. Если в IP адресе есть место одной из указанных чисел, то в двоичном представлении на месте этого числа подставляется 1, если нет 0. В маске сети все подряд идущие биты должны быть равны 1.

Принадлежность адреса классу определяется по первым битам. Для сетей класса A первый бит всегда равен 0, для класса B 10, для класса С 110.

При классовой адресации за каждым классом закреплена своя маска подсети. Для класса А это 255.0.0.0, класса B 255.255.0.0, а для класса C 255.255.255.0.

Но со временем стало ясно, что классовая адресация не оптимально использует существующие адреса. Поэтому перешли на бесклассовую адресацию, так называемую Classless Inter-Domain Routing (CIDR), где любой подсети можно задать любую маску. Отличную от стандартной. При это, маску подсети можно увеличивать, но никак не уменьшать. Наверное не раз встречали адреса типа 10.10.121.25 255.255.255.0. Этот адрес по сути является адресом класса А, но маска относится к классу C.

Но даже в случае бесклассовой адресации наблюдается перерасход IP адресов. В маленьких сетях, где всего один отдел с 40-50 компьютерами это не очень заметно. Но в больших сетях, где нужно каждому отделу выделить свой диапазон IP адресов этот вопрос стоит боком. Например, бухгалтерии вы выделили сеть с адресом 192.168.1.0/24, а там всего 25 хостов. В указанной сети же 254 адресов. Значит 229 адреса остаются не используемыми.

На самом деле здесь 256 адресов, но первый 192.168.1.0 является адресом сети, а последний 192.168.1.255 широковещательнымадресом. Итого в распоряжении администратора всего 254 адреса. Существует формула расчета количества хостов в указанной сети. Выглядит она следующим образом:

Тут и вспоминаем про деление сетей на подсети. Кроме экономии адресного пространства, сабнеттинг дает еще и дополнительную безопасность. Трафик между сетями с разной маской не ходит, а значит пользователи одной подсети не смогут прослушать трафик пользователей в другой. Это еще и упрощает управление разрешениями в сети, так как можно назначать списки доступа и тем самым ограничивать доступ пользователей в критически важные сегменты сети.

С другой стороны, сегментирование сети позволяет увеличивать количество широковещательных доменов, уменьшая при этом сам широковещательный трафик.

В сегментировании сети используется такой подход как маска подсети с переменной длиной VLSM (Variable Length Subnet Mask). Суть состоит в том, что вам выделяют диапазон IP адресов, и вы должны распределить их так, чтобы никто не мог проснифить трафик другого и всем досталось хотя бы по одному адресу.

Выделением блоков IP адресов занимается организация IANA (Internet Assigned Numbers Authority ). Она делегирует права региональным регистраторам, которые в свою очередь выделяют блоки адресов национальным. Например, региональным регистратором для Европы является RIPE. А последние в свою очередь делят адреса, имеющиеся у них, между провайдерами.

Например, нам выделили адрес 192.168.25.0 с маской подсети 255.255.255.0.

Маску подсети можно указывать сокращенно: 192.168.25.0/24. 24 это число единиц в маске.

Нам как администраторам предприятия предстоит разделить их между четырьмя отделами, в которых по 50 хостов. Начинаем вычисления. Нам нужно 5 * 50 = 250 уникальных адресов. Но основная задача, пользователи должны быть в разных подсетях. Значит необходимо четыре подсети. Для определения количества подсетей в сети есть специальная формула:

Где N число подсетей, а n число бит заимствованных из хостовой части IP адреса. В нашем случае мы пока не позаимствовали ничего значить подсеть всего одна: 2 0 = 1. Нам же нужно четыре подсети. Простая математика нам подсказывает, что должны позаимствовать минимум 2 бита: 2 2 = 4. Итак, маска у нас становиться 255.255.255.192 или /26. Остальные 6 битов нам дают количество адресов равных 64 для каждой подсети, из которых доступны 62 адреса, что полностью покрывает нужду наших подсетей:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *