80s рибосомы что такое
80s рибосомы что такое
7.2.6. Рибосомы
Рибосомы состоят из примерно равных (по массе) количеств РНК и белка (т. е. представляют собой рибонуклеопротеиновые частицы). Входящая в их состав РНК, называемая рибосомной РНК (рРНК), синтезируется в ядрышке. Распределение в рибосоме белковых молекул и молекул рРНК показано на рис. 7.18. Вместе те и другие образуют сложную трехмерную структуру, обладающую способностью к самосборке.
Рис. 7.18. Строение 70S-рибосомы. (В субчастицах 80S-рибосом больше белка, а в ее большой субчастице содержится не две, а три молекулы рРНК.)
Во время синтеза белка на рибосомах аминокислоты, из которых строится полипептидная цепь, присоединяются к растущей цепи последовательно одна за другой. Подробно этот процесс описан в гл. 22. Рибосома служит местом связывания для молекул, участвующих в синтезе, т. е. таким местом, где эти молекулы могут занять по отношению друг к другу совершенно определенное положение. В синтезе участвуют: матричная РНК (мРНК), несущая генетические инструкции от клеточного ядра, транспортная РНК (тРНК), доставляющая к рибосоме требуемые аминокислоты, и растущая полипептидная цепь. Должны также занять надлежащее место факторы, ответственные за инициацию, элонгацию и терминацию цепи. Весь процесс в целом настолько сложен, что без рибосомы он не мог бы идти эффективно (или не шел бы вообще).
В процессе синтеза белка рибосома перемещается вдоль нитевидной молекулы мРНК. Процесс идет более эффективно, когда вдоль мРНК перемещается не одна рибосома, а одновременно много рибосом, напоминающих в этом случае бусины на нитке. Такие цепи рибосом называются полирибосомами или полисомами. На ЭР полисомы обнаруживаются в виде характерных завитков (рис. 7.16). Их можно выделить в интактном виде методом центрифугирования.
Рибосома
Рибосо́ма — важнейший немембранный органоид живой клетки сферической или слегка эллипсоидной формы, диаметром от 15—20 нанометров (прокариоты) до 25—30 нанометров (эукариоты), состоящий из большой и малой субъединиц. Рибосомы служат для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК, или мРНК. Этот процесс называется трансляцией.
В эукариотических клетках рибосомы располагаются на мембранах эндоплазматической сети, хотя могут быть локализованы и в неприкрепленной форме в цитоплазме. Нередко с одной молекулой мРНК ассоциировано несколько рибосом, такая структура называется полирибосомой (полисомой). Синтез рибосом у эукариот происходит в специальной внутриядерной структуре — ядрышке.
Рибосомы представляют собой нуклеопротеид, в составе которого отношение РНК/белок составляет 1:1 у высших животных и 60-65:35-40 у бактерий. Рибосомная РНК составляет около 70 % всей РНК клетки. Рибосомы эукариот включают четыре молекулы рРНК, из них 18S, 5.8S и 28S рРНК синтезируются в ядрышке РНК полимеразой I в виде единого предшественника (45S), который затем подвергается модификациям и нарезанию. 5S рРНК синтезируется РНК полимеразой III в другой части генома и не нуждаются в дополнительных модификациях. Почти вся рРНК находится в виде магниевой соли, что необходимо для поддержания структуры; при удалении ионов магния рибосома подвергается диссоциации на субъединицы.
Константа седиментации (скорость оседания в ультрацентрифуге) рибосом эукариотических клеток равняется 80S (большая и малая субъединицы 60S и 40S, соответственно), бактериальных клеток (а также митохондрий и пластид) — 70S (большая и малая субъединицы 50S и 30S, соответственно).
Содержание
История исследований рибосомы
В начале 2000-х появились атомные структуры отдельных субъединиц, а также полной рибосомы, связанной с различными субстратами, которые позволили понять механизм декодинга (распознавания антикодона тРНК, комплементарного кодону мРНК) и детали взаимодействий между рибосомой, антибиотиками, тРНК и мРНК.
Нобелевская премия по химии 2009 года получена за определение структуры прокариотической рибосомы учёным из Великобритании Венкатраманом Рамакришнаном, американцем Томасом Стейцем и израильтянкой Адой Йонат. В 2010 году в лаборатории Марата Юсупова была определена трехмерная структура эукариотической рибосомы. [3]
В 2009 году канадские биохимики Константин Боков и Сергей Штейнберг из Монреальского университета, исследовав трёхмерную структуру рибосомной РНК современных бактерий E.coli, пришли к выводу, что рибосомы могли сформироваться в результате постепенной эволюции из очень простой маленькой молекулы РНК — «проторибосомы», способной катализировать реакцию соединения двух аминокислот. Все остальные структурные блоки рибосомы последовательно добавлялись к проторибосоме, не нарушая её структуру и постепенно повышая эффективность её работы. [4]
Механизм трансляции
Трансляция — синтез белка рибосомой на основе информации, записанной в матричной РНК (мРНК). мРНК связывается с малой субъединицей рибосомы, когда происходит узнавание 3′-концом 16S рибосомной РНК комплементарной последовательности Шайн-Далгарно, расположенной на 5′-конце мРНК (у прокариот), а также позиционирование стартового кодона (как правило, AUG) мРНК на малой субъединице. У эукариот малая субчастица рибосомы связывается также с помощью кэпа, на конце мРНК. Ассоциация малой и большой субъединиц происходит при связывании формилметионил-тРНК (fMET-тРНК) и участии факторов инициации (IF1, IF2 и IF3 у прокариот; их аналоги и дополнительные факторы участвуют в инициации трансляции у эукариотических рибосом). Таким образом, распознавание антикодона (в тРНК) происходит на малой субъединице.
После образования пептидной связи, полипептид оказывается связанным с тРНК, находящейся в А-сайте. На следующем этапе деацилированная тРНК двигается из Р-сайта в Е-сайт (exit-), а пептидил-тРНК из А- в Р-сайт. Этот процесс называется транслокацией и происходит при участии фактора EF-G. тРНК, комплементарная следующему кодону мРНК, связывается с А-центром рибосомы, что ведет к повторению описанных шагов. Стоп-кодоны (UGA, UAG и UAA) сигнализируют об окончании трансляции. Процесс окончания трансляции и освобождения готового полипетида, рибосомы и мРНК, называется терминацией. У прокариот он происходит при участии факторов терминации RF1, RF2, RF3 и RRF.
Рибосома – определение, функция и структура
Определение рибосомы
Рибосома – это сложный клеточный механизм, используемый для трансляции генетический код в цепочки аминокислоты, Длинные цепочки аминокислот складываются и функционируют как белки в клетках.
Функция рибосомы
Функция рибосомы в любом клетка это производить белки. Белки используются практически во всех клеточных функциях; в качестве катализаторов они ускоряют время реакций, в качестве волокон они обеспечивают поддержку, и многие белки функционируют в конкретных задачах, таких как заключение контрактов. мускул клетки. Все белки начинаются как дезоксирибонуклеиновая кислота или ДНК. Специальный белок, РНК-полимераза является ферментом, который распознает последовательности в ДНК, связывается с ними с помощью других белков и создает новую информацию молекула который может путешествовать от ядра к цитозоль клетки. Нить рибонуклеиновой кислоты (РНК), продуцируемая РНК-полимеразой, обрабатывается на выходе из ядра, и области РНК, которые не кодируют белки, удаляются. Молекула теперь известна как мессенджер РНК или мРНК.
Каждая мРНК состоит из 4 различных нуклеиновых оснований, известных как нуклеиновые кислоты. Базовые пары «читаются» в виде серии по три, образуя кодоны. Каждый кодон указывает конкретную аминокислоту. Вся жизнь на Земле использует одни и те же 20 аминокислот, и кодоны, используемые для вызова этих аминокислот, почти универсальны. Кодон, который запускает все белки – «AUG». Это означает последовательность нуклеиновых оснований: аденин, урацил и гуанин соответственно. Специальная молекула РНК, которая может связываться с аминокислотами, известная как перенос РНК или тРНК, распознает эту последовательность и связывается с ней. Эта конкретная тРНК несет метиониновую аминокислоту. В зависимости от строящегося белка следующей аминокислотой может быть любая из двадцати.
Здесь начинается рибосома. Признавая структуру мРНК, связанной с тРНК, две субъединицы рибосомы (обсуждаемые ниже) могут объединиться, чтобы начать синтезировать белок из цепи мРНК. Рибосома действует как большой катализатор, образуя пептидные связи между аминокислотами. Использованная тРНК высвобождается обратно в цитозоль, поэтому она может связываться с другой аминокислотой. В конце концов, мРНК представит кодон рибосоме, что означает «стоп». Специальные белки отделят цепочку аминокислот от последней тРНК, и белок будет выпущен. Этот процесс синтеза нового белка изображен на изображении ниже:
Различные белки требуют различных модификаций и транспорта в различные области клетки, прежде чем они смогут функционировать. Рибосома, прикрепленная к эндоплазматическая сеть Например, отложит новообразованный белок внутрь, где он может быть далее модифицирован и правильно сложен. Другие белки образуются непосредственно в цитозоле, где они могут начать действовать как катализаторы для различных реакций. Рибосомы создают все эти белки, которые нужны клеткам, а это очень много. На клетку весят белки около 20 процентов. Средняя клетка может иметь 10000 различных белков, в среднем по миллиону копий каждого. Это много белка, который необходимо синтезировать, поэтому рибосома превратилась в эффективную и быструю машину. В среднем рибосомы могут добавлять 3-5 аминокислот в секунду к белковой цепи. Учитывая, что самый большой известный белок, титин, содержит около 30000 аминокислот, для синтеза рибосомы требуется всего 2-3 часа. Короткие белки, состоящие из нескольких сотен аминокислот, могут быть синтезированы за считанные минуты.
После изготовления рибосомы не могут отключиться. Как только тРНК связывается с мРНК, они присоединяются с помощью различных других белков, и начинается процесс синтеза белка. Вирусы воспользовались этим фактом. вирус является небольшой цепью ДНК или РНК, которая размножается путем угона нормального механизма клетки, включая рибосомы. Рибосомы клетки используются вирусом для создания белков, необходимых для репликации ее генома и инкапсуляции, чтобы он мог покинуть клетку. Когда вирус вводит свой геном в клетку, молекула обрабатывается так же, как если бы клетка создала ее. Если вирус основан на ДНК, ДНК проникает в ядро, где белки клетки переводят его в РНК, которая переводится рибосомами в белки. Если вирус основан на РНК, вирусная РНК остается в цитоплазма где он может взаимодействовать с рибосомами напрямую, создавая новые белки. В любом случае вирус сможет создавать все белки, необходимые для репликации своего генома, и упаковывать копии в новые белковые капсулы, способные перемещаться в новую клетку-хозяина и распространять болезнь.
Структура рибосомы
Рибосомы имеют невероятно похожую структуру во всех формах жизни. Ученые объясняют это тем, что рибосома является очень эффективным и действенным способом синтеза белков. Таким образом, в начале эволюции различных форм жизни рибосома была повсеместно принята как метод трансляции РНК в белки. Поэтому рибосомы очень мало меняются между разными организмами. Рибосомы состоят из большой и маленькой субъединиц, которые объединяются вокруг молекулы мРНК, когда перевод происходит. Каждая субъединица представляет собой комбинацию белков и РНК, называемых рибосомная РНК (РРНК). Эта рРНК существует в различных цепях разной длины и окружена множеством белков, которые создают рибосому. РРНК действует как для обеспечения мРНК и тРНК в рибосоме, так и в качестве катализатора для ускорения образования пептидных связей между аминокислотами.
Небольшая субъединица, как видно на изображении выше, помогает удерживать мРНК на месте, так как рибосома переводит ее в белок. Большая субъединица имеет различные сайты, связанные с различными частями процесса синтеза белка. Когда тРНК впервые связывается с мРНК, сайт Р может связываться с этими молекулами. Сайт P назван в честь полимеризации или конструирования полимеров, которые там происходят. Конформационные изменения происходят в белках рибосомы, что заставляет его менять форму на различных этапах синтеза белка. Когда аминокислоты добавляются в цепь, тРНК перемещаются из сайта A (куда входят новые аминокислоты с тРНК) в сайт P и, в конечном итоге, в сайт E (не показан), где они выходят из рибосомы без своей аминокислоты. РРНК, которая связана с рибосомой, помогает прикрепляться к тРНК по мере их движения через рибосому, и было обнаружено, что она помогает катализировать образование пептидных связей. Эта РНК известна как рибозим или РНК-катализатор.
Одно заметное различие между прокариотическими и эукариотическими рибосомами заключается в размере. Рибосомы измеряются в единицах Сведберга, которые являются мерой того, сколько времени требуется молекуле для осаждения из решение в центрифуге. Чем больше число, тем больше молекула. Прокариотические рибосомы, как правило, состоят из 70S или единиц Сведберга. Эукариотическая рибосома обычно 80S. Эукариотические рибосомы больше, потому что они содержат больше белков и больше РНК. Прокариотические рибосомы содержат 3 молекулы РНК, а эукариотические рибосомы содержат 4 молекулы РНК. Различия невелики, поскольку рибосомы каждой из них действуют примерно одинаково.
викторина
1. Ученый, изучающий вирусы, пытается найти способ остановить их размножение. Ученый находит способ остановить образование рибосом, который, по его мнению, также останавливает размножение вирусов. Почему этот метод не работает?A. Вирус все еще может воспроизводить свой геном.B. Клетка-хозяин также нуждается в рибосомах.C. Вирус не сможет проникнуть в клетку хозяина.
Ответ на вопрос № 1
В верно. Хотя этот метод будет работать, чтобы остановить размножение вируса, рибосомы являются единственным механизмом, который клетки используют для создания белков. Белки со временем разлагаются и должны быть заменены. Кроме того, поскольку клетка растет и делится, белок должен быть синтезирован, чтобы обеспечить структуру новых областей клетки. Без рибосом, продуцирующих эти белки, клетка быстро отмирает. Рибосомы не имеют ничего общего с вирусом, попадающим в клетку, и участвуют только в синтезе вирусных белков.
2. Рибосомы и ДНК производят миллионы различных белков. Как миллионы различных белков происходят только из 4 различных нуклеиновых оснований, используемых для создания ДНК?A. Рибосомы переводят 4 базовых языка ДНК в 20 базовых языков белков, что позволяет использовать гораздо больше комбинаций.B. 4 различных нуклеиновых основания ДНК могут бесконечно рекомбинироваться для получения новых белков.C. Рибосомы могут модифицировать белки углеводами, чтобы сделать их уникальными.
Ответ на вопрос № 2
верно. ДНК, транскрибированная в РНК, читается в единицах из трех, известных как кодоны. Таким образом, при выборе только 4 различных молекул можно создать только 48 уникальных комбинаций (43). Если бы белки были созданы на этом языке, могло бы существовать только 48 различных белков. Вместо этого рибосома работает с тРНК и мРНК для перевода языка, созданного кодонами, в серию аминокислот. В то время как есть только 20 аминокислот, белок может быть любой длины. Дипептид или две аминокислоты, связанные вместе, могут иметь 400 (202) различных комбинаций. Учитывая, что средний белок ближе к 10000 аминокислот, число возможностей ошеломляет (2010000).
3. Безумный ученый хочет создать светящегося кролика, которого он может иметь в качестве своего компаньона. Он удаляет гены, которые вызывают свечение от фосфоресцирующих бактерии и вставляет их в эмбрион белого кролика. К его разочарованию, кролик не светится. Почему его эксперимент не сработал?A. Он использовал бактериальную ДНК, которая создает бактериальные белки, которые не функционируют в ДНК.B. Рибосомы не смогли идентифицировать мРНК, продуцируемую ген,C. Ген никогда не транскрибируется в мРНК.
Ответ на вопрос № 3
С верно. В этом случае ученый добавляет ген прокариот в эукариот организм, Белки и ферменты, которые должны ассоциироваться с геном, чтобы он транскрибировался в РНК, различаются в прокариотическом гене, который вызывает свечение. Бактериальный белок все еще будет функционировать после его создания в эукариотическая клетка, так как белок точно такой же. Чтобы это работало (что и происходит), ученый должен сначала модифицировать бактериальный ген, чтобы сделать его «читаемым» с помощью эукариотических механизмов, которые транскрибируют ДНК. Как только это произойдет, ген может быть вставлен в геном и будет экспрессироваться животным.
Рибосомы
Рибосомы являются важнейшими органоидами клетки, так как на них протекает процесс трансляции — синтез полипептида на матричной РНК (мРНК). Другими словами, рибосомы служат местом белкового синтеза.
Строение рибосом
Рибосомы относятся к немембранным органоидам. Они очень мелкие (около 20 нм), но многочисленные (тысячи и даже миллионы на клетку), состоят из двух частей – субъединиц. В состав субчастиц входят рибосомальные РНК (рРНК) и рибосомные белки, т. е. рибосомы по химическому составу являются рибонуклеопротеидами. Однако в них также присутствует небольшое количество низкомолекулярных соединений. Из-за многочисленности рибосом, рРНК составляет более половины от всей РНК клетки.
Одну из субъединиц называют «малой», вторую – «большой».
В собранной из субъединиц рибосоме выделят два (по одним источникам) или три (по другим) участка, которые называют сайтами. Один из участков обозначают A (aminoacyl) и называют аминоацильным, второй — P (peptidyl) — пептидильный. Данные сайты являются основными каталитическими центрами протекающих на рибосомах реакций. Третий участок обозначают E (exit), через него освободившаяся от синтезируемого полипептида транспортная РНК (тРНК), покидает рибосому.
Кроме перечисленных сайтов на рибосомах есть другие участки, используемые для связывания различных ферментов.
Когда субъединицы диссоциированы (разъединены) специфичность сайтов теряется, т. е. они определяются сочетанием соответствующих областей обеих субъединиц.
Отличие рибосом прокариот и эукариот
Соотношение по массе белков и РНК в рибосоме примерно поровну. Однако у прокариот белков меньше (около 40%).
Размеры как самих рибосом, так и субъединиц выражают в скорости их седиментации (осаждения) при центрифугировании. При этом S обозначает константу Сведберга — единицу, характеризующую скорость оседания в центрифуге (чем больше S, тем быстрее частица осаждается, а значит тяжелее). У прокариот рибосомы имеют размер в 70S, а у эукариот — в 80S (т. е. они тяжелее и крупнее). При этом субъединицы прокариотических рибосом имеют значения 30S и 50S, а эукариотических — 40S и 60S. Размеры рибосом в митохондриях и хлоропластах эукариот сходны с прокариотическими (хотя имеют определенную вариабельность по размерам), что может указывать на их происхождение от древних прокариотических организмов.
У прокариот в состав большой субъединицы рибосом входит две молекулы рРНК и более 30 молекул белка, в состав малой — одна молекула рРНК и около 20 белков. У эукариот в субъединицах больше молекул белка, а также в большой субъединице три молекулы рРНК. Составляющие рибосому белки и молекулы рРНК обладают способностью к самосборке и в итоге образуют сложную трехмерную структуру. Структуру рРНК поддерживают ионы магния.
Синтез рРНК
У эукариот в состав рибосом входят 4 вида рРНК. При этом три образуются из одного транскрипта-предшественника — 45S рРНК. Он синтезируется в ядрышке (на петлях хромосом его формирующем) при помощи РНК-полимеразы-1. Гены рРНК имеют много копий (десятки и сотни) и обычно располагаются на концах разных пар хромосом. После синтеза 45S рРНК разрезается на 18S, 5.8S и 28S рРНК, каждая из которых подвергается тем или иным модификациям.
Четвертый вид рРНК синтезируется вне ядрышка с помощью фермента РНК-полимеразы-3. Это 5S РНК, которая после синтеза не нуждается в процессинге.
Третичная структура рРНК в составе рибосом очень сложная и компактная. Она служит каркасом для размещения рибосомных белков, которые выполняют вспомогательные функции для поддержания структуры и функциональности.
Функция рибосом
Функционально рибосомы являются местом связывания молекул, участвующих в синтезе (мРНК, тРНК, различные факторы). Именно в рибосоме молекулы могут занять друг по отношению к другу такое положение, которое позволит быстро протечь химической реакции реакции.
В эукариотических клетках рибосомы могут находиться свободно в цитоплазме или быть прикрепленными с помощью специальных белков к ЭПС (эндоплазматическая сеть, она же ЭР — эндоплазматический ретикулум).
В процессе трансляции рибосома перемещается по мРНК. Часто по одной нитевидной мРНК двигаются несколько (или множество) рибосом, образуя так называемую полисому (полирибосому).
Исследователи раскрыли рецепт создания рибосом. Как это поможет человечеству?
Ученые придумали высокопроизводительный метод построения рибосом, который использует части различных микробов, а также измеряет и оптимизирует способность рибосом катализировать производство белка. Рассказываем о новом исследовании биологов и все, что нужно знать о рибосоме.
Читайте «Хайтек» в
Что такое рибосома?
Рибосоома — важнейшая немембранная органелла всех живых клеток, служащая для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК (мРНК). Этот процесс называется трансляцией. Рибосомы имеют сферическую или слегка эллипсоидную форму диаметром от 15–20 нанометров (прокариоты) до 25–30 нанометров (эукариоты), состоят из большой и малой субъединиц. Малая субъединица считывает информацию с матричной РНК, а большая — присоединяет соответствующую аминокислоту к синтезируемой цепочке белка.
В эукариотических клетках рибосомы располагаются на мембранах эндоплазматической сети, хотя могут быть локализованы и в неприкрепленной форме в цитоплазме. Нередко с одной молекулой мРНК ассоциировано несколько рибосом, такая структура называется полирибосомой (полисомой). Синтез рибосом у эукариот происходит в специальной внутриядерной структуре — ядрышке.
Какая функция у рибосом?
Рибосомы на внешней поверхности эндоплазматического ретикулума играют важную роль в синтезе белка внутри клеток.
ДНК в ядре клетки несет генетический код, который состоит из последовательностей аденина (A), тимина (T), гуанина (G) и цитозина (C). РНК, которая содержит урацил (U) вместо тимина, переносит код на участки образования белков в клетке. Чтобы создать РНК, ДНК соединяет свои основания с основаниями «свободных» нуклеотидов. Информационная РНК (мРНК) затем перемещается к рибосомам в цитоплазме клетки, где происходит синтез белка. Основные триплеты транспортной РНК (тРНК) соединяются с таковыми из мРНК и в то же время откладывают свои аминокислоты на растущей белковой цепи. Наконец, синтезированный белок высвобождается для выполнения своей задачи в клетке или в другом месте тела.
Рибосомы состоят из рибосомных белков и рибосомальной РНК (рРНК). У прокариот рибосомы примерно на 40% состоят из белка. У эукариот рибосомы примерно наполовину состоят из белка и наполовину из рРНК. Рибосомы обычно состоят из трех или четырех молекул рРНК и примерно от 40 до 80 различных рибосомных белков.
Каждая рибосома состоит из двух субъединиц, большей и меньшей, каждая из которых имеет характерную форму. Субъединицы обычно называют их скоростью седиментации, которая измеряется в единицах Сведберга (S) в центробежном поле. Маленькие и большие субъединицы эукариот обозначаются 40S и 60S, соответственно, в то время как прокариоты содержат небольшую субъединицу 30S и большую субъединицу 50S.
Зачем ученым изучать рибосомы?
Рибосома — это клеточная фабрика по синтезу белка. Обладая скоростью синтеза белка до 20 аминокислот в секунду и точностью 99,99%, необычайная каталитическая способность бактериального механизма трансляции привлекла значительные усилия для разработки, реконструкции и перепрофилирования для биохимических исследований и новых функций. Фундаментальные ограничения на химические процессы, которые может выполнять активный сайт на основе РНК рибосомы, неизвестны до сих пор.
Тем не менее, ученые стремятся создать новые виды рибосом, которые генерируют белки с новыми свойствами.
Исследователи из Института Брода сделали важный шаг в этом направлении. Они придумали высокопроизводительный метод построения рибосом, который использует части различных микробов. Кроме того, он измеряет и оптимизирует способность рибосом катализировать производство белка. В исследовании, опубликованном в Nature Communications, подробно описывается успешное введение более 30 различных рибосом в клетку Escherichia coli.
Напомним, E. coli, или кишечная палочка — вид грамотрицательных палочковидных бактерий, широко распространенных в нижней части кишечника теплокровных животных. Большинство ее штаммов безвредны, однако серотип O157:H7 может вызывать тяжелые пищевые отравления у людей и животных.
Поскольку антибиотики обычно нацелены на рибосомы у различных бактерий, новый метод может стать способом быстрого тестирования новых лекарств, нацеленных только на молекулярные фабрики конкретных патогенов у человека.
Таким образом ученые планируют решить проблему резистентности к антибиотикам. Технология позволит проверять новые лекарства и потенциально обнаруживать молекулы, которые ингибируют рибосомы от патогенов человека, но не комменсальные бактерии. Они помогают иммунной системе распознавать болезнетворные микроорганизмы. Патогенные бактерии при попадании в организм способны вызывать заболевания. Эти бактерии могут распространяться через воду, воздух, почву, а также при физическом контакте.
Работа также дает исследователям новые инструменты для синтетической биологии. Раньше рибосомы E. coli представляли собой основную часть инструментария, доступного синтетическим биологам. Во время работы ученые были заинтересованы в расширении этого инструментария на рибосомы других видов и использовании их для новых приложений.
Как продвинулись ученые?
Исследователи синтетической биологии обычно используют части рибосомы E. coli при конструировании новых макромолекул, но это ограничивает возможности исследователей создавать большее количество молекул.
В начале исследования команда ученых стремилась понять, почему так сложно заставить рибосому другого вида работать в клетке E. coli. Для этого биологи использовали ортогональную трансляцию. Этот метод заставляет рибосому генерировать исключительно определенный белок — в данном случае зеленый флуоресцентный белок (GFP). Если рибосома работала в новой среде, исследователи могли сразу увидеть, что клетка вырабатывает GFP и флуоресцирует зеленым цветом.
Напомним, зеленый флуоресцентный белок выделен из медузы Aequorea victoria, который флуоресцирует в зеленом диапазоне при освещении его светом от синего до ультрафиолетового диапазона.
Используя этот метод, ученые определили, что рибосомы бактерий, тесно связанных с E. coli, могут легко транслировать GFP. Чем более генетически диверсифицированы бактерии, тем труднее их рибосомам работать в кишечной палочке.
Однако команда из Института Брода смогла улучшить функцию рибосом из отдаленно родственных бактерий, введя ключевую РНК и белки, связанные с рибосомами из исходной клетки. Таким образом миниатюрная молекулярная фабрика чувствовала себя как дома и заставляла ее работать с E. coli. Затем исследователи разработали универсальные инженерные правила для ортогональной трансляции, которые можно было бы распространить на любой репортерный белок. Достоверность этих правил ученые подтвердили в тесте на других флуоресцентных белках.
Авторы работы планируют превратить свой подход в платформу для скрининга антибиотиков на предмет ингибирования, специфичного для рибосом, а также для исследования биотехнологических применений сконструированных рибосом.













