аэродинамика что это такое

АЭРОДИНАМИКА

Полезное

Смотреть что такое «АЭРОДИНАМИКА» в других словарях:

аэродинамика — аэродинамика … Орфографический словарь-справочник

АЭРОДИНАМИКА — (от греч. aer воздух, и dynamis сила). Наука о законах движения газов. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. АЭРОДИНАМИКА греч., от aer, воздух, и dynamis, сила. Наука о законах движения газообразных тел … Словарь иностранных слов русского языка

Аэродинамика — (от греческого аer воздух и dynamis сила) 1) раздел механики сплошных сред, в котором изучаются закономерности движения жидкостей и газов (преимущественно воздуха), а также механическое и тепловое взаимодействие между жидкостью или газом и… … Энциклопедия техники

аэродинамика — и, ж. aérodynamique f. Научная дисциплина, изучающая законы движения воздуха и других газов и их взаимодействие с движущимися в них телами. БАС 2. <Аэрометрия> разделяется на Аэростатику, Пневматику и Аэродинамику. Ян. 1 296. Лекс. Ян. 1803 … Исторический словарь галлицизмов русского языка

аэродинамика — Раздел механики сплошных сред, в котором изучаются закономерности движения газа, преимущественно воздуха, а также механическое и тепловое взаимодействие между газом и движущимися в нем телами. [ГОСТ 23281 78] Тематики аэродинамика летательных… … Справочник технического переводчика

АЭРОДИНАМИКА — (от аэро. и греческого dynamis сила), наука о законах движения газов и взаимодействии их с твердыми телами. Сложилась в 1 й четверти 20 в. в связи с потребностями развивающейся авиации в аналитическом определении подъемной силы летательного… … Современная энциклопедия

АЭРОДИНАМИКА — раздел аэромеханики, в котором изучаются законы движения газа (напр., воздуха) и силы, возникающие на поверхности обтекаемого газом тела. Сформировалась в 20 в. в связи с развитием авиации. Основные задачи аэродинамики: определение сил,… … Большой Энциклопедический словарь

АЭРОДИНАМИКА — АЭРОДИНАМИКА, наука о движении газов и о силах, действующих на предметы, например, самолеты, движущиеся в воздушной среде. Авиаконструктор должен учитывать четыре важнейших фактора и их взаимосвязь: вес аппарата и груза, который должен быть… … Научно-технический энциклопедический словарь

АЭРОДИНАМИКА — АЭРОДИНАМИКА, аэродинамики, мн. нет, жен. (от греч. aer воздух и dynamis сила) (научн.). Учение о сопротивлении воздуха при движении тел. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

АЭРОДИНАМИКА — АЭРОДИНАМИКА, и, жен. Раздел аэромеханики, изучающий движение воздуха и других газов и взаимодействие газов с обтекаемыми ими телами. | прил. аэродинамический, ая, ое. А. нагрев (повышение температуры тела, движущегося с большой скоростью в… … Толковый словарь Ожегова

Источник

Аэродинамика

Полезное

Смотреть что такое «Аэродинамика» в других словарях:

аэродинамика — аэродинамика … Орфографический словарь-справочник

АЭРОДИНАМИКА — (от греч. aer воздух, и dynamis сила). Наука о законах движения газов. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. АЭРОДИНАМИКА греч., от aer, воздух, и dynamis, сила. Наука о законах движения газообразных тел … Словарь иностранных слов русского языка

Аэродинамика — (от греческого аer воздух и dynamis сила) 1) раздел механики сплошных сред, в котором изучаются закономерности движения жидкостей и газов (преимущественно воздуха), а также механическое и тепловое взаимодействие между жидкостью или газом и… … Энциклопедия техники

АЭРОДИНАМИКА — (от греч. aer воздух и dynamis сила), раздел гидроаэромеханики, в к ром изучаются законы движения воздуха (или др. газа) и силы, возникающие на поверхности тел, относительно к рых происходит его движение. В А. рассматривают движение с дозвук.… … Физическая энциклопедия

аэродинамика — и, ж. aérodynamique f. Научная дисциплина, изучающая законы движения воздуха и других газов и их взаимодействие с движущимися в них телами. БАС 2. <Аэрометрия> разделяется на Аэростатику, Пневматику и Аэродинамику. Ян. 1 296. Лекс. Ян. 1803 … Исторический словарь галлицизмов русского языка

аэродинамика — Раздел механики сплошных сред, в котором изучаются закономерности движения газа, преимущественно воздуха, а также механическое и тепловое взаимодействие между газом и движущимися в нем телами. [ГОСТ 23281 78] Тематики аэродинамика летательных… … Справочник технического переводчика

АЭРОДИНАМИКА — (от аэро. и греческого dynamis сила), наука о законах движения газов и взаимодействии их с твердыми телами. Сложилась в 1 й четверти 20 в. в связи с потребностями развивающейся авиации в аналитическом определении подъемной силы летательного… … Современная энциклопедия

АЭРОДИНАМИКА — раздел аэромеханики, в котором изучаются законы движения газа (напр., воздуха) и силы, возникающие на поверхности обтекаемого газом тела. Сформировалась в 20 в. в связи с развитием авиации. Основные задачи аэродинамики: определение сил,… … Большой Энциклопедический словарь

АЭРОДИНАМИКА — АЭРОДИНАМИКА, наука о движении газов и о силах, действующих на предметы, например, самолеты, движущиеся в воздушной среде. Авиаконструктор должен учитывать четыре важнейших фактора и их взаимосвязь: вес аппарата и груза, который должен быть… … Научно-технический энциклопедический словарь

АЭРОДИНАМИКА — АЭРОДИНАМИКА, аэродинамики, мн. нет, жен. (от греч. aer воздух и dynamis сила) (научн.). Учение о сопротивлении воздуха при движении тел. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

АЭРОДИНАМИКА — АЭРОДИНАМИКА, и, жен. Раздел аэромеханики, изучающий движение воздуха и других газов и взаимодействие газов с обтекаемыми ими телами. | прил. аэродинамический, ая, ое. А. нагрев (повышение температуры тела, движущегося с большой скоростью в… … Толковый словарь Ожегова

Источник

Что такое Аэродинамика? Объясняем простыми словами

аэродинамика что это такое. Смотреть фото аэродинамика что это такое. Смотреть картинку аэродинамика что это такое. Картинка про аэродинамика что это такое. Фото аэродинамика что это такое

Аэродинамика – это отрасль физики, которая занимается динамикой воздуха при взаимодействии с твердыми объектами, такими как крылья самолета.

Самолеты, вертолеты и даже птицы, используют принципы аэродинамики для перемещения по воздуху.

Самолеты и вертолеты проектируются и создаются людьми, в то время как птицы (и другие летающие животные, такие как летучие мыши и насекомые) обязаны своей способностью летать эволюции.

Почему самолеты летают?

Самолеты могут летать из-за двух ключевых эффектов:

Проще говоря, крылья самолета создают подъемную силу, а двигатель создает тягу для движения самолета по воздуху.

Как летают птицы?

Для птиц и других летающих животных, хлопающие движения их крыльев создают как подъем, так и толчок.

Если бы крылья самолета могли совершать хлопающие движения, они также двигали бы самолет по воздуху и поддерживали бы подъем, и двигатель не был бы нужен.

Но было бы очень сложно спроектировать и построить самолет с хлопающими крыльями.

Стоит отметить, что аэродинамика используется не только для воздушно-транспортных средств, но и в таких сферах как автомобилестроение.

Источник

Аэродинамика для чайников и учёных

О крыльях и крылышках

Крылья есть у насекомых, летающих рыбок, летучих мышей и у птиц, конечно. Были крылья и у летающих ящеров. Вопрос: «Как Природа смогла дать своим тварям идеальные крылья, если зачаточные крылья и крылышки могли всем им только мешать и никак не способствовать выживанию их обладателей?».

Этот вопрос «на засыпку» верующие иногда задают безбожникам или атеистам. Но посмотрите на снимок вверху и спросите свою бабушку: во что завёрнута эта летающая собачка – в крылья или в плащ-палатку?

Вот и на вопрос верующих у нас уже есть простой ответ: у всех настоящих крыльев, когда они были в недоразвитом или в зачаточном состоянии, было другое и очень полезное для их обладателей назначение: у летающих рыбок это были просто брюшные плавники, то есть рули глубины, которые есть почти у всех других рыб; у насекомых зачаточные крылья были в виде хитиновых защитных щитков, прикрывающих спинку; у летучих мышек – это небольшие накидки и демисезонные плащ-пальто от дождя и холода.

Птицы произошли от ящериц, то есть от пресмыкающихся, поэтому тут надо задаться вопросом: чем могли быть полезны недоразвитые крылья древним ящерам? Думается, они были им полезны тем же самым, чем были изначально полезны летучим мышам их маленькие накидки. Это раз.

Об аэродинамике, которую знает Природа

Но если даже стальная дверь в принципе может летать, то всё остальное, что летает, может делать это по причине совсем небольшой асимметрии атмосферного давления на крыло. Действительно, если атмосферное давление со стороны одной из поверхностей крыла убрать, то со стороны противоположной поверхности сразу возникнет давление 10033 кг/м2. Да, 10 тонн на каждый квадратный метр поверхности крыла! Мы будем считать эту величину максимально возможной подъёмной силой. Но это только для простоты, так как на самом деле, как увидим, она может быть ещё в два раза больше.

Задача 2. На какой разнице атмосферного давления летают птицы и самолёты? К примеру, орёл весом 4 кг, имея «площадь несущих поверхностей» как раз 1 м2, почти неподвижно парит в вышине при положительной разнице атмосферных давлений на его крылья всего 0,04% от 1 кг/см2; АН-2 («кукурузник») летает горизонтально на разности 0,4%; а современному скоростному пассажирскому авиалайнеру для горизонтального полёта достаточно и 5% от 10000 кг/м2.

Идеальный аэродинамический профиль – это «беспрофиль», то есть плоское, как лезвие безопасной бритвы, крыло. Это для передовых инженеров уже аксиома и «новая аэродинамика», а Природа это знала ещё со времён первых насекомых и птеродактилей. Так вот, асимметричное атмосферное давление на совершенно плоское крыло возникает и при его нулевом угле наклона к вектору движения набегающего потока, если верхняя поверхность крыла испещрена микроскопическими неровностями, а нижняя – максимально гладкая. В воде «эффект хаоса над крылом» проявляется ещё значительно сильнее.

Это утверждение доказано самой эволюцией живой природы и передовой практикой авиастроения. Смотрим на расправленное крыло любой птицы: сверху оно бархатистое и может играть всеми цветами радуги, что физику говорит о дисперсии света на мельчайших неровностях на поверхности, а снизу – всегда очень плотное, гладкое и со стальным отливом. Смотрим на современный пассажирский «Боинг»: сверху он словно матовый, а снизу – зеркально гладкий. И пусть та положительная разница в атмосферных давлениях на крыло, которая возникает только по причине различного качества покрытий его аэродинамических поверхностей, будет и недостаточной для полёта, но именно она и позволит самолёту или божьей твари лететь горизонтально с меньшим углом атаки, то есть с меньшим лобовым сопротивлением, экономя силы и топливо.

Инженеры «Боинга» говорят, что уже экономят на эффекте «хаоса над крылом» до 7-ми процентов топлива, а это огромные деньги. Смотрите фотографии «Боингов» и читайте по запросу «Аэродинамика Боинг». Кожа акулы тоже только кажется гладкой, а на ощупь она сравнима с наждачной бумагой. Мельчайшие бугорки на коже акулы тоже способствуют образованию хаоса в поверхностном слое воды и уменьшению давления воды на акулу. И таких примеров «миллион».

Давление атмосферного потока на атакующий беспрофиль всегда меньше сверху и больше снизу по двум причинам: разрежения воздуха и хаоса в движении частиц потока над крылом и деформации и уплотнения упругого потока под крылом. И величина этой разницы пропорциональна скорости крыла или потока, а вектор атмосферного давления всегда перпендикулярен плоскости крыла. При вертикальном полёте спортивного самолёта подъёмная сила его крыльев стремится опрокинуть самолёт и увести его на «мёртвую петлю» (петлю Нестерова).

Как диагональ делит прямоугольник на два равных прямоугольных треугольника, так и атакующий беспрофиль делит воздушный поток на две равнозначные и самостоятельные причины возникновения подъёмной силы. То есть, любую из поверхностей крыла можно сделать параллельной продольной оси фюзеляжа и вектору тяги, противоположная ей причина возникновения подъёмной силы при этом сохранится. К примеру, на сверхзвуковых самолётах верхняя поверхность крыла делается параллельной продольной оси самолёта, а нижняя лишь слегка наклонена, образуя угол атаки примерно в 1 градус. Избыточная подъёмная сила, возникающая на больших скоростях, может быть очень опасной. У крыльев самых первых самолётов, казалось бы, была только одна аэродинамическая поверхность – нижняя, а верхом крыла была ничем не прикрытая «арматура»… Но и у этих крыльев уже была избыточная подъёмная сила, поэтому самолёты тогда часто кувыркались в воздухе, как турманы.

P.S. Совершенно плоские элементы в оперении новейших самолётов мы, уверен, ещё видим, как увидим и различное качество аэродинамических покрытий на наших отечественных самолётах.

Возможно, я был излишне краток. Но всё, что человек понимает, он когда-то понял сам. Желаю успехов!

Источник

Аэродинамика. Часть 1. Прижимная и подъемная силы.

аэродинамика что это такое. Смотреть фото аэродинамика что это такое. Смотреть картинку аэродинамика что это такое. Картинка про аэродинамика что это такое. Фото аэродинамика что это такое

Аэродинамика. Часть 1. Подъемная сила

Итак, продолжу серию постов про аэродинамику и ее использование в автомобиле.

аэродинамика что это такое. Смотреть фото аэродинамика что это такое. Смотреть картинку аэродинамика что это такое. Картинка про аэродинамика что это такое. Фото аэродинамика что это такое

аэродинамика что это такое. Смотреть фото аэродинамика что это такое. Смотреть картинку аэродинамика что это такое. Картинка про аэродинамика что это такое. Фото аэродинамика что это такое

Каждый когда-нибудь видел, как болиды формулы 1, проносясь мимо оператора с камерой, во время дождевых гонок поднимают за собой красивые шлейфы водяного тумана. Как один болид «вешается на хвост» другому, а потом совершает резкий маневр и через несколько секунд оказывается впереди него. Как без всякой видимой причины во время ралли отрываются спойлеры и антикрылья — в эти моменты все вспоминают про аэродинамику.

аэродинамика что это такое. Смотреть фото аэродинамика что это такое. Смотреть картинку аэродинамика что это такое. Картинка про аэродинамика что это такое. Фото аэродинамика что это такое

Аэродинамика, как магия, наука о воздухе — о том, что скрыто от человеческого глаза, но в тоже время таит в себе большую силу. Она многолика, так как воздух окружает нас повсюду. Благодаря аэродинамике летают самолеты, а лыжники с максимальной скоростью несутся по склону горы, приняв наилучшее положение для обтекания. Но в контексте драйв2 область наших интересов в аэродинамике ограничивается автомобилями — о них и поговорим)
Все слышали про Джереми Кларксона, (в прошлом одного из ведущих TopGear`а и на мой взгляд лучшего автомобильного журналиста), но мало кто слышал про Эдриана Ньюи, который учился в старших классах вместе с Джереми. А между тем, Эдриан Ньюи — гениальный инженер-конструктор, один из самых успешных в истории мирового автоспорта! Болиды, сконструированные под его руководством для разных команд, три раза побеждали в знаменитой гонке Индианаполис-500, в гонках Формулы-1 принесли победу в 150 Гран-при, 10 чемпионских титулов и 10 Кубков Конструкторов. Его по праву считают гением аэродинамики, практически волшебником. Посмотрите на любое из его творений и представьте, как оно врезается в стену воздуха, как своими грациозными обводами направляет поток именно туда, куда нужно.

аэродинамика что это такое. Смотреть фото аэродинамика что это такое. Смотреть картинку аэродинамика что это такое. Картинка про аэродинамика что это такое. Фото аэродинамика что это такое

Работа аэродинамика в чем-то напоминает работу скульптора — нужно убрать все лишнее и оставить самую суть. Посмотрите на простую каплю дождя. Это и есть идеальная форма, созданная самим воздухом. Именно так он хочет обтекать движущееся в нем тело.

аэродинамика что это такое. Смотреть фото аэродинамика что это такое. Смотреть картинку аэродинамика что это такое. Картинка про аэродинамика что это такое. Фото аэродинамика что это такое

Задача специалистов по аэродинамике создать такую форму, которую воздуху будет удобно обтекать, и, обтекая которую, он принесет максимум пользы. Давайте вернемся к кузову автомобиля и разберемся в том, как на него воздействует набегающий поток воздуха. Хотя по своей сути набегающий поток, это своего рода условность. Потому что на самом деле автомобиль «набегает» на неподвижный воздух. Но такую систему координат неудобно рассматривать и анализировать, поэтому свяжем ее с автомобилем. В этом случае воздух будет двигаться относительно неподвижного автомобиля.
Прежде чем рассматривать взаимодействие автомобиля с потоком, необходимо ознакомиться с некоторыми основами аэродинамики, которые понадобятся нам в дальнейшем.

В аэродинамике великое множество различных формул, уравнений/зависимостей и законов. Целью данного повествования является общее ознакомление с аэродинамикой, поэтому я не буду вдаваться в это поражающее своим разнообразием обилие символов и чисел, рассмотрим только два из основных законов.
Первый мы видим каждый день. Представьте себе кран. Обыкновенный кран в ванной комнате или на кухне, из которого спокойно вытекает струя воды. Давайте взглянем на нее повнимательнее. Что мы видим? Она сужается! На самом деле все очень просто — каждая «частичка» воды, находится под действием гравитации. Значит на каждую частицу действует ускорение свободного падения, и каждая частица по мере удаления от крана падает все быстрее. Если взять и мысленно рассечь струю у самого крана и на некотором удалении от него, то мы увидим, что через полученные сечения будут двигаться частицы воды: у крана — с малой скоростью, а на отдалении — с большей. Если площадь сечений будет постоянной, то через более удаленное сечение в единицу времени будет проходить больше жидкости, чем через менее удаленное. Но откуда она возьмется, если кран у нас один и напор воды в нем постоянный? Поэтому площадь поперечного сечения струи уменьшается с ростом скорости течения и через каждое сечение проходит одно и то же количество жидкости.

аэродинамика что это такое. Смотреть фото аэродинамика что это такое. Смотреть картинку аэродинамика что это такое. Картинка про аэродинамика что это такое. Фото аэродинамика что это такое

Этот простой пример отражает смысл уравнения неразрывности: чем меньше площадь сечения, через которое течет жидкость, тем больше ее скорость. А причем здесь воздух, спросите вы? Оказывается, у жидкостей и газов много общего, и поведение газа при небольших скоростях во многом повторяет поведение жидкости. Поэтому уравнение неразрывности распространяется и для газовых течений. Главное, чтобы скорости не были очень большими, поскольку в этом случае газ можно считать почти несжимаемым. При больших скоростях газ начинает сжиматься. Например, на сверхзвуке уменьшение площади сечения приведет к появлению пульсаций уплотнения и снижению скорости. Но поскольку мы не рассматриваем автомобили-ракеты, пронзающие воздух на соляных озерах в погоне за очередным земным рекордом скорости, поскольку даже безумно быстрый Bugatti Veyron в два с лишним раза медленнее скорости звука, мы смело можем брать на вооружение уравнение неразрывности.

аэродинамика что это такое. Смотреть фото аэродинамика что это такое. Смотреть картинку аэродинамика что это такое. Картинка про аэродинамика что это такое. Фото аэродинамика что это такое

аэродинамика что это такое. Смотреть фото аэродинамика что это такое. Смотреть картинку аэродинамика что это такое. Картинка про аэродинамика что это такое. Фото аэродинамика что это такое

Второе уравнение называется уравнением Бернулли и говорит о законе сохранения энергии, выраженном через давления. Давление бывает полным, статическим и динамическим. Полное давление как раз и складывается из статического и динамического давлений:

аэродинамика что это такое. Смотреть фото аэродинамика что это такое. Смотреть картинку аэродинамика что это такое. Картинка про аэродинамика что это такое. Фото аэродинамика что это такое

Статическое давление не зависит от скорости. То есть в движущемся с некоторой скоростью потоке для того, чтобы замерить статическое давление, необходимо двигаться со скоростью потока. В этом случае скорость потока относительно измерительного устройства (манометра) будет равно нулю.
Динамическое давление, напротив, зависит от скорости. Причем, что очень важно, не просто от скорости, а от квадрата скорости. Представьте себе неподвижный газ, находящийся в некотором объеме. Элементарные частицы газа хаотично перемещаются на микроуровне (броуновское движение). При этом они сталкиваются друг с другом и со стенками резервуара, в котором газ находится. Вот эти вот удары о стенки сосуда и создают давление. В данном случае это будет статическое давление, которое равно полному. Другими словами – динамическая составляющая давления отсутствует. Теперь если заставить этот же газ течь по трубе с какой-либо отличной от нуля скоростью, то часть энергии элементарных частиц уйдет на движение газа на макроуровне (перемещение больших объемов). А на удары о стенки трубы, по которой движется газ, у элементарных частиц останется меньше энергии. Поэтому статическое давление уменьшится по сравнению с первым случаем на величину динамической составляющей. В принципе этот пример и иллюстрирует уравнение Бернулли.

Воздействие набегающего на автомобиль потока воздуха сводят к аэродинамическим силам. В контексте этого поста нас будут интересовать сила лобового сопротивления, направленная в сторону, противоположную движению автомобиля, и подъемная сила, перпендикулярная плоскости, в которой движется автомобиль, снизу вверх (отрицательная подъемная сила называется прижимной и направлена сверху вниз).

аэродинамика что это такое. Смотреть фото аэродинамика что это такое. Смотреть картинку аэродинамика что это такое. Картинка про аэродинамика что это такое. Фото аэродинамика что это такое

Аэродинамические силы вычисляются по формулам:

аэродинамика что это такое. Смотреть фото аэродинамика что это такое. Смотреть картинку аэродинамика что это такое. Картинка про аэродинамика что это такое. Фото аэродинамика что это такое

Всем, кто учился в школе, известно из курса физики, что сила – это произведение давления на площадь. Но форма автомобиля достаточно сложна и на практике довольно трудно определить, на какую именно площадь какое давление действует. Поэтому берут уже знакомую нам динамическую составляющую давления (которая на вышеприведенных формулах выделена фиолетовым цветом, её еще называют скоростным напором) и умножают на некоторую характерную площадь, например на площадь поперечного сечения — так называемое миделевое сечение — (от нидерл. middel, буквально — средний, середина). А все особенности и нюансы учитывает одно число — аэродинамический коэффициент, который обозначается Сх или Су. Другими словами — это коэффициент незнания. Вычислить его теоретически очень сложно, а единственный достоверный метод определения — продувки в аэродинамической трубе или компьютерное моделирование.

Итак, вернёмся к кузову автомобиля и рассмотрим, каким образом формируется подъемная (или прижимная) сила.
Встретившись с автомобилем, набегающий поток воздуха разделяется. Одна часть потока уходит вниз, под днище автомобиля, а другая обтекает его сверху. Рассмотрим сначала поток, устремившийся под автомобиль. Все, что связано с движением потока под автомобилем так или иначе связано с английским словосочетанием «граунд-эффект» (эффект земли). А смысл граунд-эффекта объясняется при помощи уравнения Бернулли. Представьте себе крыло дозвукового самолета. Основная его особенность заключается в том, что профиль (сечение) этого крыла несимметричен, и поток над крылом должен пройти больший путь, чем поток под крылом. Таким образом, поток над крылом разгоняется, а это, согласно уравнению Бернулли, приводит к уменьшению статического давления. Разница между давлением под крылом и над крылом приводит к появлению подъемной силы. Но если взять и перевернуть это крыло, то подъемная сила превратится в прижимную.

аэродинамика что это такое. Смотреть фото аэродинамика что это такое. Смотреть картинку аэродинамика что это такое. Картинка про аэродинамика что это такое. Фото аэродинамика что это такое

В этом и заключается граунд-эффект: если спрофилировать днище особым образом, то поток под автомобилем будет разгоняться, что приведет к формированию зоны с пониженным давлением.Сделать днище такой формы, чтобы оно повторяло профиль дозвукового крыла достаточно проблематично, поскольку при проектировании спортивного автомобиля все не сводится к одной аэродинамике: необходимо как можно ниже опустить центр масс, обеспечить наилучшую развесовку по осям, оптимально разместить элементы подвески, трансмиссии и т.д. Кроме того, появление зоны с низким давлением под днищем неминуемо вызовет эффект пылесоса: воздух из зоны с высоким давлением устремится в зону с низким давлением, поэтому для предотвращения этого необходимо использовать боковые юбки, мешающие подсосу воздуха по бокам. Кстати, на спортивных автомобилях разряжение от действия граунд-эффекта настолько велико, что способно открыть чугунный канализационный люк, над которым проносится автомобиль.

Как видно, граунд-эффект требует выполнения множества условий одновременно. Реализовать их все пытались в Формуле 1 в конце 70-х – начале 80-х. Для болидов тех времен характерны минимальный клиренс, профилированное дно, боковые юбки. Тогда же на этапе гран-при первый и последний раз появилось легендарное творение великого хитреца из ЮАР Гордона Мюррея — болид Brabham BT46B, прозванный гоночным пылесосом. На нем был установлен вентилятор в задний части, служащий якобы для охлаждения двигателя. Во всяком случае, так обосновывалось его наличие с точки зрения согласования с техническим регламентом. Но на самом деле этот вентилятор откачивал воздух из под болида. Это давало колоссальное преимущество и позволило пилоту Ники Лауде одержать уверенную победу в дебютной для этого гоночного пылесоса гонке. После этого на команду обрушилась лавина протестов и дальновидный Берни Эклстоун, руководивший Brabham в те времена, снял машину с соревнований, дабы не портить себе репутацию.
Вот как это выглядело сзади:

аэродинамика что это такое. Смотреть фото аэродинамика что это такое. Смотреть картинку аэродинамика что это такое. Картинка про аэродинамика что это такое. Фото аэродинамика что это такое

Кстати, на заре Формулы 1 было очень много интересных, а порой и абсурдных инженерных решений, пожалуй, они стоят упоминания в отдельном посте. В среду/четверг напишу об этом отдельную статью, первые шаги аэродинамики в автоспорте — это действительно очень забавно))

Так вот, благодаря граунд-эффекту болиды с одной стороны действительно стали чудесным образом «прилипать» к трассе. Но с другой – его применение оказалось небезопасным, поскольку стоило автомобилю подскочить на кочке, как под него сразу устремлялся воздух из областей с большим давлением, прижимная сила мгновенно падала, и болид терял устойчивость. А если происходил контакт или по каким-то другим причинам разрушались юбки, то эффективность граунд-эффекта падала на порядки. Опасность заключалась еще и в том, что значительно возросли скорости и перегрузки, особенно в поворотах, и любая потеря прижимной силы вела к опасной ситуации. Поэтому руководством Формулы 1 использование граунд-эффекта было запрещено. Но это совсем не означает, что о нем забыли. Запрет лишь положил начало новому раунду борьбы конструкторов с техрегламентом. А основной принцип граунд-эффекта: разгон потока под днищем и создание разряжения, — широко применяется в автоспорте и по сей день.
Если заглянуть под любой среднестатистический автомобиль, то первое, что попадает нам на глаза — это элементы двигателя и трансмиссии, выхлопной и топливной систем, а так же детали подвески. Все они своими выступающими частями тормозят поток, делают течение под днищем вихревым (турбулентным), что приводит к снижению скорости потока и росту статического давления. Поэтому, если заглянуть под спортивный автомобиль, то вы увидите ровное дно с пластиковыми накладками, скрывающими отверстия и выступающие элементы.

аэродинамика что это такое. Смотреть фото аэродинамика что это такое. Смотреть картинку аэродинамика что это такое. Картинка про аэродинамика что это такое. Фото аэродинамика что это такое

Вспоминаем уравнение неразрывности: чтобы увеличить скорость надо уменьшить площадь канала, по которому течет газ. Область между днищем и дорожным полотном является своего рода каналом. Значит надо уменьшить клиренс. У спортивных автомобилей он настолько мал, что зачастую мы видим, как из под дна вырываются искры, образующиеся при соприкосновении его с асфальтом. Кроме того, под автомобиль стараются пускать как можно меньше воздуха. Чем меньше воздуха попадет под дно, тем меньшее давление он сможет создать. Поэтому передний бампер спорткаров украшают массивные спойлеры, отсекающие часть воздуха, стремящегося ворваться под днище автомобиля. Цель ограничить количество воздуха, проникающего под автомобиль, преследуют и юбки по бокам, о которых уже упоминалось выше.

Неотъемлемой частью современных гоночных автомобилей стал диффузор. Диффузор – это вариация на тему профилированного дна. Спрофилировать все дно проблематично, а в ряде гоночных серий это просто запрещено регламентом. Например, в Формуле-1 дно плоское и ступенчатое (дно в области боковых понтонов выше, чем дно в центральной части, где расположена доска скольжения). Казалось бы, реализовать хоть какое-то подобие граунд-эффекта в данной ситуации невозможно. Оказывается, возможно, благодаря использованию диффузора.

аэродинамика что это такое. Смотреть фото аэродинамика что это такое. Смотреть картинку аэродинамика что это такое. Картинка про аэродинамика что это такое. Фото аэродинамика что это такое

Рассмотрим, что происходит в области задней части днища при отсутствии диффузора.
За автомобилем находится зона разряжения. Когда поток, вырывающийся из под днища, начинает взаимодействовать с этой зоной, он резко замедляется. Это можно проиллюстрировать, рассмотрев данный процесс на упрощенном микроуровне элементарных частиц. Когда частицы газа движутся под днищем, они сталкиваются, отскакивают от днища и вновь сталкиваются, передавая тем самым энергию друг другу. Одна частица может потерять энергию, подтолкнув другую, но тут же получит энергию от третьей, та от четвертой и так далее. Таким образом, скорость потока поддерживается на определенном уровне. Когда же днище кончается, частицы не могут отталкиваться от него и часть из них устремляется в зону разряжения за автомобилем. Там взаимодействие между частицами уже не столь интенсивное, как это было под днищем. Поэтому энергия рассеивается, а скорость частиц падает. В том месте, где днище заканчивается, образуется вихревая зона. В этой области поведение потока непредсказуемо, он «не знает», куда ему двигаться: то ли в прежнем направлении, толи в зону с пониженным давлением. В вихревой зоне давление и скорость падают. В результате разгоняемый под днищем поток упирается в вихревую зону и теряет часть своей скорости, ну а последствия уже описывались: падение динамической составляющей давления, рост статической.

Диффузор представляет собой расширяющийся к концу болида участок днища. За счет того, что объем диффузора увеличивается, образуется зона разряжения. А вихри, которые образовывались без диффузора, уменьшаются. То есть диффузор как бы засасывает воздух из под днища и оптимизирует потоки в задней части. У диффузора кроме горизонтальных иногда имеются и вертикальные элементы, «причесывающие» поток и тем самым стабилизирующие его. У современных болидов Формулы 1 порядка 40 % прижимной силы создаётся благодаря работе диффузора.

аэродинамика что это такое. Смотреть фото аэродинамика что это такое. Смотреть картинку аэродинамика что это такое. Картинка про аэродинамика что это такое. Фото аэродинамика что это такое

С тем, что происходит под автомобилем, мы разобрались. Теперь проследим за другим потоком, который огибает кузов автомобиля сверху. Если представить, что автомобиль движется в некоем канале, то окажется, что площадь этого канала уменьшается. Поэтому скользя по капоту, проносясь над лобовым стеклом, поток ускоряется, а статическое давление падает. Проходя над крышей, поток движется с постоянной скоростью, после чего замедляется в области заднего стекла и багажника. Но, даже несмотря на замедление, скорость потока сверху все равно может оказаться выше, чем скорость потока под автомобилем. Получается некоторое подобие авиационного крыла — за счет разности давлений возникает подъемная сила, и автомобиль «пытается взлететь». Для гражданских автомобилей хорошим результатом является сведение подъемной силы к нулю. Перед конструкторами гоночных болидов стоит более сложная задача: нужно прижать автомобиль к земле, создав прижимную силу. Посмотрим, что для этого придумали инженеры-конструкторы.
Во-первых, не стоит забывать о динамической составляющей давления.
Рассмотрим простой пример: Возьмем тонкую пластинку и направим поток воздуха параллельно плоскости этой пластинки. В этом случае влияние динамической составляющей на поверхность пластинки минимально. Теперь придадим пластинке некоторый угол атаки – угол между потоком и плоскостью пластинки. В авиации принято считать положительным угол атаки, образуемый вращением аэродинамической поверхности по часовой стрелке. Мы же повернем нашу пластинку против часовой стрелки, на отрицательный угол атаки (так называемый угол контратаки). С одной стороны площадь воображаемого канала уменьшится, а скорость потока возрастет. Это приведет к падению статического давления. Но наша пластина не полетит вверх, поскольку кроме ударов элементарных частиц газа на микроуровне (статическое давление) на пластинку будут оказывать влияние массы воздуха, движущиеся со скоростью потока (динамическая составляющая). Поэтому пластинка будет прижиматься вниз. То же самое происходит в области капота и лобового стекла. Придав им правильную форму, можно скомпенсировать падение статического давления увеличением влияния динамической составляющей. Но ничего не проходит бесследно. Посмотрим на нашу пластинку под углом атаки повнимательнее. Кроме того, что она прижимается вниз, она стремится сдвинуться назад. Именно так проявляется лобовое сопротивление (о котором речь пойдет в следующем посте). Поэтому необходимо искать компромисс между прижимной силой и лобовым сопротивлением.
Другой способ создать прижимную силу пришел прямиком из авиации. Если развернуть крыло, то вместо подъемной силы оно будет создавать прижимную. Эта идея перевернула гоночный мир с ног на голову в конце 60х годов, когда нелепые антикрылья стали появляться на болидах Формулы-1. С тех пор конфигурация и строение антикрыльев сильно изменилась, но основная идея осталась неизменной: ускорить поток под крылом и тем самым уменьшить статическое давление. У формульных болидов антикрылья вообще играют особую роль. Аэродинамика болидов с открытыми колесами значительно отличается от аэродинамики классических автомобилей: нет привычного капота, лобового и заднего стекла, багажника. Зато есть возможность установить массивные антикрылья спереди и сзади. Они создают свыше 50 % прижимной силы современных болидов Формулы 1. Формульные антикрылья состоят из нескольких плоскостей. Это обусловлено тем, что таким образом в ограниченные габариты можно уместить больше плоскостей, создающих прижимную силу. Но есть еще одна особенность, стимулирующая применение составных антикрыльев.

аэродинамика что это такое. Смотреть фото аэродинамика что это такое. Смотреть картинку аэродинамика что это такое. Картинка про аэродинамика что это такое. Фото аэродинамика что это такое

Если взять обычный авиационный дозвуковой профиль и перевернуть его, то окажется, что для его эффективной работы нужны достаточно большие по автомобильным меркам скорости. Современные пассажирские самолеты взлетают на скорости 250 км/ч, а средняя скорость на гран-при Монако, где прижимная сила нужна как воздух, 150 км/ч. Плюс надо учитывать, что больше всего прижимная сила нужна в поворотах, где скорость как раз таки падает. Антикрылья можно установить под некоторым углом атаки. Но угол этот можно менять в достаточно узком диапазоне, поскольку при больших углах атаки за крылом образуется вихревая зона и значительно возрастает лобовое сопротивление. Поэтому инженеры придумали изгибать профиль. В этом случае поток, разворачиваясь, движется по дуге с некоторым радиусом и в нем возникают центробежные силы, дополнительно прижимающие антикрыло. Но гнуть крылья тоже можно в определенных пределах, поскольку при большой кривизне за ними возникает зона разряжения, способствующая вихреобразованию. Если же антикрыло сделать составным, то в щели между планками будет проникать воздух. Это позволяет уменьшить разряжение и исключить вихри. У автомобилей классической схемы антикрыло устанавливается только сзади. Наверняка вы обращали внимание, что часто антикрылья на спортивных автомобилях расположены достаточно высоко и отнесены назад. Это обусловлено тем, что наилучшим образом крыло работает в чистом, невозмущенном, ламинарном потоке.
Говоря об антикрыльях, следует упомянуть про торцевые пластины. Место окончания антикрыла — его торцы — является источником вихрей, поскольку воздух, разрезаемый крылом имеет одну скорость, а воздух, не попавший на крыло – другую. При взаимодействии этих потоков, частицы газа начинают перемешиваться, что приводит к возникновению вихрей. Если же установить торцевые пластины, то эти потоки будут разделены.

аэродинамика что это такое. Смотреть фото аэродинамика что это такое. Смотреть картинку аэродинамика что это такое. Картинка про аэродинамика что это такое. Фото аэродинамика что это такое

Часто можно услышать мнение, что антикрыло и спойлер – это одно и то же. На самом деле, это совершенно разные аэродинамические элементы.
Антикрыло создает разность скоростей за счет того, что разделяет поток на две части, и эти две части потока проходят разные пути с разной скоростью.
Спойлер же изменяет направление потока, но не разделяет его. Он может создавать прижимную силу за счет использования динамической составляющей давления (вспоминаем пластинку, установленную под углом атаки).

Очень важным аспектом в создании прижимной силы является баланс — соотношение между прижимной силой, действующей на переднюю и заднюю оси. Можно добиться большой прижимной силы за счет большого диффузора и массивного антикрыла. Но оба эти элемента располагаются сзади, а значит и львиная доля полученной прижимной силы придется на заднюю ось. Если автомобиль заднеприводный да еще и заднемоторный, то это приведет к избыточной поворачиваемости и склонности к заносу. Если автомобиль переднеприводный, то это добавит ему стабильности в поворотах. И таких комбинаций множество. Поэтому баланс — это очень тонкое искусство. Иногда инженерам-конструкторам приходится даже специально уменьшать прижимную силу, а то и создавать подъемную, чтобы обеспечить наилучший баланс.

Подведем промежуточные итоги:
Автомобили «хотят летать», и перед инженерами стоит непростая задача заставить их прилипать к дороге. Для этого поток воздуха под автомобилем всеми силами стараются ускорить и удержать в стабильном, ламинарном (безвихревом) состоянии. Над автомобилем поток ускоряется и без помощи конструкторов. Его нужно обуздать и заставить работать так, как надо, при помощи правильных обводов кузова, обтекателей, спойлеров и антикрыльев. В этой борьбе важна каждая мелочь, даже такая, как зеркало заднего вида. Аэродинамика – это своего рода искусство. Это не просто наука с сухими формулами, таблицами и графиками. За ними скрываются красивейшие процессы, которые человек издавна пытается понять и подчинить.

Вот красивое видео, которое показывает важность аэродинамики в современном автоспорте:

На этом в принципе хотелось бы закончить рассказ о подъемной и прижимной силах)

Вторая часть статьи находится ТУТ
Третья часть ЗДЕСЬ

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *