алгоритм кодирования лемпеля зива
Алгоритм LZW
Непосредственным предшественником LZW является алгоритм LZ78, опубликованный Абрахамом Лемпелем (Abraham Lempel) и Якобом Зивом (Jacob Ziv) в 1978 г. Этот алгоритм воспринимался как математическая абстракция до 1984 г., когда Терри Уэлч (Terry A. Welch) опубликовал свою работу с модифицированным алгоритмом, получившим в дальнейшем название LZW (Lempel—Ziv—Welch).
Содержание
Применение [ править ]
Опубликование алгоритма LZW произвело большое впечатление на всех специалистов по сжатию информации. За этим последовало большое количество программ и приложений с различными вариантами этого метода.
Этот метод позволяет достичь одну из наилучших степеней сжатия среди других существующих методов сжатия графических данных, при полном отсутствии потерь или искажений в исходных файлах. В настоящее время используется в файлах формата TIFF, PDF, GIF, PostScript и других, а также отчасти во многих популярных программах сжатия данных (ZIP, ARJ, LHA).
Описание [ править ]
Процесс сжатия выглядит следующим образом: последовательно считываются символы входного потока и происходит проверка, существует ли в созданной таблице строк такая строка. Если такая строка существует, считывается следующий символ, а если строка не существует, в поток заносится код для предыдущей найденной строки, строка заносится в таблицу, а поиск начинается снова.
Для декодирования на вход подается только закодированный текст, поскольку алгоритм LZW может воссоздать соответствующую таблицу преобразования непосредственно по закодированному тексту. Алгоритм генерирует однозначно декодируемый код за счет того, что каждый раз, когда генерируется новый код, новая строка добавляется в таблицу строк. LZW постоянно проверяет, является ли строка уже известной, и, если так, выводит существующий код без генерации нового. Таким образом, каждая строка будет храниться в единственном экземпляре и иметь свой уникальный номер. Следовательно, при декодировании во время получения нового кода генерируется новая строка, а при получении уже известного, строка извлекается из словаря.
Алгоритм [ править ]
Кодирование [ править ]
Декодирование [ править ]
Пример [ править ]
Символ | Битовый код | Код |
---|---|---|
a | 000 | 0 |
b | 001 | 1 |
c | 010 | 2 |
d | 011 | 3 |
e | 100 | 4 |
В нашем примере алгоритму заранее известно о том, что будет использоваться всего [math]5[/math] различных символов, следовательно, для их хранения будет использоваться минимальное количество бит, позволяющее нам их запомнить, то есть [math]3[/math] ( [math]8[/math] различных комбинаций).
Кодирование [ править ]
Закодированное же сообщение так же сначала кодировалось трехбитными группами, а при появлении в словаре восьмого слова — четырехбитными, итого длина сообщения составила [math]4 \cdot 3 + 7 \cdot 4 = 40[/math] бит, что на [math]8[/math] бит короче исходного.
Декодирование [ править ]
Особенность LZW заключается в том, что для декомпрессии нам не надо сохранять таблицу строк в файл для распаковки. Алгоритм построен таким образом, что мы в состоянии восстановить таблицу строк, пользуясь только потоком кодов.
Теперь представим, что мы получили закодированное сообщение, приведённое выше, и нам нужно его декодировать. Прежде всего нам нужно знать начальный словарь, а последующие записи словаря мы можем реконструировать уже на ходу, поскольку они являются просто конкатенацией предыдущих записей. Кроме того, в процессе кодировании и декодировании коды в словарь добавляются во время обработки одного и того же символа, т.е. это происходит “синхронно”.
Данные | На выходе | Новая запись | ||||
---|---|---|---|---|---|---|
Биты | Код | Полная | Частичная | |||
000 | 0 | a | — | — | 5: | a? |
001 | 1 | b | 5: | ab | 6: | b? |
000 | 0 | a | 6: | ba | 7: | a? |
010 | 2 | c | 7: | ac | 8: | c? |
0101 | 5 | ab | 8: | ca | 9: | ab? |
0000 | 0 | a | 9: | aba | 10: | a? |
0011 | 3 | d | 10: | ad | 11: | d? |
1001 | 9 | aba | 11: | da | 12: | aba? |
1000 | 8 | ca | 12: | abac | 13: | ca? |
0110 | 6 | ba | 13: | cab | 14: | ba? |
0100 | 4 | e | 14: | bae | — | — |
Примечание [ править ]
Оказывается, это возможно, если оговорить некоторые действия:
Мы знаем, что для каждого кода надо добавлять в таблицу строку, состоящую из уже присутствующей там строки и символа, с которого начинается следующая строка в потоке.
Слово | Номер в словаре |
---|---|
a | [math]\langle0\rangle[/math] |
b | [math]\langle1\rangle[/math] |
c | [math]\langle2\rangle[/math] |
d | [math]\langle3\rangle[/math] |
e | [math]\langle4\rangle[/math] |
Текущая строка | Текущий символ | Следующий символ | Вывод | Словарь | ||
---|---|---|---|---|---|---|
Код | Биты | |||||
aa | a | a | 0 | 000 | 5: | aa |
aa | a | a | — | — | — | — |
aaa | a | a | 5 | 101 | 6: | aaa |
a | a | a | — | — | — | — |
aa | a | a | — | — | — | — |
aaa | a | a | — | — | — | — |
aaaa | a | a | 6 | 110 | 7: | aaaa |
a | a | a | — | — | — | — |
aa | a | a | — | — | — | — |
aaa | a | a | — | — | — | — |
aaaa | a | a | 7 | 111 | 8: | aaaaa |
Мало того, описанное выше правило кодирования мы можем применять в общем случае не только к подряд идущим одинаковым символам, но и к последовательностям, у которых очередной добавляемый символ равен первому символу цепочки.
Алгоритмы сжатия данных без потерь, часть 2
Техники сжатия данных
Кодирование длин серий (RLE)
Это очень простой алгоритм. Он заменяет серии из двух или более одинаковых символов числом, обозначающим длину серии, за которым идёт сам символ. Полезен для сильно избыточных данных, типа картинок с большим количеством одинаковых пикселей, или в комбинации с алгоритмами типа BWT.
На входе: AAABBCCCCDEEEEEEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
На выходе: 3A2B4C1D6E38A
Преобразование Барроуза-Уилера (BWT)
Алгоритм, придуманный в 1994 году, обратимо трансформирует блок данных так, чтобы максимизировать повторения одинаковых символов. Сам он не сжимает данные, но подготавливает их для более эффективного сжатия через RLE или другой алгоритм сжатия.
— создаём массив строк
— создаём все возможные преобразования входящей строки данных, каждое из которых сохраняем в массиве
— сортируем массив
— возвращаем последний столбец
Алгоритм лучше всего работает с большими данными со множеством повторяющихся символов. Пример работы на подходящем массиве данных (& обозначает конец файла)
Благодаря чередованию одинаковых символов, вывод алгоритма оптимален для сжатия RLE, которое даёт «3H&3A». Но на реальных данных, к сожалению, настолько оптимальных результатов обычно не получается.
Энтропийное кодирование
Энтропия в данном случае означает минимальное количество бит, в среднем необходимое для представления символа. Простой ЭК комбинирует статистическую модель и сам кодировщик. Входной файл парсится для построения стат.модели, состоящей из вероятностей появления определённых символов. Затем кодировщик, используя модель, определяет, какие битовые или байтовые кодировки назначать каждому символу, чтобы самые часто встречающиеся были представлены самыми короткими кодировками, и наоборот.
Алгоритм Шеннона — Фано
Одна из самых ранних техник (1949 год). Создаёт двоичное дерево для представления вероятностей появления каждого из символов. Затем они сортируются так, чтобы самые часто встречающиеся находились наверху дерева, и наоборот.
Код для символа получается поиском по дереву, и добавлением 0 или 1, в зависимости от того, идём мы налево или направо. К примеру, путь к “А” – две ветки налево и одна направо, его код будет «110». Алгоритм не всегда даёт оптимальные коды из-за методики построения дерева снизу вверх. Поэтому сейчас используется алгоритм Хаффмана, подходящий для любых входных данных.
1. парсим ввод, считаем количество вхождений всех символов
2. определяем вероятность появления каждого из них
3. сортируем символы по вероятности появления
4. делим список пополам так, чтобы сумма вероятностей в левой ветке примерно равнялось сумме в правой
5. добавляем 0 или 1 для левых и правых узлов соответственно
6. повторяем шаги 4 и 5 для правых и левых поддеревьев до тех пор, пока каждый узел не будет «листом»
Кодирование Хаффмана
Это вариант энтропийного кодирования, работающий схожим с предыдущим алгоритмом методом, но двоичное дерево строится сверху вниз, для достижения оптимального результата.
1. Парсим ввод, считаем количество повторений символов
2. Определяем вероятность появления каждого символа
3. Сортируем список по вероятностям (самые частые вначале)
4. Создаём листы для каждого символа, и добавляем их в очередь
5. пока очередь состоит более, чем из одного символа:
— берём из очереди два листа с наименьшими вероятностями
— к коду первой прибавляем 0, к коду второй – 1
— создаём узел с вероятностью, равной сумме вероятностей двух нод
— первую ноду вешаем на левую сторону, вторую – на правую
— добавляем полученный узел в очередь
6. Последняя нода в очереди будет корнем двоичного дерева.
Арифметическое кодирование
Был разработан в 1979 году в IBM для использования в их мейнфреймах. Достигает очень хорошей степени сжатия, обычно большей, чем у Хаффмана, однако он сравнительно сложен по сравнению с предыдущими.
Вместо разбиения вероятностей по дереву, алгоритм преобразует входные данные в одно рациональное число от 0 до 1.
В общем алгоритм таков:
1. считаем количество уникальных символов на входе. Это количество будет представлять основание для счисления b (b=2 – двоичное, и т.п.).
2. подсчитываем общую длину входа
3. назначаем «коды» от 0 до b каждому из уникальных символов в порядке их появления
4. заменяем символы кодами, получая число в системе счисления с основанием b
5. преобразуем полученное число в двоичную систему
Пример. На входе строка «ABCDAABD»
1. 4 уникальных символа, основание = 4, длина данных = 8
2. назначаем коды: A=0, B=1, C=2, D=3
3. получаем число “0.01230013”
4. преобразуем «0.01231123» из четверичной в двоичную систему: 0.01101100000111
Если мы положим, что имеем дело с восьмибитными символами, то на входе у нас 8х8=64 бита, а на выходе – 15, то есть степень сжатия 24%.
Классификация алгоритмов
Алгоритмы, применяющие метод «скользящего окна»
Всё началось с алгоритма LZ77 (1977 год), который представил новую концепцию «скользящего окна», позволившую значительно улучшить сжатие данных. LZ77 использует словарь, содержащий тройки данных – смещение, длина серии и символ расхождения. Смещение – как далеко от начала файла находится фраза. Длина серии – сколько символов, считая от смещения, принадлежат фразе. Символ расхождения показывает, что найдена новая фраза, похожая на ту, что обозначена смещением и длиной, за исключением этого символа. Словарь меняется по мере парсинга файла при помощи скользящего окна. К примеру, размер окна может быть 64Мб, тогда словарь будет содержать данные из последних 64 мегабайт входных данных.
К примеру, для входных данных «abbadabba» результат будет «abb(0,1,’d’)(0,3,’a’)»
В данном случае результат получился длиннее входа, но обычно он конечно получается короче.
Модификация алгоритма LZ77, предложенная Майклом Роуде в 1981 году. В отличие от LZ77 работает за линейное время, однако требует большего объёма памяти. Обычно проигрывает LZ78 в сжатии.
DEFLATE
Придуман Филом Кацем в 1993 году, и используется в большинстве современных архиваторов. Является комбинацией LZ77 или LZSS с кодированием Хаффмана.
DEFLATE64
Патентованная вариация DEFLATE с увеличением словаря до 64 Кб. Сжимает лучше и быстрее, но не используется повсеместно, т.к. не является открытым.
Алгоритм Лемпеля-Зива-Сторера-Цимански был представлен в 1982 году. Улучшенная версия LZ77, которая просчитывает, не увеличит ли размер результата замена исходных данных кодированными.
До сих пор используется в популярных архиваторах, например RAR. Иногда – для сжатия данных при передаче по сети.
Был разработан в 1987 году, расшифровывается как «Лемпель-Зив-Хаффман». Вариация LZSS, использует кодирование Хаффмана для сжатия указателей. Сжимает чуть лучше, но ощутимо медленнее.
Разработан в 1987 году Тимоти Беллом, как вариант LZSS. Как и LZH, LZB уменьшает результирующий размер файлов, эффективно кодируя указатели. Достигается это путём постепенного увеличения размера указателей при увеличении размера скользящего окна. Сжатие получается выше, чем у LZSS и LZH, но скорость значительно меньше.
Расшифровывается как «Лемпель-Зив с уменьшенным смещением», улучшает алгоритм LZ77, уменьшая смещение, чтобы уменьшить количество данных, необходимого для кодирования пары смещение-длина. Впервые был представлен в 1991 году в алгоритме LZRW4 от Росса Вильямса. Другие вариации — BALZ, QUAD, и RZM. Хорошо оптимизированный ROLZ достигает почти таких же степеней сжатия, как и LZMA – но популярности он не снискал.
«Лемпель-Зив с предсказанием». Вариация ROLZ со смещением = 1. Есть несколько вариантов, одни направлены на скорость сжатия, другие – на степень. В алгоритме LZW4 используется арифметическое кодирование для наилучшего сжатия.
LZRW1
Алгоритм от Рона Вильямса 1991 года, где он впервые ввёл концепцию уменьшения смещения. Достигает высоких степеней сжатия при приличной скорости. Потом Вильямс сделал вариации LZRW1-A, 2, 3, 3-A, и 4
Вариант от Джеффа Бонвика (отсюда “JB”) от 1998 года, для использования в файловой системе Solaris Z File System (ZFS). Вариант алгоритма LZRW1, переработанный для высоких скоростей, как этого требует использование в файловой системе и скорость дисковых операций.
Lempel-Ziv-Stac, разработан в Stac Electronics в 1994 для использования в программах сжатия дисков. Модификация LZ77, различающая символы и пары длина-смещение, в дополнение к удалению следующего встреченного символа. Очень похож на LZSS.
Был разработан в 1995 году Дж. Форбсом и Т.Потаненом для Амиги. Форбс продал алгоритм компании Microsoft в 1996, и устроился туда работать над ним, в результате чего улучшенная его версия стала использоваться в файлах CAB, CHM, WIM и Xbox Live Avatars.
Разработан в 1996 Маркусом Оберхьюмером с прицелом на скорость сжатия и распаковки. Позволяет настраивать уровни компрессии, потребляет очень мало памяти. Похож на LZSS.
“Lempel-Ziv Markov chain Algorithm”, появился в 1998 году в архиваторе 7-zip, который демонстрировал сжатие лучше практически всех архиваторов. Алгоритм использует цепочку методов сжатия для достижения наилучшего результата. Вначале слегка изменённый LZ77, работающий на уровне битов (в отличие от обычного метода работы с байтами), парсит данные. Его вывод подвергается арифметическому кодированию. Затем могут быть применены другие алгоритмы. В результате получается наилучшая компрессия среди всех архиваторов.
LZMA2
Следующая версия LZMA, от 2009 года, использует многопоточность и чуть эффективнее хранит несжимаемые данные.
Статистический алгоритм Лемпеля-Зива
Концепция, созданная в 2001 году, предлагает проводить статистический анализ данных в комбинации с LZ77 для оптимизирования кодов, хранимых в словаре.
Алгоритмы с использованием словаря
Алгоритм 1978 года, авторы – Лемпель и Зив. Вместо использования скользящего окна для создания словаря, словарь составляется при парсинге данных из файла. Объём словаря обычно измеряется в нескольких мегабайтах. Отличия в вариантах этого алгоритма строятся на том, что делать, когда словарь заполнен.
При парсинге файла алгоритм добавляет каждый новый символ или их сочетание в словарь. Для каждого символа на входе создаётся словарная форма (индекс + неизвестный символ) на выходе. Если первый символ строки уже есть в словаре, ищем в словаре подстроки данной строки, и самая длинная используется для построения индекса. Данные, на которые указывает индекс, добавляются к последнему символу неизвестной подстроки. Если текущий символ не найден, индекс устанавливается в 0, показывая, что это вхождение одиночного символа в словарь. Записи формируют связанный список.
Входные данные «abbadabbaabaad» на выходе дадут «(0,a)(0,b)(2,a)(0,d)(1,b)(3,a)(6,d)»
An input such as «abbadabbaabaad» would generate the output «(0,a)(0,b)(2,a)(0,d)(1,b)(3,a)(6,d)». You can see how this was derived in the following example:
Лемпель-Зив-Велч, 1984 год. Самый популярный вариант LZ78, несмотря на запатентованность. Алгоритм избавляется от лишних символов на выходе и данные состоят только из указателей. Также он сохраняет все символы словаря перед сжатием и использует другие трюки, позволяющие улучшать сжатие – к примеру, кодирование последнего символа предыдущей фразы в качестве первого символа следующей. Используется в GIF, ранних версиях ZIP и других специальных приложениях. Очень быстр, но проигрывает в сжатии более новым алгоритмам.
Компрессия Лемпеля-Зива. Модификация LZW, использующаяся в утилитах UNIX. Следит за степенью сжатия, и как только она превышает заданный предел – словарь переделывается заново.
Лемпель-Зив-Тищер. Когда словарь заполняется, удаляет фразы, использовавшиеся реже всех, и заменяет их новыми. Не получил популярности.
Виктор Миллер и Марк Вегман, 1984 год. Действует, как LZT, но соединяет в словаре не похожие данные, а две последние фразы. В результате словарь растёт быстрее, и приходится чаще избавляться от редко используемых фраз. Также непопулярен.
Джеймс Сторер, 1988 год. Модификация LZMW. “AP” означает «все префиксы» — вместо того, чтобы сохранять при каждой итерации одну фразу, в словаре сохраняется каждое изменение. К примеру, если последняя фраза была “last”, а текущая – «next”, тогда в словаре сохраняются „lastn“, „lastne“, „lastnex“, „lastnext“.
Вариант LZW от 2006 года, работающий с сочетаниями символов, а не с отдельными символами. Успешно работает с наборами данных, в которых есть часто повторяющиеся сочетания символов, например XML. Обычно используется с препроцессором, разбивающим данные на сочетания.
1985 год, Матти Якобсон. Один из немногих вариантов LZ78, отличающихся от LZW. Сохраняет каждую уникальную строку в уже обработанных входных данных, и всем им назначает уникальные коды. При заполнении словаря из него удаляются единичные вхождения.
Алгоритмы, не использующие словарь
Предсказание по частичному совпадению – использует уже обработанные данные, чтобы предсказать, какой символ будет в последовательности следующим, таким образом уменьшая энтропию выходных данных. Обычно комбинируется с арифметическим кодировщиком или адаптивным кодированием Хаффмана. Вариация PPMd используется в RAR и 7-zip
bzip2
Реализация BWT с открытым исходным кодом. При простоте реализации достигает хорошего компромисса между скоростью и степенью сжатия, в связи с чем популярен в UNIX. Сначала данные обрабатываются при помощи RLE, затем BWT, потом данные особым образом сортируются, чтобы получить длинные последовательности одинаковых символов, после чего к ним снова применяется RLE. И, наконец, кодировщик Хаффмана завершает процесс.
Алгоритм Лемпеля — Зива — Велча
Алгоритм Лемпеля — Зива — Велча
Алгори́тм Ле́мпеля — Зи́ва — Ве́лча (Lempel-Ziv-Welch, LZW) — это универсальный алгоритм сжатия данных без потерь, созданный Абрахамом Лемпелем (Abraham Lempel), Якобом Зивом (Jacob Ziv) и Терри Велчем (Terry Welch). Он был опубликован Велчем в 1984 году, в качестве улучшенной реализации алгоритма LZ78, опубликованного Лемпелем и Зивом в 1978 году. Алгоритм разработан так, чтобы его можно было быстро реализовать, но он не обязательно оптимален, поскольку он не проводит никакого анализа входных данных.
Содержание
Описание
Данный алгоритм при сжатии (кодировании) динамически создаёт таблицу преобразования строк: определённым последовательностям символов (словам) ставятся в соответствие группы бит фиксированной длины (обычно 12-битные). Таблица инициализируется всеми 1-символьными строками (в случае 8-битных символов — это 256 записей). По мере кодирования, алгоритм просматривает текст символ за символом, и сохраняет каждую новую, уникальную 2-символьную строку в таблицу в виде пары код/символ, где код ссылается на соответствующий первый символ. После того как новая 2-символьная строка сохранена в таблице, на выход передаётся код первого символа. Когда на входе читается очередной символ, для него по таблице находится уже встречавшаяся строка максимальной длины, после чего в таблице сохраняется код этой строки со следующим символом на входе; на выход выдаётся код этой строки, а следующий символ используется в качестве начала следующей строки.
Алгоритму декодирования на входе требуется только закодированный текст, поскольку он может воссоздать соответствующую таблицу преобразования непосредственно по закодированному тексту.
Алгоритм
Применение
На момент своего появления алгоритм LZW давал лучший коэффициент сжатия, для большинства приложений, чем любой другой хорошо известный метод того времени. Он стал первым широко используемым на компьютерах методом сжатия данных.
Алгоритм был реализован в программе compress, которая стала более или менее стандартной утилитой Unix-систем приблизительно в 1986 году. Несколько других популярных утилит-архиваторов также используют этот метод или близкие к нему.
В 1987 году алгоритм стал частью стандарта на формат изображений GIF. Он также может (опционально) использоваться в формате TIFF.
В настоящее время, алгоритм содержится в стандарте PDF.
Пример
Данный пример показывает алгоритм LZW в действии, показывая состояние выходных данных и словаря на каждой стадии, как при кодировании, так и при раскодировании сообщения. С тем чтобы сделать изложение проще, мы ограничимся простым алфавитом — только заглавные буквы, без знаков препинания и пробелов. Сообщение, которое нужно сжать, выглядит следующим образом:
Маркер # используется для обозначения конца сообщения. Тем самым, в нашем алфавите 27 символов (26 заглавных букв от A до Z и #). Компьютер представляет это в виде групп бит, для представления каждого символа алфавита нам достаточно группы из 5 бит на символ. По мере роста словаря, размер групп должен расти, с тем чтобы учесть новые элементы. 5-битные группы дают 2 5 = 32 возможных комбинации бит, поэтому, когда в словаре появится 33-е слово, алгоритм должен перейти к 6-битным группам. Заметим, что, поскольку используется группа из всех нолей 00000, то 33-я группа имеет код 32. Начальный словарь будет содержать:
Кодирование
Без использования алгоритма LZW, при передаче сообщения как оно есть — 25 символов по 5 бит на каждый — оно займёт 125 бит. Сравним это с тем, что получается при использовании LZW:
Таким образом, используя LZW мы сократили сообщение на 29 бит из 125 — это почти 22 %. Если сообщение будет длиннее, то элементы словаря будут представлять всё более и более длинные части текста, благодаря чему повторяющиеся слова будут представлены очень компактно.
Декодирование
Теперь представим что мы получили закодированное сообщение, приведённое выше, и нам нужно его декодировать. Прежде всего, нам нужно знать начальный словарь, а последующие записи словаря мы можем реконструировать уже на ходу, поскольку они являются просто конкатенацией предыдущих записей.
Единственная небольшая трудность может возникнуть, если новое слово словаря пересылается немедленно. В приведённом выше примере декодирования, когда декодер встречает первый символ, T, он знает, что слово 27 начинается с T, но чем оно заканчивается? Проиллюстрируем проблему следующим примером. Мы декодируем сообщение ABABA:
На первый взгляд, для декодера это неразрешимая ситуация. Мы знаем наперёд, что словом 47 должно быть ABA, но как декодер узнает об этом? Заметим, что слово 47 состоит из слова 29 плюс символ идущий следующим. Таким образом, слово 47 заканчивается на «символ идущий следующим». Но, поскольку это слово посылается немедленно, то оно должно начинаться с «символа идущего следующим», и поэтому оно заканчивается тем же символом что и начинается, в данном случае — A. Этот трюк позволяет декодеру определить, что слово 47 это ABA.
В общем случае, такая ситуация появляется, когда кодируется последовательность вида cScSc, где c — это один символ, а S — строка, причём слово cS уже есть в словаре.
Патенты
Unisys, GIF и PNG
20 июня 2003 года истёк срок оригинального американского патента, что означает, что Unisys не может больше собирать по нему лицензионные отчисления. Аналогичные патенты в Европе, Японии и Канаде истекли в 2004 году.