астрофизика что это такое
Астрофизика
Из Википедии — свободной энциклопедии
Астрофи́зика (от др.-греч. ἀστήρ — «звезда, светило» и φυσικά — «природа») — раздел астрономии, использующий принципы физики и химии, который изучает физические процессы в астрономических объектах, таких как звёзды, галактики, экзопланеты и т. д. Физические свойства материи в самых больших масштабах и возникновение Вселенной изучает космология.
Астрофизика — учение о строении небесных тел. Астрофизика занимается изучением физических свойств и (наряду с космохимией) химического состава Солнца, планет, комет или звёзд и туманностей. Главные экспериментальные методы астрофизики: спектральный анализ, фотография и фотометрия вместе с обыкновенными астрономическими наблюдениями. Спектроскопический анализ составляет область, которую принято называть астрохимией или химией небесных тел, так как главные указания, даваемые спектроскопом, касаются химического состава изучаемых астрономических объектов. Фотометрические и фотографические исследования выделяются иногда в особые области астрофотографии и астрофотометрии. Само название астрофизики существует с 1865 года и предложено Цёлльнером.
В практике, современные астрономические исследования часто включают значительную работу в области теоретической и наблюдательной физики. Некоторые области изучения астрофизики включают в себя попытки описать свойства тёмной материи, тёмной энергии, чёрных дыр и других астрономических объектов; определить, возможны путешествия во времени или нет, существуют ли кротовые норы и мультивселенные; узнать происхождение и будущее Вселенной.
Астрофизика. Что изучает эта наука?
В самом общем смысле особенности этих наук таковы:
На практике все эти три направления науки образуют сплоченную семью. На вопрос о положении туманности или о том, какой свет она излучает астроном ответит первым. Задайте вопрос, из чего состоит туманность и как она сформировалась, и астрофизик будет рад ответить вам. Спросите, как данные будут соответствовать формированию Вселенной, и космолог, вероятно, превзойдет их всех. Но будьте осторожны — по любому из этих вопросов двое или трое могут начать говорить одновременно!
Астрофизика и ее цели
Астрофизики стремятся понять Вселенную и наше место в ней. В НАСА так определяют цели астрофизики — «узнать, как работает Вселенная, исследовать то, как она началась и как эволюционировала, и искать жизнь на планетах вокруг других звезд», — говорится на веб-сайте агентства.
НАСА заявляет, что эти цели порождают три общих вопроса:
Все началось с Ньютона
Хотя астрономия — одна из старейших наук, теоретическая астрофизика началась с Исаака Ньютона. До Ньютона астрономы описывали движения небесных тел с использованием сложных математических моделей без физической основы. Ньютон показал, что одна и та же теория может одновременно объяснить и орбиты лун и планет в пространстве, и траекторию пушечного ядра на Земле. Это добавило к совокупности доказательств потрясающий вывод. Оказалось, что небеса и Земля подчиняются одним и тем же физическим законам.
Полностью отделило модель Ньютона от предыдущих теорий то, что она являлась прогностической и описательной. Основываясь на аберрациях орбиты Урана, астрономы предсказали положение новой планеты, которая впоследствии была обнаружена и получила название Нептун.
Вехи в астрофизике
Единственный способ изучения удаленных объектов — это наблюдение излучения, которое они производят. Поэтому большая часть астрофизики связана с построением теорий, объясняющих механизмы, производящие это излучение.
Астрофизика дает ученым идеи о том, как извлечь из этого максимально полезную информацию. Первые гипотезы о природе звезд возникли в середине XIX века. Это произошло в ходе развития появившейся тогда науки о спектральном анализе. Она производит наблюдение определенных частот света, которые отдельные вещества поглощают и выделяют при нагревании. Спектральный анализ остается и сейчас весьма существенным для триумвирата космических наук. Он используется как для исследований, так и для тестирования новых теорий.
Ранняя спектроскопия представила первые доказательства того, что звезды содержат вещества, также присутствующие и на Земле. Спектроскопия показала, что некоторые туманности являются полностью газообразными, а некоторые из них содержат звезды. Это позже помогло укрепить идею о том, что некоторые туманности вообще не были туманностями. Это были другие галактики!
Теория большого взрыва
В начале 1920-х годов астроном Сесилия Пейн, используя спектроскопию, обнаружила, что звезды состоят преимущественно из водорода (по крайней мере, до своей старости). Спектры звезд также позволили астрофизикам определить скорость, с которой они двигаются в сторону Земли. Подобно тому, как звук, который излучает автомобиль, отличается по частоте в зависимости от того, двигается ли он к нам или от нас, из-за допплеровского сдвига частоты спектры звезд будут меняться соответственно
В 1930-х годах, объединив допплеровский сдвиг и теорию общей теории относительности Эйнштейна, Эдвин Хаббл получил убедительные доказательства того, что Вселенная расширяется. Это также было предсказано теорией Эйнштейна и вместе составляет основу теории Большого Взрыва.
Также в середине 19-го века физики лорд Кельвин (Уильям Томсон) и Густав фон Гельмгольц предположили, что гравитационное сжатие может привести к усилению энергетики Солнца. Но в конце концов они поняли, что энергии, произведенной таким образом, хватит только на 100 000 лет. Пятьдесят лет спустя знаменитая формула Энштейна E = mc 2 дала астрофизикам ключ к тому, каков истинный источник энергии звезд. Хотя, как оказалось, гравитационное сжатие также играет в этом процессе важную роль.
Физика звезд
Астрофизика — это физика звезд и других отдаленных тел во Вселенной. Но она также может работать и «близко к дому». Согласно теории Большого Взрыва, первые звезды почти полностью состояли из водорода. Процесс ядерного синтеза, который активировал их, заставил атомы водорода создать более тяжелый элемент — гелий. В 1957 году астрономическая группа Джеффри и Маргарет Бербидж вместе с физиками Уильямом Альфредом Фаулером и Фредом Хойлом показала, как по мере старения звезд они производят все более тяжелые и тяжелые элементы. Эти элементы передаются более поздним поколениям звезд во все большем количестве.
На заключительных этапах жизни старых звезд образуются элементы, обнаруженные на Земле. Такие как железо (32,1%), кислород (30,1%), кремний (15,1%). Одним из этих элементов является углерод. Он вместе с кислородом составляет основную массу всей живой материи, включая нас.
Таким образом, астрофизика говорит, что хотя мы не все являемся звездами, все мы — звездная пыль.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Астрофизика
Астрофи́зика (от др.-греч. ἀστήρ — «звезда, светило» и φυσικά — «природа») — наука на стыке астрономии и физики, изучающая физические процессы в астрономических объектах, таких, как звёзды, галактики и т. д. Физические свойства материи на самых больших масштабах и возникновение Вселенной изучает космология.
Астрофизика — учение о строении небесных тел. Астрофизика является таким образом частью астрономии, занимающаяся изучением физических свойств и химического состава Солнца, планет, комет или звёзд и туманностей. Главные экспериментальные методы астрофизики: спектральный анализ, фотография и фотометрия вместе с обыкновенными астрономическими наблюдениями. Спектроскопический анализ составляет область, которую правильнее было бы назвать астрохимией, химией небесных тел, так как главные указания, даваемые спектроскопом, касаются химического состава изучаемых астрономических объектов. Фотометрические и фотографические исследования выделяются иногда в особые области астрофотографии и астрофотометрии. Астрофизику не следует путать с физической астрономией, каковым именем принято обозначать теорию движения небесных тел, то есть то, что также носит название небесной механики. К Астрофизике относят также исследование строения поверхности небесных тел, Солнца и планет, насколько это возможно из телескопических наблюдений над этими телами. Само название астрофизики существует с 1865 года и предложено Цёлльнером. Астрофизические обсерватории существуют ещё только в очень немногих странах. Из них особенно знамениты Потсдамская обсерватория под управлением Фогеля и Медонская под управлением Жансена. В Пулкове также устроено астрофизическое отделение, во главе которого стоит Гассельберг. В настоящей статье мы изложим историю и главные результаты астроспектроскопии, или того отдела Астрофизики, который состоит из приложения спектрального анализа к изучению небесных тел.
Первые исследования спектра Солнца были предприняты одним из изобретателей спектрального анализа, Кирхгофом, в 1859 г. Результатом этих исследований был рисунок солнечного спектра, из которого можно было определить уже с большой точностью химический состав солнечной атмосферы. Раньше Кирхгофа высказывались только иногда отдельные предположения о возможности анализа солнечной атмосферы посредством спектроскопа и в особенности о существовании на Солнце натрия вследствие найденной в спектре его тёмной линии D натрия. Такие предположения высказывались, напр., Фуко в Париже, Стоксом в Кембридже. Между тем ещё незадолго до этого Огюст Конт высказал в своей «Положительной философии» убеждение в невозможности когда бы то ни было узнать химический состав небесных тел, хотя уже в 1815 г. Фраунгофер знал о существовании тёмных линий в спектре Солнца и о существовании характеристических спектров у некоторых отдельных звёзд Сириуса, Капеллы, Бетельгейзе, Проциона, Поллукса. После первых исследований Кирхгофа спектральным анализом небесных тел занялись с большим усердием несколько астрофизиков, которые вскоре представили чрезвычайно обстоятельные исследования спектров Солнца и неподвижных звёзд. Ангстром (вернее, Онгстром) изготовил чрезвычайно точный атлас солнечного спектра, Секки произвёл обозрение большого числа звёзд посредством спектроскопа и установил четыре типа звёздных спектров, Геггинс начал ряд исследований над спектрами отдельных ярких звёзд. Область применения спектроскопа постепенно расширялась. Геггинсу удалось наблюдать спектр некоторых туманностей и подтвердить уже неопровержимым образом предположение о существовании двух типов туманностей — звёздных, состоящих из куч звёзд, которые при достаточной оптической силе инструмента могут быть разложены на звёзды, и газообразных, действительных туманностей, относительно которых можно предполагать, что они находятся в фазе образования отдельных звёзд путём постепенного сгущения их вещества. С середины 60-х годов изучение поверхности Солнца посредством спектроскопа во время затмений и вне их вошло в состав непрерывных наблюдений, производящихся в настоящее время во многих обсерваториях. Геггинс, Локьер в Англии, Жансен во Франции, Фогель в Германии, Таккини в Италии, Гассельберг в России и др. дали обширные исследования, уяснившие строение верхних слоёв солнечной атмосферы (см. Солнце). В то же время с 1868 года по мысли Геггинса спектроскоп был применён и к исследованию собственных движений звёзд по направлению луча зрения посредством измерения перемещений линий их спектров измерения, которые в настоящее время также производятся систематически в Гринвичской обсерватории. Принцип Доплера, лежащий в основании этих измерений, был уже несколько раз проверен экспериментально, измерениями перемещений солнечного спектра и послужил Локьеру в его измерениях перемещений различных линий спектра Солнца к установлению его гипотезы о сложности химических элементов. Спектры комет, падающих звёзд, метеоритов, исследованные разными астрономами, а в последнее время в особенности Локьером, дали уже много весьма важных фактов в руки астроному, и в значительной степени послужили уяснению происхождения и развития звёзд и солнечной системы. Астрофизика шагает в настоящее время большими шагами вперёд, и следует думать что в ближайшем будущем раскрытые ею факты послужат установлению более полной космогонической теории, чем та, которая передана нам предыдущими поколениями.
Содержание
Наблюдательная астрофизика
Основная часть данных в астрофизике получается по наблюдению объектов в электромагнитных лучах. Исследуются как прямые изображения, полученные на различных длинах волн, так и электромагнитные спектры принимаемого излучения.
Другие типы излучения также могут наблюдаться с Земли. Было создано несколько обсерваторий в попытках наблюдения гравитационных волн. Созданы нейтринные обсерватории, позволившие прямыми наблюдениями доказать наличие термоядерных реакций в центре Солнца. С помощью этих детекторов также изучались удалённые объекты, такие как сверхновая SN1987a. Наблюдения высокоэнергетических частиц производится по наблюдениям их столкновений с земной атмосферой, порождающих ливни элементарных частиц.
Наблюдения также могут различаться по продолжительности. Большинство оптических наблюдений производятся с выдержками порядка минут или часов. Однако, в некоторых проектах, таких как Tortora, производится наблюдения с выдержкой менее секунды. Тогда как в других общее время экспозиции может составлять недели (например, такая выдержка использовалась при наблюдении глубоких хаббловских полей). Более того, наблюдения пульсаров могут производиться с временем экспозиции в миллисекунды, а наблюдения эволюции некоторых объектов могут занимать сотни лет, включая изучение исторических материалов.
Изучению Солнца отводится отдельное место. Из-за огромных расстояний до других звёзд, Солнце является единственной звездой, которая может быть изучена в мельчайших деталях. Изучение Солнца даёт основу для изучения других звёзд.
Теоретическая астрофизика
Теоретическая астрофизика использует как аналитические методы так и численное моделирование для изучения различных астрофизических явлений, построения их моделей и теорий. Подобные модели, построенные из анализа наблюдательных данных, могут быть проверены с помощью сравнения теоретических предсказаний и вновь полученных данных. Также наблюдения могут помочь в выборе одной из нескольких альтернативных теорий.
Объектом исследований теоретической астрофизики являются, например:
Элементы астрофизики
теория по физике 🧲 квантовая физика
Астрофизика — раздел астрономии, изучающий небесные тела, их системы и пространство между ними на основе анализа происходящих во Вселенной физических процессов и явлений.
Объекты изучения астрофизики:
Цель астрофизики — установление закономерности и понимание строения, взаимодействия и эволюции небесных тел, их систем и Вселенной как целого.
Диапазон физических параметров – плотности, температуры, давления, напряженности магнитного поля, с которыми приходится иметь дело в астрофизике — во много раз превосходит достижимый в лабораториях на Земле. Поэтому многие астрофизические объекты выступают в роли уникальной физической лаборатории, которая дает возможность изучать вещества и поля в экстремальных условиях. Это делает астрофизику неотъемлемой частью физики.
В зависимости от объекта изучения выделяются следующие разделы астрофизики:
Различают также радиоастрономию, рентгеновскую, инфракрасную и ультрафиолетовую астрономию, субмиллиметровую и гамма-астрономию. Эти подразделы различаются спектральным диапазоном, в котором ведутся наблюдения за космическими телами и процессами.
Физика звезд
Физика звезд является одним из главных разделов астрофизики. Она изучает строение наружных слоев звезды, внутренне содержимое этих тел, а также происходящие внутри процессы, которые определяет строение и эволюцию звезд.
Звезда — массивное самосветящееся небесное тело, состоящее из газа или плазмы, в котором происходят, происходили или будут происходить термоядерные реакции.
Один из методов исследования звезд является изучение звездного спектра, на основании анализа которого ученые смогли установить химический состав этих тел. Установлено, что атмосфера большинства звезд напоминает атмосферу Солнца, в состав которой входит:
В астрофизике звезды классифицируют по различным параметрам: по температуре, по размерам и массам.
Спектральная классификация звезд
Согласно спектральной классификации спектральный класс звезд определяется поверхностной температурой звезды и обозначается определенной буквой (O; B; A; F; G; K; M) — именно в такой последовательности. Класс O — самый высокий класс в иерархии, а класс MM – самый низкий. Чем выше класс, иерархии, тем звезды горячее, больше, ярче. А чем ниже класс, тем, соответственно они холоднее, меньше, тусклее, но такие звезды живут дольше, чем звезды выше классом.
Совет! Чтобы запомнить последовательность спектральных классов звезд, запомните следующую фразу: «Один Высокий Англичанин Финики Жевал Как Морковь». Первые буквы слов в ней идут в такой же последовательности, как и классы звезд.
Цвет звезды также определяется ее температурой (в скобках — наименование класса и температура поверхности звезды в Кельвинах):
Солнце имеет класс G, так как его поверхность имеет температуру 5800–5900 К. Это желтая звезда, являющаяся центром Солнечной системы. Внутри Солнце очень горячее. В центральной точке температура может достигать 15 млн К.
Классификация по размерам
Звезды по размерам делятся на 4-и типа:
Внимание! Несмотря на то, что эта классификация звезд по размерам, при сравнении нужно учитывать массы звезд. Так, обычными звездами считаются те, масса которых сравнима с массой Солнца.
Пример №1. Ниже дана таблица с названиями некоторых звезд, их температурой, массой, радиусом и расстоянием до них. Среди них выделите звезды — голубые гиганты.
Голубой свет излучают звезды с температурой от 10 до 30 тыс. К. Из таблицы голубыми являются звезды: Вега, Кастор и Спика. Звезда-гигант должна быть в десятки раз больше Солнца. Чтобы сравнить величину звезд, нужно сравнить их массы. Вега и Кастор весят лишь в 3 раза больше Солнца, в то время как Спика — в 15 раз. Поэтому голубой гигант здесь — только Спика.
Это интересно! Самая большая из известных звезд — R136a1 — была обнаружена в Большом Магелланом Облаке в 2010 году. Она больше Солнца в 256 раз.
Классификация звезд на основе диаграммы Герцшпрунга – Расселла
Среди астрономов также применяется классификация, основанная на диаграмме Герцшпрунга – Расселла. На этой диаграмме по оси абсцисс откладываются спектральные классы (или эффективные температуры), по оси ординат — светимости L (или абсолютные звездные величины M). Если бы между светимостями и их температурами не было никакой зависимости, то все звезды распределялись на такой диаграмме равномерно. Но на диаграмме обнаруживаются несколько закономерностей, которые называют последовательностями.
Большинство звезд (около 90 %), располагаются на диаграмме вдоль длинной узкой полосы, называемой главной последовательностью. Она протянулась из верхнего левого угла (от голубых сверхгигантов) в нижний правый угол (до красных карликов). К звездам главной последовательности относится Солнце, светимость которого принимают за единицу.
Точки, соответствующие гигантам и сверхгигантам, располагаются над главной последовательностью справа, а соответствующие белым карликам – в нижнем левом углу, под главной последовательностью.
По распределению звезд в соответствии с их светимостью и температурой на диаграмме Герцшпрунга–Рассела выделены следующие классы светимости:
Внимание! Принято указывать класс светимости после спектрального класса звезды. Солнце – звезда G2V.
В настоящее время выяснилось, что звезды главной последовательности – нормальные звезды, похожие на Солнце, в которых происходит сгорание водорода в термоядерных реакциях. Главная последовательность – это последовательность звезд разной массы. Самые большие по массе звезды располагаются в верхней части главной последовательности и являются голубыми гигантами. Самые маленькие по массе звезды – карлики. Они располагаются в нижней части главной последовательности. Параллельно главной последовательности, но несколько ниже ее располагаются субкарлики. Они отличаются от звезд главной последовательности меньшим содержанием металлов.
Происхождение и эволюция звезд
Звезды возникали в ходе эволюции галактик. Большинство астрономов считают, что это происходило в результате сгущения (конденсации) облаков материи, которые постепенно формировались внутри галактик.
Этапы эволюции звезд:
Внешние слои звезд, подобных нашему Солнцу (но с массами, не большими 1,2 массы Солнца), постепенно расширяются и, в конце концов, совсем покидают ядро звезды. На месте гиганта остается маленький и горячий белый карлик. Белых карликов в мире звезд много. Это значит, что многие звезды превращаются в белых карликов, которые затем постепенно остывают, становясь «потухшими звездами».
Более массивные звезды могут потерять устойчивость и взорваться с образованием сверхновой звезды, которая обогащает космос новыми химическими элементами. Впоследствии она сжимается и образует нейтронную звезду. Если масса звезды превышает массу Солнца в 2 и более раз, то при взрыве сверхновой может произойти коллапс с образованием черной дыры.
Нейтронная звезда — звезда, состоящая, в основном, из нейтронной сердцевины, покрытой сравнительно тонкой корой вещества в виде тяжёлых атомных ядер и электронов. Радиус нейтронных звезд не превышает 10–20 км. При этом их масса сравнима с массой Солнца или превышает ее в 8–10 раз.
Черная дыра — это объект с колоссальной массой и плотностью, гравитация которого настолько сильная, что не позволяет его покинуть даже световым квантам. Наиболее массивные черные дыра располагаются в центре галактик.
Солнечная система
Солнечная система — планетная система, включающая в себя центральную звезду — Солнце — и все естественные космические объекты, обращающиеся вокруг Солнца. Между всеми небесными телами во Вселенной существуют силы взаимного притяжения. Этими силами Солнце удерживает возле себя планеты и другие небесные тела.
Всего в Солнечной системе 8 планет:
Внимание! Самая большая планета Солнечной системы — Юпитер.
Все планеты Солнечной системы делятся на 2 группы:
Между Марсом и Юпитером находится пояс астероидов — относительно небольших небесных тел Солнечной системы, движущихся по орбите вокруг Солнца. Последние исследования обнаружили еще один пояс астероидов за Нептуном (пояс Койпера). Плутон сравним по размеру с астероидами. Именно поэтому его перестали считать планетой.
Почти все планеты имеют спутники. Их нет только у Венеры и Меркурия. У Земли спутник один — это Луна. Чем больше масса, а соответственно и гравитация планеты, тем больше у нее спутников. Больше сего спутников у Юпитера. По последним данным их не менее 79. Самые известные из них (расположены в порядке удаленности): Ио, Европа, Ганимед и Каллисто. Сатурн имеет так называемое кольцо, которое содержит множество объектов являющимися спутниками. Кольца есть у всех газовых гигантов Солнечной системы, но у Сатурна оно самое большое и выраженное.
Внимание! Все планеты, кроме Меркурия, имеют атмосферу — газовую оболочку небесного тела, удерживаемую около него гравитацией.
Все планеты вращаются по эллиптическим орбитам. Один оборот Земля делает за сутки, одно вращение вокруг Солнца — за год. Смену времен года на Земле определяет ее наклон оси к плоскости вращения, которая называется эклиптикой.
Пример №2. Определить вторую космическую скорость Марса.
v 2 = v 1 √ 2 = √ 2 g R
Ускорение свободного падения:
Радиус Марса — 3,4∙10 6 м. Масса Марса — 6,4∙10 23 кг.
Внимательно прочитайте текст задания и выберите верный ответ из списка.
Рассмотрите таблицу, содержащую сведения о ярких звёздах.
Выберите два утверждения, которые соответствуют характеристикам звёзд.
А) Наше Солнце имеет максимальную массу для звёзд главной последовательности на диаграмме Герцшпрунга – «>– Рессела.
Б) Звезда Ригель относится к сверхгигантам.
В) Звезда Сириус А относится к звёздам главной последовательности на диаграмме Герцшпрунга – «>– Рессела.
Г) Звезда α Центавра А относится к белым карликам.
Д) Звезда Сириус В относится к звёздам главной последовательности на диаграмме Герцшпрунга – «>– Рессела.
Алгоритм решения
Решение
Согласно утверждению А, наше Солнце имеет максимальную массу для звёзд главной последовательности на диаграмме Герцшпрунга – Рессела. Но это не так, потому что главная последовательность включает в себя звезды различных масс. И Солнце не является в ней самой массивной звездой. Утверждение А — неверное.
Согласно утверждению Б, звезда Ригель относится к сверхгигантам. Это так, потому что к сверхгигантам относят те звезды, масса которых больше массы Солнца в десятки и более раз. Утверждение Б — верное.
Согласно утверждению В, звезда Сириус А относится к звёздам главной последовательности на диаграмме Герцшпрунга – Рессела. Это действительно так. Утверждение В — верное.
Согласно утверждению Г, звезда α Центавра А относится к белым карликам. Но это не так. Белые звезды имеют температуру выше 7500 К и массу меньше солнечной в 100 и более раз. Утверждение Г — неверное.
Согласно утверждению Д, звезда Сириус В относится к звёздам главной последовательности на диаграмме Герцшпрунга – Рессела. Это не так. Эта звезда относится к бело-голубым карликам, которая лежит ниже главной последовательности. Утверждение Д — неверное.
pазбирался: Алиса Никитина | обсудить разбор | оценить
Внимательно прочитайте текст задания и выберите верный ответ из списка
На рисунке представлена диаграмма Герцшпрунга – «>– Рессела.
Выберите два утверждения о звёздах, которые соответствуют диаграмме.
А) Температура поверхности звёзд спектрального класса G выше температуры поверхности звёзд спектрального класса А.
Б) Радиус звезды Бетельгейзе почти в 1000 раз превышает радиус Солнца, а значит она относится к сверхгигантам.
В) Плотность белых карликов существенно меньше средней плотности гигантов.
Г) Звезда Антарес имеет температуру поверхности 3300 К и относится к звёздам спектрального класса А.
Д) «Жизненный цикл» звезды спектрального класса K главной последовательности более длительный, чем звезды спектрального класса В главной последовательности.
Алгоритм решения
Решение
Согласно утверждению А, температура поверхности звёзд спектрального класса G выше температуры поверхности звёзд спектрального класса А. Но это не так, потому что спектральные классы звезд располагаются на оси от большей температуры к меньшей. Утверждение А — неверное.
Согласно утверждению Б, радиус звезды Бетельгейзе почти в 1000 раз превышает радиус Солнца, а значит она относится к сверхгигантам. Это действительно так. Утверждение Б — верное.
Согласно утверждению В, плотность белых карликов существенно меньше средней плотности гигантов. Нет, гиганты имеют меньшую плотность. Утверждение В — неверное.
Согласно утверждению Г, звезда Антарес имеет температуру поверхности 3300 К и относится к звёздам спектрального класса А. Но это не так. К классу А относятся звезды с температурой выше 7500 К. Утверждение Г — неверное.
Согласно утверждению Д, «Жизненный цикл» звезды спектрального класса K главной последовательности более длительный, чем звезды спектрального класса В главной последовательности. Это действительно так. Такие звезды медленнее расходуют свое топливо, а потому дольше живут. Утверждение Д — верное.
pазбирался: Алиса Никитина | обсудить разбор | оценить
Внимательно прочитайте текст задания и выберите верный ответ из списка
Рассмотрите таблицу, содержащую характеристики планет Солнечной системы.
Выберите два утверждения, которые соответствуют характеристикам планет.
А) Чем дальше планета от Солнца, тем больше первая космическая скорость для её спутников.
В) Вторая космическая скорость при старте с поверхности Юпитера составляет 25 км/с.
Г) Среднее расстояние от Венеры до Солнца в три раза меньше, чем от Марса до Солнца.
Д) На Марсе может наблюдаться смена времён года.
Алгоритм решения
Решение
Согласно утверждению А, чем дальше планета от Солнца, тем больше первая космическая скорость для её спутников. Но это не так, потому что первая космическая скорость зависит только от радиуса планеты и ускорения свободного падения:
Утверждение А — неверное.
Радиус Сатурна равен около 60,25∙10 6 м (половина диаметра, взятого из таблицы), а его масса равна около 5,7∙10 26 кг (табличная величина).
Утверждение Б — верное.
Согласно утверждению В, вторая космическая скорость при старте с поверхности Юпитера составляет 25 км/с. Нет, это неправильно. Вторая космическая скорость определяется формулой:
В таблице первая космическая скорость для Юпитера составляет 42,1 км/ч. Поэтому вторая космическая скорость никак не может быть меньше первой. Утверждение В — неверное.
Согласно утверждению Г, среднее расстояние от Венеры до Солнца в три раза меньше, чем от Марса до Солнца. Но это не так — согласно данным из таблицы, среднее расстояние от Венеры до Солнца составляет 0,72 а.е., а от Марса до Солнца — 1,52 а.е. Утверждение Г — неверное.
Согласно утверждению Д, на Марсе может наблюдаться смена времён года. Это действительно так. Угол наклона оси вращения составляет чуть более 25 градусов, что на 2 градуса, больше чем на Земле, на которой смена времен года ярко выражена по обеим сторонам от экватора. Утверждение Д — верное.
pазбирался: Алиса Никитина | обсудить разбор | оценить