айтрекер что это такое
Айтрекинг: доступные решения и их особенности
Исследование движений глаз – саккад и фиксаций – является одним из наиболее интересных направлений анализа в нейронауках, включающих в себя и эмоциональную проблематику. Действительно, глаза – релевантный канал для сбора данных о текущем состоянии и реакциях человека на стимулы внешней среды, важный источник информации о физиологии, эмоциях, когнитивных аспектах жизнедеятельности в естественных, повседневных условиях, в контексте коммуникаций разного рода, происходящих между людьми. Без данных видеоокулографии говорить о мультимодальности в распознавании эмоций было бы затруднительно.
В целом в индустрии айтрекинга в последние несколько лет наблюдается феномен последовательного сокращения числа независимых игроков. Однако крупнейшие производители окулографических систем — вроде шведской компании Tobii и канадской SR Research (Eyelink) — успешно черпают дополнительные ресурсы из внешних источников и укрепляют свои полумонопольные позиции.
Параллельно с этим корпорации скупают компании и стартапы средних размеров. Например:
— Google приобрел Eyefluence,
— Facebook – EyeTribe,
— а Apple в июне 2017 года – немецкую компанию SMI с её брендированной технологией захвата и записи взгляда в режиме реального времени с частотой дискретизации до 120 Гц.
Случаются и будоражащие события. Так, совсем недавно рыночная стоимость компании Tobii всего за 48 часов ощутимо взлетела…Аналитики теряются в догадках и выдвигают конспирологические версии.
Мы в Neurodata Lab не только ведем регулярный мониторинг рынка и разрабатываем собственный софтовый айтрекер, но и накопили значительный опыт в работе со сторонними решениями. Их и обсудим подробнее.
В настоящее время айтрекинг (иначе называемый видеоокулографией) — популярный инструмент для изучения зрительного внимания человека. Многие психофизиологические процессы находят свое отражение в параметрах движений глаз, в динамике морганий и изменении ширины зрачка (усталость, когнитивная загрузка, эмоциональные реакции и др.). Сейчас в практических целях айтрекинг используется в основном для юзабилити исследований в нейромаркетинге. Кроме того, видеоокулография нашла свое применение в геймерских и ассистивных контроллерах для управления взглядом (например, Tobii4С или более ранняя модель TobiiEyeX). На базе айтрекинга активно разрабатываются системы контроля внимания водителей и диспетчеров (см. статьи Sampei et al., 2016; Dongare, Shah, 2016; Anguliar et al., 2017), элементы «умного дома», или вот Eye of Horus — проект создания очков для управления предметами.
Лабораторные айтрекеры представлены ограниченным числом брендов (наиболее известные среди них — EyeLink и Tobii) и не слишком доступны для широкого использования в связи с их заоблачной стоимостью. Сравнительно бюджетные коммерческие айтрекеры – это монтируемые под монитор трекеры GazePoint (стоимостью от 675$), но у них есть ряд недостатков: небольшой допустимый диапазон движений головы испытуемого — всего 25x11x15см — и достаточно «сырой» софт.
С учетом сложившейся ситуации на рынке и возрастающего интереса к видеоокулографии можно констатировать, что в наличии имеется большое разнообразие хенд-мейд решений (хардверных и софтверных) для дизайна исследований глазодвигательного поведения человека и анализа данных, а также разработки в области айтрекинга с использованием вебкамеры.
Айтрекер из подручных материалов
С практически полным списком опенсорсного софта и трекеров для самостоятельной сборки можно ознакомиться тут. В дополнение к нему стоит добавить Open Eyes, PupilLabs и PyGaze. Кстати, создатель PyGaze Эдвин Далмайер (Edwin Dalmaijer) опубликовал книгу “Python for experimental psychologists” c подробным руководством, рекомендуем добавить её в закладки.
Айтрекинг на базе веб-камеры
Айтрекинговые решения на базе обычной веб-камеры можно разделить на две категории: онлайн-платформы («заточенные» преимущественно на проведение юзабилити-тестирований) и любительские либо коммерческие SDK.
Онлайн-платформы предлагают создать аккаунт, сформировать эксперимент (например, загрузить набор изображений) и отправить ссылку участникам исследования. Испытуемому требуется разрешить доступ к своей веб-камере, подготовиться к эксперименту (снять очки, убрать яркие источники света подальше от камеры, провести калибровку и как можно меньше шевелиться). Очевидно, что проконтролировать поведение испытуемого и условия при таком дизайне эксперимента невозможно, поэтому точность варьируется и порой оставляет желать лучшего.
Итак, в порядке перечисления:
— EyesDecide (Xlabs): платформа с приемлемо грубой локализацией взора (при условии, что испытуемый не шевелится). Есть детекция лица (строится 3D-модель), калибровка по 30 точкам, каждая из которых предъявляется несколько раз + дополнительная калибровка в конце теста.
— WebGazer: есть детекция лица. Калибровка осуществляется самим испытуемым посредством перемещения курсора по экрану и фиксации взора на нем. Трекер нельзя назвать точным. К тому же в том случае, когда смотришь на одну часть экрана и двигаешь курсор у другой части, трекер при прочих равных предпочитает детектировать положение взора на курсоре.
— Eyezag: на этой платформе можно поставить краткий эксперимент. Тестирование начинается с калибровки (16 точек) и завершается ею же, но уже по 9 точкам. Системы отслеживания движений головы на данной платформе нет, поэтому время возможного эксперимента ограничено несколькими минутами и обычной просьбой к испытуемому не шевелиться. Результаты демо-тестирования направляются по запросу. Вполне подходит для задачи приблизительной локализации взора при большом количестве испытуемых и потоковом тестировании.
— User zoom и Sticky – еще две платформы для юзабилити-тестирования с помощью веб-камеры, но тестовые результаты нам посмотреть пока не удалось (User zoom – высылают примеры своих юзабилити-исследований, но демо-версией софта с нами не поделились; а вот в демо-версии Sticky можно попробовать задать рамки эксперимента, выделить зоны интереса на изображениях, запустить, но оценить итоговый результат в демо-версии нельзя в принципе. Процедура тестирования начинается с вопросов о положении компьютера пользователя, освещении и т.д., после чего калибровка – во всяком случае в предложенной демо-версии – не последовала).
Имеющиеся в свободном доступе любительские проекты и коммерческие SDK работают неудовлетворительно, но взглянуть на них любопытно. Упомянем некоторые из них:
— GazeRecorder: включает в себя систему распознавания лица, калибровку (от 5 до 17 точек). Калибровка по 17 точкам обрабатывалась довольно долго (почти 2 минуты) и уже спустя 3-5 секунд “сползла”.
-TrackEye: трекер на базе камеры, подключаемой через USB 2.0., также есть опция анализа загружаемого видео. Помимо основного видео при трекинге запускается несколько окон, показывающих работу алгоритма, на них отчетливо видно, что зрачок отслеживается некорректно.
— GazeTracker: есть настройки параметров детекции (зрачок, блик), контраста видео и калибровки (9, 12 и 16 точек; разрешено настраивать разную скорость). Калибровка не подстраивается под размер монитора, несмотря на то, что в опциях можно указать его разрешение. Алгоритм детекции зрачка неточный, даже если предварительно повозиться с настройками: вместо него иногда распознается что-то другое — темное и круглое, напоминающее зрачок (например, пожарная сигнализация на потолке или ноздри с определенного ракурса). Трекер не учитывает положение головы и «теряет» глаза при небольших поворотах.
— SentiGazeSDK: не учитывает положение головы, детекция лица ниже среднего. Во время моргания SDK выдает ошибку, оповещая о невозможности задетектировать лицо, вдобавок не работает при резких поворотах головы.
— InSightSDK (Sightcorp) – работает с загружаемым видео. Детектирует лицо на видео при фронтальной съемке, однако при поворотах происходит ошибочная детекция (при загрузке видео, где голова человека изначально повернута в сторону, – выдает ошибку). Детекция глаз тоже низкого качества (на загруженном видео, длительностью 18 секунд, где испытуемый был записан фронтально, — по координате Х потеряно 77,2% данных, по координате Y — 33,18%).
Несомненно, подобных проектов гораздо больше, чем перечислено в нашей статье. Пока такие разработки, конечно же, не могут заменить или превзойти лабораторные айтрекеры, однако проблема известна – и адекватное решение (по соотношению цена-качество) не за горами. Речь идет о комплексной, интересной задаче – и о рыночных перспективах, которыми не стоит пренебрегать.
Анализ движений глаз на самом обычном видео требует, как минимум, дополнительного трекинга движений головы, идеальной детекции лица, и усложняется тем, что зрачок занимает крайне небольшую площадь в кадре. Все эти нюансы несомненно будут учтены. Резюмируя, отметим, что создание такой технологии позволит досконально изучить поведение и составить детальную «карту эмоциональных реакций» человека в привычных условиях, особенно в эпизодах дву- и многосторонней коммуникации, а достичь этого при помощи айтрекеров-очков и сложных стационарных установок едва ли получится.
Над материалом работала:
Мария Константинова, научный сотрудник в Neurodata Lab, биолог, физиолог, специалист по зрительной сенсорной системе, окулографии и окуломоторике.
Что такое ай-трекинг (eye-tracking) и зачем он нужен?
В интернете довольно мало информации и статей на эту тему и я со своей стороны решил попробовать это немного исправить.
Итак, что такое ай-трекинг (его еще иногда называют «окулография», но термин не прижился). Ай-трекинг – технология отслеживания положения глаз, также называемая технологией отслеживания линий взгляда или точек взгляда. Технология эта относительно новая и в России она еще не получила должного распространения, хотя в последние годы ситуация меняется к лучшему.
Устройства для отслеживания взгляда или айтрекеры, состоят как правило из аппаратной части, которая подключается к компьютеру (ноутбуку, планшету) и программного обеспечения. Хотя существуют и самодостаточные устройства «все-в-одном».
При этом, системы айтрекинга бывают 2 видов.
Их разница заключается в расположении источника инфракрасной подсветки относительно основной камеры. Если инфракрасные излучатели расположены параллельно оптической оси камеры, глаз работает как вторичный отражатель света, который поступает от подсветки и отражается от сетчатки, создавая эффект яркого зрачка. Если же источник подсветки сдвинут относительно оптической оси камеры, зрачок становится чёрным, поскольку вторичное отражение от сетчатки не поступает в камеру. (Википедия)
На самом деле, сфер в которых применяются айтрекеры довольно много.
Условно, айтрекеры можно разделить на 3 группы, в зависимости от того, где они применяются:
На мой субъективный взгляд, наиболее важной является именно реабилитационная составляющая айтрекинга. Ведь для многих людей это единственный способ взаимодействия с окружающим миром. Тем кто не сталкивался с подобным, очень сложно понять, как важно иметь возможность общаться и выражать свои мысли.
Хотя с точки зрения бизнеса игровая сфера выглядят наверное более привлекательной. Недаром айтрекеры набирают все большую популярность именно как модные игровые гаджеты.
С профессиональными айтрекерами все несколько сложнее из-за их высокой стоимости. Не все готовы покупать полноценные решения, хотя, справедливости ради, не всем это и нужно. Но многие крупные компании уже оценили перспективы использования этих устройств. Для примера приведу видеоролик (на английском), где рассказывается о тестировании поведения потребителей и упаковки товара в Unilever:
Крупные российские компании, такие, например, как МТС, Вымпелком, Мейл.ру и т.д. тоже активно используют такие устройства.
Ну и как следствие, производителей которые предлагают свои решения в игровой и профессиональной сферах значительно больше, чем производителей которые делают устройства для реабилитации (абилитации) людей с особыми потребностями.
Чтобы понять почему, достаточно взглянуть на список диагнозов, при которых оправдано использование таких айтрекеров:
К сожалению, стоимость реабилитационных айтрекеров существенно выше чем игровых (хотя и ниже, чем профессиональных) и мало кто из таких больных (семей с таким больными) может себе позволить приобретение такого дорого устройства. Остается надеяться, что технологии не будут стоять на месте и со временем, такие устройства станут более массовыми и более доступными.
Британский ученый Стивен Хокинг, самый известный в мире пациент с боковым амиотрофическим склерозом (БАС), именно с помощью айтрекера занимается наукой, общается и пишет свои работы.
Всем спасибо за внимание.
эта тема помогает разрабам сайтов нами управлять
Ну и справедливости ради, не управлять, но размещать блоки там, где мы их точно увидим 🙂
Хорошая статья, Сергей, Вы интересуетесь просто так или для какого-то своего проекта? Мы в компании занимаемся алгоритмами для айтрекинга. Могу добавить, что наиболее сложной частью решения является калибровка. Грубо говоря, координата центра зрачка сильно дрожит, даже когда голова пользователя жёстко зафиксирована.
Доброго дня, Дмитрий. Спасибо, я старался 🙂
Я работаю в компании, которая занимается в т.ч. и айтрекерами (в основном как раз реабилитационными, т.к. компания связана с медициной). Ну и я по собственной инициативе решил вникнуть в тему и понять, что там вообще происходит, поскольку искренне считаю, что тема интересная, но пока не особо популярная.
А где можно узнать о решении вашей компании?
Супер интересная статья! С большим интересом прочитал всю статью, так как впервые узнал о айтрекинг. Мой респект автору.👍
Спасибо большое. Рад, что понравилось.
В VR айтрекинг в ближайшие годы станет стандартом для взаимодействия с интерфейсом, трекинга взгляда в социальном взаимодействии, аналитики, foveated rendering и foveated video transport ( https://vr.tobii.com/ )
В играх айтрекинг дополняет клавиатуру и мышку. Можно выбирать объекты для взаимодейтвия взглядом, NPC реагируют, когда на них смотришь, экспозиция адаптируется когда смотришь на темные участки сцены или сквозь яркое окно. Еще можно осматриваться вокруг спомощью встроенного хэдтрекинга, особенно актуально для симуляторов вроде Elite Dangerous, DCS, Star Citizen, ETS2 и подобных ( https://gaming.tobii.com/ ). Также есть софт для киберспортивной аналитики, например отслеживается как часто игрок смотрит на мини карту или какое время реакции при стрельбе. Для стримеров есть софт Tobii Ghost, которые позволяет зрителям на Twitch и Youtube следить за взглядом игрока и делать обучающие видео по тактике игры.
PS. Насколько я помню Стивен Хокинг тестировал айтрекинг, но пользовался другим решением, не связанным с айтрекингом.
Нужен ли айтрекинг в UX-исследованиях: преимущества и недостатки исследований взгляда пользователя
Руководитель направления UX-исследований Mail.Ru Group Наталия Спрогис написала для издания «Хабрахабр» колонку об основных преимуществах и недостатках применения айтрекинга в исследованиях опыта взаимодействия с интерфейсом. Редакция vc.ru публикует материал с разрешения автора.
Айтрекинг или окулография, — технология, которая позволяет фиксировать движения взгляда человека. Когда я впервые начала применять её в UX-исследованиях, я была очень воодушевлена и ожидала невероятных результатов и откровений о поведении пользователей. А после нескольких месяцев работы оказалась слегка разочарована: то не получалось построить красивые тепловые карты, то не выходило найти новые проблемы.
С опытом я поняла, для каких задач айтрекинг хорош, где подводные камни, какова его ценность, даже если он не добавляет в отчёт красивых картинок. Об этом я и хочу рассказать в этой статье.
Мы способны видеть до 180° по горизонтали и 130° по вертикали, но основная часть этой картины приходится на периферическое зрение. Только в небольшой области вокруг точки, в которую мы смотрим (центральное зрение), мы видим четко и контрастно. За пределами центрального зрения чёткость постепенно теряется, а картинка становится размытой. В периферической зоне лучше всего воспринимаются резкие контрасты и движение.
Мы не контролируем и не осознаём то, как двигается наш взгляд. У читающего человека он не перемещается равномерно по странице от одного слова к другому. Движение взгляда происходит скачками и состоит из остановок (фиксаций) и быстрых перемещений (саккад).
За секунду глаза могут совершить три-четыре фиксации, их средняя продолжительность — 0,1-0,6 секунды. Чаще всего фиксации показывают фокус внимания человека, так как мозгу проще обрабатывать то, на что мы смотрим (согласно strong eye-mind hypothesis — гипотезе, выдвинутой Джастом и Карпентером).
Существует также феномен скрытого внимания, позволяющий воспринимать объекты за пределами направленного взгляда, но в большинстве случаев внимание соответствует зоне фиксации взгляда.
С практической точки зрения важно понимать, что фиксация показывает нам объект внимания, но ничего не говорит о том, как именно мозг обработал объект. Именно поэтому мы можем смотреть, но не видеть. Например, даже если при поисковой задаче взгляд респондента останавливался на нужном объекте, человек мог не воспринять его как искомый.
В отличие от первого айтрекера, который представлял собой специальные линзы с отверстием для зрачка, тестирование с современными айтрекерами проходит комфортно для респондента. Направление взгляда определяется бесконтактно по соотношению центра зрачка и отражения в роговице инфракрасной подсветки, встроенной в айтрекер.
Это соотношение меняется при изменении направления взгляда, но остаётся стабильным при перемещении головы. Для настройки под каждого респондента перед тестом проводится несложная калибровка. Респондента просят посмотреть поочерёдно на несколько точек. Это позволяет айтрекеру соотносить во время исследования направление взгляда с конкретной точкой на исследуемом объекте.
На рынке представлено много айтрекеров. Они используются не только в маркетинговых и UX-исследованиях, но и для управления взглядом в играх, для коммуникации людей с ограниченными возможностями и даже для тренировки спортсменов.
С точки зрения форм-фактора есть носимые айтрекеры (чаще всего это очки) или дистанционные. Носимые используются для исследований среды, терминалов, мерчандайзинга, иногда для тестирования мобильных устройств. Дистанционные айтрекеры применяются для тестирования разнообразных цифровых продуктов. Они могут быть прикреплены к монитору или встроены в него, а также использоваться в рамках стендов для тестирования на смартфонах или планшетах.
Основные материалы для работы на выходе из исследования с айтрекером — это видеозапись, визуализации и статистика. На видеозаписи показывается то, что происходило на исследовании, а специальный маркер указывает движения взгляда человека по исследуемому объекту или среде (экран мобильного телефона, сайт, полка в магазине). Видеозапись позволяет детально проанализировать поведение респондента.
Визуализации используются в основном для иллюстрирования найденных проблем и особенностей поведения. Наиболее популярные визуализации — это тепловые карты (heatmaps) и графики движения взгляда — гейзплоты (gazeplots).
На карте тёплые цвета соответствуют местам, в которые смотрели часто (или редко, но долго). Строятся карты чаще всего по группе респондентов и отражают общие результаты. График движения взгляда показывает порядок, в котором человек изучал страницу.
Графики обычно используются для отражения поведения одного респондента, так как объединение нескольких человек на одном гейзплоте делает картинку плохо читаемой.
Статистический пакет позволяет анализировать множество метрик: время до первой фиксации на целевом объекте, длительность фиксации, количество фиксаций, количество фиксаций до первой целевой фиксации или первого клика и прочее.
Распространено мнение, что для применения айтрекинга в исследовании необходимы огромные выборки респондентов, что увеличивает сроки и бюджеты. Это подтверждают именитые специалисты. Например, Якоб Нильсен советует для стабильных тепловых карт брать не менее 39 человек.
На практике количество респондентов зависит от многих факторов. Если использовать айтрекер в качественном юзабилити-тестировании, цель которого — найти проблемные места продукта, то вряд ли потребуется намного больше пользователей, чем для классического тестирования (6-12 человек). Здесь айтрекер просто помогает вам лучше понять причины проблем, возникших у каждого респондента.
Большие выборки нужны в двух случаях: если вы что-то сравниваете или хотите строить статистические выводы о паттернах поведения людей. То есть если вы собираетесь проводить количественный анализ результатов айтрекинг-исследования.
Пример подобной задачи — одно из самых известных исследований с айтрекингом 2005 года, показавшее, что зона внимания людей на странице поисковой выдачи напоминает треугольник или букву F. Хотя, по данным исследования Mediative 2014 года, модель поведения сильно поменялась за эти годы: «золотого треугольника» больше не существует.
Чтобы определиться с количеством респондентов, вы можете воспользоваться калькулятором от компании Blink. Он очень хорошо показывает, от каких параметров зависит размер выборки (хотя я иногда бы взяла чуть меньше людей, чем рекомендует калькулятор).
В UX-исследованиях айтрекинг чаще всего используется для трёх типов задач. Чтобы, во-первых, найти причины UX-проблем, дополнив классическое юзабилити-тестирование. Во-вторых, выявить особенности и паттерны поведения пользователей. Ну и в-третьих, сравнить между собой по эффективности и привлекательности разные дизайны или продукты. Рассмотрим подробнее, как в каждом из этих случаев может применяться айтрекинг.
Айтрекинг редко позволяет отыскать те проблемы, которые нельзя найти классическими методами. Зато он очень хорошо помогает с причинами найденных сложностей. Например, видя, какие зоны интерфейса респондент оставил без внимания, вы понимаете, почему он плохо понял концепцию продукта. Или, обнаружив на определённом шаге заполнения формы замешательство респондента, вы понимаете причину: человек многократно перечитывает текст.
Лучше всего айтрекинг помогает с проблемами, связанными с заметностью элементов, точками фокуса внимания, ментальной нагрузкой и отвлечениями.
Эта задача для использования айтрекера приходит на ум первой, ведь устройство позволяет легко выявить зоны, в которые респондент не смотрел. Возьмём для примера наш опыт тестирования формы пополнения счёта в «Одноклассниках».
В старой платёжке пользователи не замечали, что есть разные способы оплаты, и выбирали самый невыгодный вариант, предлагаемый по умолчанию, — оплату через телефон. По тепловой карте видно, что ссылка в верхней части экрана не привлекла внимания респондентов. В новом интерфейсе платёжки эту проблему устранили. Пользователи видели варианты оплаты в левой панели и выбирали наиболее удобный для себя.
Чаще всего, если незаметность элемента ведёт к юзабилити-проблеме, то её можно обнаружить и в обычном тестировании. В данном исследовании мы видели, что пользователи не меняли способ оплаты и даже не могли ответить на вопрос о том, какие еще варианты есть. Айтрекинг лишь помог нам проиллюстрировать эту проблему.
Но бывают случаи, когда понять заметность элемента не так просто. Например, как-то в тех же «Одноклассниках» перед нами встала задача протестировать прототип нового интерфейса оповещений. Одним из вопросов тестирования стал такой: видят ли пользователи оповещения, занимаясь при этом какой-то деятельностью на странице?
Мы понимали: человек может обратить внимание, что в углу экрана что-то появилось, но не отреагировать сразу, продолжая выполнять текущую задачу. А если мы (модераторы) начнём обсуждать оповещения, то респондент станет внимательнее следить за экраном и заметит новое окошко по нашей наводке.
Так что в этой ситуации айтрекинг помог нам однозначно определить, замечали ли респонденты оповещения без подсказки от модератора.
Исследование также показало, что заметность оповещений — вопрос осведомлённости и привычки. Увидев один раз, что в правой части экрана что-то происходит, пользователи привыкали к этому и в дальнейшем не пропускали новости.
Иногда бывает важно понять не только то, замечает ли пользователь элемент, но и то, насколько он на нём фокусируется: читает, бегло проглядывает или практически полностью игнорирует. Хороший пример этой задачи — подсказки и туториалы. Люди обычно замечают их, но часто не уделяют им должного внимания.
Айтрекер позволяет понять, что именно попадает в зону внимания, а что полностью игнорируется. Так, мы столкнулись с тем, что в браузерной игре «Хранители леса» некоторые подсказки срабатывали хуже, чем остальные. Например, респонденты пропускали подсказки, предлагающие выполнить игровое действие. Они сразу переключались на игру, а подсказка оставалась непрочитанной. Одна участница теста вообще не поняла, что в серии подобных подсказок написаны разные тексты. И удивлялась, зачем ей в третий раз объясняют, как собрать три в ряд.
Плохо работали и туториалы из двух шагов. Если первую часть некоторые ещё читали, то вторую пропускали практически все. Кроме того, айтрекер помог найти подсказки, которые не работали, даже если их читали. Пользователи просто не понимали, о каком элементе идёт речь в подсказке. В результате многие респонденты только после нескольких проигрышей обратили внимание на то, что у уровней есть цели, а количество ходов ограничено.
Без айтрекера мы смогли бы выяснить, какие подсказки плохо усвоены: пользователи не поняли, где искать количество ходов или цели игры. Но гораздо сложнее было бы увидеть причины плохой работы того или иного обучающего окна.
С помощью айтрекинга легче обнаружить сложные для пользователя моменты взаимодействия. Когда взгляд многократно пробегает по экрану в поисках или текст перечитывается снова и снова, это чаще всего свидетельствует о проблеме.
Ниже пример движения взгляда респондента, который искал возможность создать новый плейлист. По картинке видно, что пользователь осмотрел весь экран, прежде чем заметил нужную кнопку. Вы бы и без айтрекера нашли проблему неочевидного расположения элемента и поняли, что человек испытал замешательство при поиске. Но айтрекер даёт понять, где именно респондент искал элемент в первую очередь.
Вот ещё один пример, когда айтрекер хорошо показывает сложность взаимодействия. На картинке ниже — графики движения взгляда нескольких респондентов на форме подтверждения оплаты. Важный шаг: нужно дать понять, что всё хорошо и оплата прошла успешно. Но для этого достаточно одной фразы.
На форме же расположено много нерелевантного текста, который пользователи читали, и иногда по несколько раз, ища подтверждения, что всё хорошо. Это ещё и пример проблемы, на которую без айтрекинга, возможно, не обратили бы внимания. Ведь никто из респондентов не жаловался на этот шаг. Они просто проводили на странице чуть больше времени, чем следует. Что, возможно, при классическом юзабилити-тестировании было бы незаметно.
Ещё одна возможность для исследования ментальной нагрузки, которую предоставляет айтрекинг, — анализ увеличения или уменьшения диаметра зрачка. Этот показатель действительно изменяется, когда мы сталкиваемся со сложной задачей. Но, к сожалению, на диаметр зрачка влияют и другие факторы, в первую очередь яркость изображения. Из-за этого на практике получить значимые результаты при оценке диаметра зрачка довольно сложно.
Айтрекер позволяет понять, реагируют ли пользователи на отвлечения: уведомления или оповещения, прерывающие текущую задачу, баннеры, обвесы, рекламные предложения. В зависимости от контекста и задачи эти отвлечения могут приводить или не приводить к проблемам. На картинке ниже видно, как респондент обращал внимание на внешние ссылки при чтении статьи проекта Новости Mail.Ru.
UX-исследования проводят не только для понимания проблем, связанных с продуктом. Не менее важная задача — выявить особенности поведения пользователей, чтобы получить идеи для улучшения продукта. Я приведу два примера, в которых айтрекинг помогает для решения подобных задач, хотя на самом деле их может быть гораздо больше.
Айтрекер незаменим, если вам нужно выяснить, как пользователи просматривают результаты поиска, как анализируют и ищут то, что им нужно. Особенно если это касается работы с медиаматериалами, например, поиска по картинкам. Респонденты не могут провести самоанализ и объяснить, как именно они выбрали нужную картинку, на какие изображения обратили внимание, а на какие нет.
При тестировании разных дизайнов результатов «Поиска Mail.Ru» по картинкам именно айтрекер помог понять, что дизайн с фиксированной текущей картинкой более эффективен.
В 97,9% исследованных случаев (233 из 238) независимо от дизайна респонденты многократно переводили взгляд с открытой картинки на остальные результаты и обратно: они сравнивали выбранную картинку с остальными. Подробнее об этом написано в докладе Ксении Стерниной на UX Russia 2014.
Другая область применения айтрекинга — это выявление паттернов чтения (изучения) контента сайта, что полезно для медиапроектов. Тут айтрекинг позволяет понять, как пользователи читают материалы, какие форматы лучше работают, какой контент привлекает внимание.
Например, при тестировании проекта «Леди Mail.Ru» мы видели, что у респондентов разные паттерны чтения в зависимости от темы статьи. В статьях о косметике читатели больше обращали внимание на текст, о моде — в основном смотрели картинки, а в статьях о звездах их привлекало и то и другое.
Также нас интересовала тема визуальных якорей на странице для респондентов, которые не читают, а сканируют статью — это ведь очень частый сценарий. Ожидаемо хорошо как якоря работали заголовки разделов.
Также мы увидели, что наиболее интересная фотография в статье на любую тему обычно привлекает внимание и к тексту над и под ней. А вот выделение цитат из текста работало плохо. Видимо, визуальный акцент был недостаточно явным. Многие пользователи при сканировании или чтении полностью игнорировали такие цитаты, несмотря на отделение их от основного текста.
Третья область применения айтрекинга в UX-исследованиях — это сравнение различных решений. Сравнение возможно за счёт модуля работы со статистикой ПО айтрекера, и это наиболее трудоёмкий анализ.
Айтрекер позволяет сравнивать дизайны по параметрам привлекательности или эффективности. Вопросы привлекательности чаще всего связаны с маркетингом. Так, вы можете проверить, какой вид материалов дольше задерживает внимание пользователей, в каком месте рекламный блок быстрее замечают.
У нас, например, был опыт сравнительного анализа разного расположения медиабаннеров на странице. Чаще всего для определения привлекательности приходится работать со следующими метриками: меры заметности (доля респондентов, заметивших элемент, время до первой фиксации) и меры интереса (количество фиксаций, общая длительность фиксаций).
Метрики эффективности выбираются в зависимости от задач интерфейса. Например, в каком дизайне быстрее находят искомый элемент, где при выполнении задачи у респондента меньше «мусорных» фиксаций.
Общую сложность формы или дизайна можно сравнивать по средней длительности фиксаций. Есть исследования о том, что время фиксации связано со скоростью обработки информации мозгом. Например, сложные слова в тексте вызывают более длительные фиксации.
Если же перед вами стоит задача оценить эффективность поиска конкретного элемента, то надо помнить: человек может увидеть его, но не понять, что это нужный элемент. Поэтому стоит сравнивать как заметность самого блока (время до первой фиксации, количество фиксаций до первой фиксации), так и его «узнаваемость» (время до первого клика, количество фиксаций до первого клика, время от первой фиксации до первого клика).
Хороший пример использования айтрекера для сравнения эффективности дизайна описан в статье Люка Вроблевски. Автор сравнивает разное расположение кнопок «Submit» и «Cancel» в форме.
Итак, айтрекинг позволяет решать конкретные задачи, связанные с поиском проблем, выявлением особенностей аудитории и сравнением решений. Помимо этого, у него есть ряд полезных качеств. Даже если метод не поможет найти новые проблемы и инсайты, его применение способно улучшить качество всего исследования.
Статистика и визуализации позволяют очень наглядно показать найденные проблемы. Цифры и картинки воспринимаются легче текста, а стоящая за ними бесстрастная технология часто вызывает больше доверия, чем просто слова исследователя.
Значительное улучшение качества модерирования и качества тестирования в общем — часто недооцениваемая, но очень важная причина, по которой айтрекинг может быть полезен, даже если вы не ожидаете от него каких-то новых знаний.
Роль модератора велика, так как он способен явно или неявно повлиять на респондента и его поведение (подробнее об этом можно почитать в моей статье). Чем лучше модератор понимает, что происходит с респондентом, тем легче ему правильно себя вести.
Айтрекинг позволяет «залезть в голову» респондента. Видя, куда тот смотрит, модератор не задаёт ненужных вопросов, не отвлекает его лишний раз от задания и лучше понимает причины замешательства респондента. Кроме того, можно хотя бы частично отказаться от не самого естественного метода «мысли вслух». Тем не менее опытный модератор может провести качественный тест и без айтрекинга, не испортив при этом результаты.
Наблюдение команды проекта за тестированием чуть ли не более ценно, чем итоговый отчёт. Ведь главная задача любого исследователя — не нарисовать красивые графики и картинки, а донести знания о проблемах и потребностях до заинтересованных людей.
Именно в наблюдательной комнате менеджеры и разработчики с большей вероятностью проявят эмпатию к пользователям и начнут больше доверять результатам исследования. Айтрекинг же позволяет наблюдателям, которые чаще всего новички в исследованиях, легче понимать, что сейчас происходит, не терять нить, когда респондент, казалось бы, «просто тупит». Кроме того, айтрекинг сам по себе вызывает интерес и увеличивает вероятность вовлечения в наблюдение за проектом большего количества людей.
Айтрекинг позволяет нам работать с неосознаваемым пластом поведения. Человек не контролирует, как именно перемещается его взгляд, и не в состоянии рассказать вам честно, куда и как он смотрел. Часто потому, что не помнит, а иногда и вовсе не осознаёт этого.
Поэтому если вы столкнулись с тем, что респонденты не находят целевой элемент, без айтрекинга вы не сможете четко ответить на вопрос — почему? Не заметили элемент или не поняли, что это такое? И не забывайте о социально желательном поведении. Вряд ли все респонденты расскажут вам, как они косились на баннеры с полуобнажёнными девушками.
Несмотря на всё возрастающую популярность и доступность айтрекинга, технология до сих пор порождает wow-эффект. Исследовательским агентствам проще продавать проекты, предлагая айтрекинг. Дело не в том, что айтрекинг позволяет агентствам привлечь больше клиентов. Результатам исследований, в которых применяется айтрекинг, часто охотнее доверяют из-за ореола научности и волшебства, окутывающего метод.
В результате айтрекинг улучшает не только внешний, но и внутренний маркетинг исследований, облегчая донесение итогов до руководства и коллег. Однако у wow-эффекта есть и обратная сторона, о которой мы поговорим дальше.
Если бы я остановилась на том, что написала выше, всё было бы слишком прекрасно. На самом деле существует много ограничений, которые в каждом конкретном случае ставят под вопрос необходимость применения айтрекинга.
Хороший айтрекер с ПО (а без него нет анализа статистики и визуализаций) стоит десятки тысяч долларов. И позволить себе такое могут только лаборатории крупных компаний или успешные агентства.
Появление в последние годы дешевых айтрекеров (EyeTribe) и относительно бюджетных моделей в линейках крупных производителей (Tobii EyeX) даёт надежду на то, что в скором времени технология станет более доступной. Но сейчас бюджетные модели не дотягивают до дорогих по возможностям и мощности ПО.
Анализ движений взгляда — это достаточно долгий и сложный процесс. Поэтому применение айтрекинга значительно увеличивает время обработки результатов исследования, даже если особенных инсайтов не нашлось.
Они возникают у 10-20% респондентов. Иногда выражаются в неточности фиксаций, а бывает, что человека в принципе не получается откалибровать и записать. Может, например, помешать обильный макияж или причёска, но иногда причины остаются загадкой. Часто проблемы возникают с людьми с плохим зрением, хотя это не значит, будто люди в очках не могут быть респондентами. Меня, например, наш айтрекер прекрасно калибрует и в очках.
Типична ситуация, когда при калибровке всё замечательно, а на тест респондент не берёт очки (или берёт, но неподходящие), открывает проект и прилипает носом к монитору, ведь иначе он ничего не может прочитать. Естественно, вся калибровка сбивается.
Если ещё пять лет назад у нас периодически терялись записи тестов из-за вылета ПО при обработке результатов, то сейчас подобного почти не случается, но проблемы всё ещё есть. Например, визуализации часто просто невозможно создать.
Сложностей с картинками и простыми десктопными сайтами нет, но при тестировании приложений, особенно мобильных, и сложного веба, не всегда удаётся получить тепловые карты или графики движения взгляда. Например, визуализацию ниже получилось сделать, потому что пользователь несколько секунд не скроллил статью. Если бы он ее всё время листал, ничего бы не вышло. А сделать визуализацию чтения полной статьи на мобильном просто невозможно.
Нужно подстраивать сценарий тестирования под использование айтрекинга. Если в рамках теста респондент общается с модератором, всё время общения необходимо выкидывать из анализа айтрекинга, так как на экране появляются «мусорные» фиксации. На деле чистка лишнего — не такая простая задача, особенно если у вас много респондентов. Также сомнительным становится применение метода «Мысли вслух».
В статье Джеймса Бриза приводится отличный пример, насколько отличается то, как респонденты смотрят на экран, когда комментируют свои действия и когда молчат. Вместо «Мысли вслух» предлагается использовать метод «Ретроспектива» (Retrospective Think Aloud), когда респондент сначала молча выполняет задания, а потом пересматривает видеозапись и комментирует её. Всё бы хорошо, только ретроспектива почти в два раза увеличивает время самого тестирования.
Чтобы выбрать правильный метод, не вносящий предвзятость, обработать нужные статистики, подкрепить их показательными визуализациями и, самое главное, не ввести заказчика в заблуждение, исследователь должен быть хорошо погружён в тему айтрекинга. Если вы планируете приобрести айтрекинг-оборудование для лаборатории, то вам нужно либо потратить силы на обучение сотрудников, либо нанять уже квалифицированных специалистов.
Айтрекинг может сыграть с вами злую шутку, если подойти к его анализу без соответствующих знаний и опыта. Наломать дров очень легко, особенно при излишней любви к визуализациям.
Респонденты долго, много или часто смотрели в какую-то область — что это значит? Обилие фиксаций может говорить как об интересе, так и о сложности (например, пытались разобраться в непонятном). Фиксация на каком-то блоке даже не означает, что респондент действительно видел и понимал, что это такое. Взгляд мог скользнуть по блоку при выполнении другой задачи — и мозг не стал обрабатывать эту информацию.
Всё это приводит к тому, что сам по себе айтрекинг не может давать выводы без сопутствующего анализа видеозаписи, поведения респондента и его комментариев, то есть без классического анализа юзабилити-тестирования.
Первая проблема карт неожиданно кроется в их интуитивной понятности. По ним сразу видно, что «сюда смотрели много», а «сюда мало». Но тепловые карты можно построить на основании разных статистик. Например, в Tobii Studio, с которым работаем мы, есть три типа карт: по общему количеству фиксаций, абсолютной длительности фиксаций и относительной длительности фиксаций.
В первых двух суммируются данные фиксаций по каждому респонденту, поэтому поведение очень «медленных» людей, которые долго смотрели на экран, будет иметь больший вес, ведь данные обо всех участниках суммируются. В последней же карте длительность фиксации респондента на каком-то блоке делится на его общую длительность нахождения на странице.
Если один человек пробыл на странице 10 секунд и смотрел на меню 2 секунды, а другой провёл на странице 100 секунд и смотрел на меню 20 секунд, то они внесут одинаковый вклад в итоговую картинку. Примеры того, как по-разному могут выглядеть тепловые карты на основе одних и тех же данных, можно увидеть в статье Джона Ворда.
Вторая проблема тепловых карт: вы не можете быть точно уверены, что значит то или иное пятно на карте. Блок, который получит 10 фиксаций от одного респондента, и блок, которому досталось по одной фиксации от 10 человек, могут стать одинаково «горячими».
Это поведение настолько непохожее, что ведет к совершенно разным выводам о продукте. Именно поэтому тепловые карты не могут быть основанием для каких-то решений сами по себе, а способны лишь проиллюстрировать выводы, сделанные на основании полных данных. Исследователь, добавивший тепловую карту в отчёт, должен понимать, что значит то или иное пятно, и донести это до заказчика.
Именно картинки чаще всего вызывают wow-эффект у заказчиков. В итоге исследователи стараются построить картинки и в тех случаях, когда они на деле не нужны или непоказательны.
Возьмем, например, задачу заметности какого-то блока. Если блок не замечали вообще, то визуализация будет наглядна. А вот если хотя бы один респондент его увидел, да еще и смотрел на него достаточно долго, толку от визуализации будет мало. На самом же деле для построения выводов по этой задаче нужны не картинки, а статистика: какой процент респондентов заметил блок, каково среднее время до первой фиксации и так далее. А работать со статистикой многие не хотят или не умеют.
Поставим себя на место заказчика и попробуем разобраться в том, когда имеет смысл использовать в UX-исследованиях айтрекинг со всеми его плюсами и минусами, а когда нет.
Если в вашей компании есть (или точно будет) собственная UX-лаборатория, то однозначно стоит заложить айтрекер в планируемые расходы. Скорее всего, у вашей компании есть постоянная потребность в исследованиях, и применение айтрекинга добавит инсайтов, увеличит качество тестов и наглядность отчётов — и в итоге окупит себя.
Однако исследования с айтрекером — удел не только больших компаний с собственными UX-отделами. Вы можете заказать тестирование агентству, взять айтрекер в аренду или купить бюджетный вариант (если готовы на ряд ограничений). Чтобы понять, стоит ли так заморачиваться, в первую очередь нужно оценить, даст ли применение айтрекера значимые инсайты для вашего проекта.
Любому исследователю всегда хочется получить больше знаний, но надо соотносить результаты с затрачиваемыми усилиями. Классические методы UX-исследований позволят найти большую часть проблем и без айтрекинга.
Есть ли вопросы о продукте, на которые можно ответить только при помощи айтрекинга? А главное, повлияют ли ответы на эти вопросы на ваш продукт? Если речь идёт о медиапроекте, если важна детальнейшая оптимизация форм или если нужно «продать» необходимость изменений руководству — то оно того стоит. В остальных случаях надо думать.
Напоследок хочется сказать о правильной постановке задач. Очень часто заказчики не могут чётко сформулировать, чем им поможет айтрекер, а приходят с запросом «мы просто хотим понять, куда они смотрят».
Как-то раз мы получили запрос на тестирование нового дизайна одного проекта, где отдельное внимание нужно было уделить главной странице. Помимо общих вопросов, практически о каждом блоке на странице стоял вопрос «А замечают ли его пользователи?»
Добросовестный исследователь дал респондентам свободное задание на изучение сайта, а потом аккуратно подсчитал по каждому блоку на главной статистику: этот блок заметил такой-то процент пользователей, через столько-то миллисекунд, фиксировались на такое-то время и тому подобное. Проделали большую работу, проанализировали статистику.
И чем всё кончилось? Заказчик не смог пользоваться результатами. Не потому, что данные были неверны или плохо представлены. Просто совершенно непонятно, какие делать выводы из информации вроде «тот блок заметили через четыре секунды, а этот через шесть». Вот пример знаний, которые не могут привести к изменениям в продукте.
Периодически я вижу полярные мнения о том, нужно ли применять айтрекинг в исследованиях. Одни говорят, что без него никуда, другие — что затраты совершенно не окупают результат. И, как и в любом противоречивом вопросе, истина находится где-то между. Айтрекинг действительно может улучшить качество исследований, дать новые инсайты и наглядно подтвердить ваши находки. Однако он никогда не работает в отрыве от классических методов: наблюдения за деятельностью респондента и общения с ним.