баллистика что это такое
Значение слова «баллистика»
Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека
В зависимости от этапа движения снаряда различают:
внутреннюю баллистику, занимающуюся исследованием движения снаряда (пули) в стволе орудия;
промежуточную баллистику, исследующую прохождение снаряда через дульный срез и поведение в районе дульного среза. Она важна специалистам по точности стрельбы, при разработке глушителей, пламегасителей и дульных тормозов;
внешнюю баллистику, исследующую движение снаряда в атмосфере или пустоте под действием внешних сил. Ею пользуются, когда рассчитывают поправки на превышение, ветер и деривацию;
преградную или терминальную баллистику, которая исследует последний этап — движение пули в преграде. Терминальной баллистикой занимаются оружейники-специалисты по снарядам и пулям, прочности и другие специалисты по броне и защите, а также криминалисты.
БАЛЛИ’СТИКА [али], и, мн. нет, ж. [от греч. ballō — мечу] (воен.). Наука о полете орудийных снарядов.
Источник: «Толковый словарь русского языка» под редакцией Д. Н. Ушакова (1935-1940); (электронная версия): Фундаментальная электронная библиотека
балли́стика
1. наука о движении тел, брошенных в пространстве и движущихся под действием силы тяжести (в том числе артиллерийских снарядов, пуль, мин, авиабомб, гарпунов и т. п.) ◆ Баллистика стрельбы в горах имеет неожиданные особенности, отличные от баллистики полета пули на равнинном стрельбище. «Стрельба в горах», 2003.10.18 г. // «Боевое искусство планеты» (цитата из НКРЯ)
Делаем Карту слов лучше вместе
Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!
Спасибо! Я обязательно научусь отличать широко распространённые слова от узкоспециальных.
Насколько понятно значение слова ухватка (существительное):
Баллистика внутренняя, внешняя и терминальная. Баллистическая терминология
Введение в баллистику
— Из отчет Элвина К. Йорка (8 октября 1918г.)
Баллистика исследует движение снаряда (пули). ТК 3-22.9 даёт такое определение:
Есть три основных категории баллистики: внутренняя, внешняя и терминальная.
Далее мы обсудим различные термины, связанные с баллистикой.
Баллистическая терминология
— Из наградной записи Медали Почета старшего сержанта Конде Фалькона
Определим основную терминологию баллистики, чтобы глубже погрузиться в тему. Наш источник – Циркуляр «Винтовки и карабины» ТС 3-22.9, приложение В (в редакции от 1 от января 2017 года).
Как мы уже говорили, баллистика подразделяется на внутреннюю, внешнюю и терминальную.
Внутренняя баллистика
В дискурсе внутренней баллистики используется несколько основных терминов для описания физических процессов.
Канал ствола (bore) – внутренняя часть ствола, от дульного среза до патронника.
Патронник (chamber) – часть ствола, принимающая и фиксирующая боеприпас для стрельбы.
Скат патронника, уступ патронника (shoulder) – часть патронника, фиксирующая гильзу со снарядом, за которой начинается пульный вход ствола.
Дульный срез (muzzle) – конец ствола.
Гран, гр (grain, gr) – единица измерения веса пули либо снаряда. В одном фунте 7000 гранов, в одной унции – 437,5 (1 гран — 0,0647989 грамма – прим. переводчика).
На рисунке ниже показаны некоторые из приведённых терминов внутри автомата М4.
Внешняя баллистика
Ось канала ствола, она же линия выстрела, она же линия возвышения (axis of the bore / line of bore / line of elevation) – линия, проходящая через центр канала ствола.
Угол возвышения (angle of elevation) – угол между землей (горизонтом оружия) и осью канала ствола.
Баллистическая траектория (ballistic trajectory) – путь снаряда под влиянием только внешних сил, как то гравитация и атмосферное трение.
Высота траектории (maximum ordinate) – максимальная высота снаряда над линией прицеливания на пути к точке попадания.
Время полёта (time of flight) – время, которое требуется конкретному снаряду для достижения цели после выстрела.
На следующих рисунках показаны эти термины в ракурсе внешней баллистики.
Терминальная баллистика
Терминальная баллистика – это наука о поведении снаряда от момента столкновения с объектом до полной остановки (терминальная остановка). Включает терминальное влияние на цель.
В связи с этим существует два основных термина:
На следующем рисунке это показано на примере пули M855A1. Обратите внимание, насколько пробит баллистический желатин:
Итак, мы рассмотрели несколько терминов, связанных с различными фазами полета снаряда. В следующий раз мы обсудим дальнейшее практическое применение баллистики.
Баллистика
Прибор для обжатия пуль в дульце гильз патронов к нарезному оружию.
Но наиболее ответственная часть работы, от которой зависит успех стрельбы, должна выполняться c умом. Сюда относятся выбор правильной тактики, собственной маскировки, умение наблюдать, находить и выбирать цель, определять дистанцию стрельбы и поправки для прицела в зависимости от условий стрельбы.
Для решения этих сложных задач хороший стрелок и охотник должен представлять, что происходит после того, как боек разобьет капсюль патрона. Эти явления изучает баллистика. Мы предлагаем читателям познакомиться с материалом, составленным по обзорам статей американских авторов.
Баллистику (для лучшего понимания и систематизации) принято разделять на три части: внутреннюю, внешнюю и баллистику в конечной точке. Внутренняя баллистика начинается, когда боек ударника разбивает капсюль, и заканчивается, когда пуля выходит из ствола. Внешняя баллистика исследует полет пули с момента вылета из ствола до контакта с целью.
С этого момента начинается баллистика в конечной точке. Она включает в себя вход в мишень (не важно какую — бумажную или живую), а заканчивается, когда все фрагменты пули остановятся.
ВНУТРЕННЯЯ БАЛЛИСТИКА
Внутренняя баллистика в значительной мере определяет внешние баллистические характеристики выстрела. Ниже изложена упрощенная версия того, что происходит во время выстрела.
Когда их давление достигнет определенного уровня, пуля выталкивается в канал ствола, где спиральные нарезы придают ей вращательное движение, которое стабилизирует пулю после вылета из ствола. Следует иметь в виду, что давление, вызванное горением пороха, в определенный момент начинает уменьшаться, пока пуля еще в стволе, и уменьшится очень быстро (до атмосферного давления), когда пуля вылетит из него.
Понятно, что на характеристики выстрела значительно влияют различные факторы. Сюда можно отнести форму нарезов, объем гильзы, конструкцию пули, свойства капсюля и пороха и многое другое. В этой статье мы сконцентрируем внимание на капсюле и порохе.
КАПСЮЛЬ-ВОСПЛАМЕНИТЕЛЬ
Джошуа Шоу (Joshua Shaw) запатентовал в 1822 году капсюль с использованием гремучей ртути в качестве воспламенителя. С появлением бездымного пороха обнаружили, что гремучая ртуть недостаточно сильна для него. Но если в капсюльную смесь вместе с гремучей ртутью добавлять окислитель, например бертолетову соль, то получается подходящий состав для бездымного пороха.
При использовании гремучей ртути после выстрела образуются растворы ртути (амальгамы) в латуни, делая ее настолько слабой и хрупкой, что гильзы становились непригодными для перезарядки. Вооруженные силы США прекратили использовать гремучую ртуть примерно в 1900 годах.
После того как проблемы, относящиеся к гремучей смеси, стали широко известны, состав капсюля был изменен на рецептуру, не содержащую ртуть. Один из составов, который начала использовать армия США примерно в 1917 году, применялся под маркой FA70.
Спустя некоторое время в промышленности стали использоваться капсюльные смеси, основанные на стифнате (тринитрорезорцинат) свинца (которые не содержали ртути и не приводили к интенсивному окислении стволов). Армия США приняла на вооружение эти капсюли в 1948 году. Они до сих пор используются под маркой FA956.
ИЗ ИСТОРИИ ПОРОХА
Азотнокислый калий 75%
Древесный уголь 15%
Сера 10%
При горении уголь и сера быстро окисляются кислородом, выделяющимся из азотнокислого калия. Во время сгорания черного пороха образуются газообразные продукты — углекислый газ, угарный газ, азот и немного сероводорода (из-за которого образуется специфический запах дыма черного пороха).
Основные твердые продукты сгорания — это карбонат калия, сульфат калия, сульфид калия и несколько свободного углерода. Образующиеся твердые продукты составляют примерно половину начального веса порохового заряда.
Основной компонент всех типов бездымного пороха — нитроцеллюлоза. Впервые нитроцеллюлоза была приготовлена в 1845 и 1846 годах независимо друг от друга учеными Шенбейном (Schoenbein) и Беттгером (Bottger). Чтобы получить ее, нужно осторожно обработать хлопковые или другие целлюлозные волокна нитрующей смесью (азотной и серной кислотой).
Все продукты сгорания нитроцеллюлозы газообразны, и в процессе горения выделяется значительное количество теплоты, создающее высокое давление в стволе. Но нитроцеллюлоза была слишком активной, чтобы ее в чистом виде можно было использовать вместо пороха, поэтому требовались определенные меры по снижению скорости горения. Этого удалось добиться путем создание из нее газонепроницаемого твердого вещества.
Развитие технологии получения порохов, на одном компоненте (нитроцеллюлозе) и на двух компонентах (нитроцеллюлозе и нитроглицерине) в совокупности с совершенствованием технологии Вьелем и Нобелем обеспечило быструю замену черного пороха. До сих пор эти вещества являются основными компонентами бездымного пороха.
Благодаря возможности создавать плотную твердую форму из нитроцеллюлозы, начал действовать эффект формы пороховых зерен на скорость их горения. По этому показателю пороха могут быть разделены на три группы: регрессивную, нейтральную и прогрессивную.
Зерна, имеющие форму тонких пластинок, тонких полосок и трубочек, как правило, горят с постоянной скоростью, т.к. площадь их поверхности не сильно меняется по мере их сгорания. Такое горение называется нейтральным. Если зерна имеют форму длинных нитей и сфер, то площадь поверхности слегка уменьшится во время горения. Уменьшение поверхности вызовет уменьшение скорости горения, поэтому такое горение называется регрессивным. Прогрессивное горение достигается благодаря форме зерен (и большому количеству внутренних пор), которые увеличивают площадь поверхности во время горения.
Технология позволяла получать шарики нужного размера, чтобы они оптимально соответствовали баллистическим требованиям. Обычно добавляется нитроглицерин для увеличения выделения энергии при горении. Как было упомянуто выше, сферическая форма приводит к регрессивному горению, поэтому добавление химических защитных покрытий играет важную роль в действии пороха.
Производство сферического пороха относительно безопасно, т.к. большинство этапов выполняется в воде. Также это быстрый производственный процесс с использованием простого оборудования по сравнению с более традиционным экструдированным порохом.
КАПСЮЛЬНЫЕ СМЕСИ, ПРИМЕНЯЕМЫЕ АРМИЕЙ США
Гремучая ртуть 13,7%
Бертолетова соль 41,5%
Сульфид сурьмы 33,4%
Стеклянный порошок 10,7%
Желатиновый клей 0,7%
Бертолетова соль 53,0%
Сульфид сурьмы 17,0%
Роданид свинца 25,0%
Тротил 5,0%
Стифнат свинца, нормальный 36,8%
Тетразен 4,0%
Нитрат бария 32,0%
Сульфид сурьмы 15,0%
Алюминиевый порошок 7,0%
Пентаэритриттетранитрат 5,0%
Гуммиарабик 0,2%
Чтобы гильза легко извлекалась
В любом оружии после выстрела периодически возникает проблема извлечения стреляной гильзы. Наиболее распространенная причина — разношенный (увеличенного диаметра) патронник. Хотя есть распространенное заблуждение, что это связано с тем, что гильзы имеют великоватый внешний диаметр. В действительности это не так.
Если гильза плотно входит в патронник, то высокое давление пороховых газов ее деформирует лишь в пределах упругости (упругой деформации). После спада давления диаметр гильзы возвращается к первоначальному значению. Если же гильза «болтается» в патроннике, то при выстреле возможна ее деформация выше предела вынужденной пластичности. В результате после спада давления гильза останется очень плотно прижатой к патроннику.
Изобретение, обогнавшее время
Оригинальный способ обеспечения легкой экстракции стреляных гильз был реализован в семидесятых годах 18 века в английских винтовках системы Снайдера. Метод состоял в обжатии гильзы пороховыми газами при выстреле. Для этого на поверхности гильзы были желобки, идущие вдоль гильзы от дульца к шляпке.
Идея гофрирования гильз незадолго до того осуществлялась на папковых и тонких латунных гильзах для охотничьих ружей. Матрицы для такого обжатия производили английские, французские и бельгийские оружейники. Эта идея довольно долго не имела развития.
Лишь в 1929 году итальянцы сделали в патроннике ручного пулемета Ревелли желобки, которые начинались от дульца и сходили на нет, немного не доходя до казенного среза. При выстреле газы окружают гильзу и не позволяют ей прилипнуть к патроннику, даже когда туда попадали пыль, песок и другие загрязнения.
1822 год — время появления первого капсюля. Он был запатентован Джошуа Шоу (Joshua Shaw).
БАЛЛИСТИКА
На протяжении многих лет использовались разные способы ускорения метательных снарядов. Лук ускорял стрелу за счет энергии, запасенной в согнутом куске дерева; пружинами баллисты служили скручиваемые сухожилия животных. Были опробованы электромагнитная сила, сила пара, сжатого воздуха. Однако ни один из способов не был столь успешен, как сжигание горючих веществ.
ВНУТРЕННЯЯ БАЛЛИСТИКА
Ствольные системы ускорения.
Для удержания орудия с откатом в равновесии во время выстрела требуется прилагать значительную внешнюю силу (рис. 2). Внешняя сила, как правило, обеспечивается противооткатным механизмом, состоящим из механических пружин, гидравлических устройств и газовых амортизаторов, рассчитанных так, чтобы гасился направленный назад импульс ствола и казенной части с затвором орудия. (Импульс, или количество движения, определяется как произведение массы на скорость; по третьему закону Ньютона импульс, сообщаемый орудию, равен импульсу, передаваемому снаряду.)
Газовая пушка.
Реактивные системы.
Реактивные пусковые установки выполняют в основном те же функции, что и артиллерийские орудия. Такая установка играет роль неподвижной опоры и обычно задает начальное направление полета реактивного снаряда. При пуске управляемой ракеты, имеющей, как правило, бортовую систему наведения, точная наводка, необходимая при стрельбе из орудия, не требуется. В случае же неуправляемых ракет направляющие пусковой установки должны вывести ракету на траекторию, ведущую к цели.
ВНЕШНЯЯ БАЛЛИСТИКА
Вакуумные траектории.
Траектории материальной точки.
где r – плотность воздуха, S – площадь поперечного сечения снаряда, v – скорость движения, а CD (M) – безразмерная функция числа Маха (равного отношению скорости снаряда к скорости звука в среде, в которой движется снаряд), называемая коэффициентом лобового сопротивления. Вообще говоря, коэффициент лобового сопротивления снаряда можно определить экспериментально в аэродинамической трубе или на испытательном полигоне, оснащенном точным измерительным оборудованием. Задача облегчается тем, что для снарядов разного диаметра коэффициент лобового сопротивления одинаков, если они имеют одинаковую форму.
Траектории твердого тела.
Все сказанное об устойчивости полета, не охватывая полностью явлений, определяющих полет снаряда, тем не менее иллюстрирует сложность задачи. Отметим лишь, что в уравнениях движения необходимо учитывать много разных явлений; в эти уравнения входит ряд переменных аэродинамических коэффициентов (типа коэффициента лобового сопротивления), которые должны быть известны. Решение этих уравнений – очень трудоемкая задача.
Применение.
Перед стрельбой должны вноситься поправки на изменения начальной скорости, связанные с износом канала ствола, температурой пороха, отклонениями массы снаряда и баллистических коэффициентов, а также поправки на постоянно меняющиеся погодные условия и связанные с ними изменения плотности атмосферы, скорости и направления ветра. Кроме того, должны быть внесены поправки на деривацию снаряда и (при большой дальности) на вращение Земли.
С увеличением сложности и расширением круга задач современной баллистики появились новые технические средства, без которых возможности решения нынешних и будущих баллистических задач были бы сильно ограничены.
Траектории управляемых снарядов.
В случае управляемых снарядов и без того сложная задача описания траектории усложняется тем, что к уравнениям движения твердого тела добавляется система уравнений, называемых уравнениями наведения, связывающая отклонения снаряда от заданной траектории с корректирующими воздействиями. Суть управления полетом снаряда такова. Если тем или иным путем с использованием уравнений движения определяется отклонение от заданной траектории, то на основе уравнений наведения для этого отклонения рассчитывается корректирующее действие, например, поворот воздушного или газового руля, изменение тяги. Это корректирующее действие, изменяющее те или иные члены уравнений движения, приводит к изменению траектории и уменьшению ее отклонения от заданной. Такой процесс повторяется, пока отклонение не уменьшится до приемлемого уровня.
БАЛЛИСТИКА В КОНЕЧНОЙ ТОЧКЕ
Взрыв.
Эксперименты в области взрыва проводятся как с химическими взрывчатыми веществами в количествах, измеряемых граммами, так и с ядерными зарядами мощностью до нескольких мегатонн. Взрывы могут производиться в разных средах, таких, как земля и скальные породы, под водой, у поверхности земли в нормальных атмосферных условиях или в разреженном воздухе на больших высотах. Главный результат взрыва – образование ударной волны в окружающей среде. Ударная волна распространяется от места взрыва сначала со скоростью, превышающей скорость звука в среде; затем с уменьшением интенсивности ударной волны ее скорость приближается к скорости звука. Ударные волны (в воздухе, воде, грунте) могут поражать живую силу противника, разрушать подземные укрепления, морские суда, здания, наземные транспортные средства, самолеты, ракеты и спутники.
Для моделирования интенсивных ударных волн, возникающих в атмосфере и у поверхности земли при ядерных взрывах, применяются особые устройства, называемые ударными трубами. Ударная труба, как правило, представляет собой длинную трубу, состоящую из двух секций. На одном ее конце расположена камера сжатия, которая заполняется воздухом или другим газом, сжатым до сравнительно высокого давления. Другой ее конец представляет собой камеру расширения, открытую на атмосферу. При мгновенном разрыве тонкой диафрагмы, разделяющей две секции трубы, в камере расширения возникает ударная волна, бегущая вдоль ее оси. На рис. 4 показаны кривые давления ударной волны в трех поперечных сечениях трубы. В сечении 3 она принимает классическую форму ударной волны, возникающей при детонации. Внутри ударных труб можно размещать миниатюрные модели, которые будут претерпевать ударные нагрузки, аналогичные действию ядерного взрыва. Нередко проводятся испытания, в которых действию взрыва подвергаются более крупные модели, а иногда и полномасштабные объекты.
Для решения специфических задач, характерных для верхних слоев атмосферы, имеются специальные камеры, в которых имитируются высотные условия. Одна из таких задач – оценка уменьшения силы взрыва на больших высотах.
Осколки и пробивная способность.
Если металл находится в прямом контакте с взрывчатым веществом, ему могут передаваться давления ударной волны, измеряемые десятками тысяч МПа. При обычных размерах заряда ВВ порядка 10 см длительность импульса давления составляет доли миллисекунды. Столь огромные давления, действующие кратковременно, вызывают необычные процессы разрушения. Примером таких явлений может служить «скалывание». Детонация тонкого слоя ВВ, помещенного на броневую плиту, создает очень сильный импульс давления малой длительности (удар), пробегающий по толщине плиты. Дойдя до противоположной стороны плиты, ударная волна отражается как волна растягивающих напряжений. Если интенсивность волны напряжений превысит предел прочности на растяжение материала брони, происходит разрывное разрушение вблизи поверхности на глубине, зависящей от первоначальной толщины заряда ВВ и скорости распространения ударной волны в плите. В результате внутреннего разрыва броневой плиты образуется металлический «осколок», с большой скоростью отлетающий от поверхности. Такой летящий осколок может вызвать большие разрушения.
Чтобы выяснить механизм явлений разрушения, проводят дополнительные эксперименты в области металлофизики высокоскоростной деформации. Такие эксперименты проводятся как с поликристаллическими металлическими материалами, так и с монокристаллами различных металлов. Они позволили сделать интересный вывод относительно зарождения трещин и начала разрушения: в тех случаях, когда в металле имеются включения (примеси), трещины всегда начинаются на включениях. Проводятся экспериментальные исследования пробивной способности снарядов, осколков и пуль в разных средах. Ударные скорости лежат в пределах от нескольких сотен метров в секунду для низкоскоростных пуль до космических скоростей порядка 3–30 км/с, что соответствует осколкам и микрометеорам, встречающимся с межпланетными летательными аппаратами.
На основе таких исследований выводятся эмпирические формулы относительно пробивной способности. Так, установлено, что глубина проникновения в плотную среду прямо пропорциональна количеству движения снаряда и обратно пропорциональна площади его поперечного сечения. Явления, наблюдающиеся при ударе с гиперзвуковой скоростью, показаны на рис. 6. Здесь стальная дробинка со скоростью 3000 м/с ударяется о свинцовую пластину. В разное время, измеряемое микросекундами от начала соударения, сделана последовательность снимков в рентгеновских лучах. На поверхности пластины образуется кратер, и, как показывают снимки, из него выбрасывается материал пластины. Результаты исследования соударения при гиперзвуковой скорости делают более понятным образование кратеров на небесных телах, например на Луне, в местах падения метеоритов.
Раневая баллистика.
Броня.
С использованием ускорителей Ван-де-Граафа и других источников проникающего излучения исследуется степень радиационной защиты людей в танках и бронеавтомобилях, обеспечиваемая специальными материалами для брони. В экспериментах определяется коэффициент прохождения нейтронов сквозь плиты из разных слоев материалов, имеющие типичные танковые конфигурации. Энергия нейтронов может лежать в пределах от долей до десятков МэВ.
Горение.
Исследования в области воспламенения и горения проводятся с двоякой целью. Первая – получить данные, необходимые для увеличения способности пуль, осколков и зажигательных снарядов вызывать загорание топливных систем самолетов, ракет, танков и т.д. Вторая – повысить защищенность транспортных средств и стационарных объектов от зажигательного действия вражеских боеприпасов. Проводятся исследования по определению воспламеняемости разных топлив под действием различных средств воспламенения – искр электрического разряда, пирофорных (самовоспламеняющихся) материалов, высокоскоростных осколков и химических воспламенителей.
Шапиро Я.М. Внешняя баллистика. М., 1946
Серебряков М.Е. Внутренняя баллистика. М., 1949
Костров А.В. Движение асимметричного баллистического аппарата. M., 1984