есть математический склад ума а есть

Математическое мышление: в чём польза и как развить

Математики смотрят на мир критически, стремятся копнуть глубже и постичь суть явлений. Узнайте, как научиться думать, как математик.

есть математический склад ума а есть. Смотреть фото есть математический склад ума а есть. Смотреть картинку есть математический склад ума а есть. Картинка про есть математический склад ума а есть. Фото есть математический склад ума а есть

Преимущества математического мышления

Математическим называется теоретическое мышление, объекты которого лишены вещественности и объединены отношениями. Оно не только помогает нам решать уравнения, но и даёт преимущества в учёбе в целом.

Человек с развитым математическим мышлением удерживает в голове большое количество информации, понимает, что у любой проблемы есть решение, умеет разбивать сложные задачи на более мелкие и выявлять взаимосвязи.

Математическое мышление помогает и в повседневной жизни. Когда проблема раскладывается на части и учитываются все варианты развития событий, обычно принимается наилучшее решение. А благодаря уверенности в решаемости любых задач дела реже откладываются на потом.

есть математический склад ума а есть. Смотреть фото есть математический склад ума а есть. Смотреть картинку есть математический склад ума а есть. Картинка про есть математический склад ума а есть. Фото есть математический склад ума а есть

Виды математического мышления

По мнению психолога Ильи Каплуновича, в человеке обычно в разных пропорциях развиты пять типов математического мышления:

Интересный факт: люди, у которых преобладает один и тот же тип мышления, неосознанно тянутся друг к другу.

Как развить математическое мышление

Математическое мышление тесно связано с пространственным, поэтому его прокачку следует начать с упражнений для пространственного мышления:

Также для развития математического мышления полезно как можно больше работать с цифрами. При необходимости любых вычислений в повседневной жизни старайтесь производить их в уме, без калькулятора.

Источник

Онлайн тест «Ты гуманитарий или математик?» (22 вопроса)

Каждый из нас уникален и индивидуален, одни склонны к поэзии или художественному искусству, другие к точным наукам, а третьи вообще любят спорт. Такие особенности личности уже давно раскрыли ученые, все зависит от работы нашего мозга. Те, у кого активно работает левое полушарие мозга – склонны к математике, физике, химии и прочим. Те, у кого развито правое полушарие, отдают предпочтение гуманитарным наукам и творчеству. Ты когда ни будь задумывалась, к какому лагерю относишься?

Тебе поможет ответить на этот вопрос наш бесплатный онлайн-тест Кто ты гуманитарий или математик, для прохождения которого не потребуется дополнительная регистрация или отправка смс-сообщений. Отвечай на вопросы и получай результат, который тебя удивит.

есть математический склад ума а есть. Смотреть фото есть математический склад ума а есть. Смотреть картинку есть математический склад ума а есть. Картинка про есть математический склад ума а есть. Фото есть математический склад ума а есть

Толкование теста «Кто ты гуманитарий или математик»

Гуманитарий – это человек, который расположен к литературе, языкам, каллиграфии, философии и другим творческим направлениям.

Математик – такой склад ума позволяет человеку быть отличным стратегом. Люди такого склада ума редко верят в приметы, волшебство или магию, в общем во все, что не имеет научного доказательства.

В редких случаях существует совмещенный склад ума, в котором плотно пересекаются гуманитарий и математик. Таким людям одинаково легко заниматься творчеством и точными науками.

есть математический склад ума а есть. Смотреть фото есть математический склад ума а есть. Смотреть картинку есть математический склад ума а есть. Картинка про есть математический склад ума а есть. Фото есть математический склад ума а есть

Эзотерик, таролог, астролог (консультант проекта)

Источник

Что такое математический склад ума? Особенности и способы развития

есть математический склад ума а есть. Смотреть фото есть математический склад ума а есть. Смотреть картинку есть математический склад ума а есть. Картинка про есть математический склад ума а есть. Фото есть математический склад ума а есть

Согласно мнению ученых, склад ума формирует полушарие мозга, являющееся доминирующим. Например, если это правое полушарие, то личности свойственно абстрактное мышление. Если левое – аналитическое. Для определения склада ума есть разные тесты. Их часто задействуют в школах, чтобы выявить способности детей.

Основные категории

есть математический склад ума а есть. Смотреть фото есть математический склад ума а есть. Смотреть картинку есть математический склад ума а есть. Картинка про есть математический склад ума а есть. Фото есть математический склад ума а есть

Психологи выделяют четыре основные категории склада ума. Он может быть практическим, художественным, гуманитарным или математическим. Также есть и пятая категория – синтетический вид. Его еще называют универсальным.

Люди, имеющие первый вид, мыслят предметно. Они цельно связывают предмет во временном и пространственном контуре. Такие люди преобразуют данные за счет предметных операций и пошагово выполняют их. Результат такого вида мышления – мысль, реализованная в другой конструкции.

Люди со вторым видом мыслят образно. Они разграничивают предмет во временном и пространственном поле. Преобразуют информацию, применяя образы. Итог – мысль, реализованная в созданном образе.

Персоны с третьим видом преобразуют данные, задействовав умозаключения. Они мыслят знаками, которые ассимилируются в более масштабные единицы. Итог – мысль в формате понятия. Она связывает предметы существенно. И закрепляет эту связь.

Люди, имеющие математический склад ума, думают символически. Они преобразуют информацию, руководствуясь критериями вывода. Итог – мысль, представленная в формате структурных комплексов и формул. Она связывает символы существенно, фиксирует эту связь.

В синтетическом складе ума ассимилированы способности по направлениям, кардинально отличающимся друг от друга. Обозначенные виды классифицируются по методу мышления. Но есть и другие классификации по эмоциям, творческому потенциалу, полу, криминальным действиям, патриотическим взглядам.

Но большинство экспертов в качестве главных рассматривают математический и гуманитарный склады ума. Все остальное – это подкатегории.

Такие распределения получаются из-за того, что понятие склада ума не является научным. Оно не имеет точной формулировки. И нет научного описания разнообразия всех его форм.

Характеристики математического склада

Как уже здесь было указано, личности с подобным складом думают символами. В итоге символы связываются по существу.

Часто встречаются формулировки математического и аналитического склада ума. На практике это синонимичные понятия.

Человек исследует в действиях обособленные явления. Он, в отличие от обладателей гуманитарного склада, оценивает ситуацию по обособленным компонентам. Анализирует ее адекватнее.

Люди, имеющие математический склад ума, филигранно справляются с умственными расчетами. Они легко манипулируют действующими формулами, критериями и законами. Это проявляется в сфере математики и во всей жизни.

Эти личности основываются на «сухих» точных фактах, объективных данных, а не на чувствах. Аналитический взгляд во многом основывается на физических законах. Поэтому существует и еще один синоним — это физико-математический склад ума.

Универсалы

есть математический склад ума а есть. Смотреть фото есть математический склад ума а есть. Смотреть картинку есть математический склад ума а есть. Картинка про есть математический склад ума а есть. Фото есть математический склад ума а есть

Есть персоны с особыми способностями. Они без проблем осваивают технологические и гуманитарные дисциплины. У них сложно выявить определенный склад ума. Они имеют четкое представление совокупной картины мира, легко справляются с графиками и чертежами. Но могут расчувствоваться, например, при чтении стихов или просмотре драматического фильма.

Зачастую способности этих людей распределяются неравномерно. У одних перевешивает математический склад ума. А у других несколько больше доминирует его антипод – гуманитарий.

Для выявления преобладающего типа существуют специальные тесты.

Гуманитарий

есть математический склад ума а есть. Смотреть фото есть математический склад ума а есть. Смотреть картинку есть математический склад ума а есть. Картинка про есть математический склад ума а есть. Фото есть математический склад ума а есть

Человек, имеющий гуманитарный склад ума, больше интересуется творческими, общественными делами. Концентрируется на философии, литературе и искусстве. При этом он может работать инженером и знать технологии наравне с «технарями». Но для него приоритетной задачей является реализация духовных составляющих его жизни.

Многие знаменитые ученые, помимо основной своей деятельности, занимались еще и творчеством. Например, М. В. Ломоносов. У него немало поэтических произведений.

Главное отличие гуманитария от «математика» заключается в том, что он воспринимает мир всесторонне.

Гуманитарий по-другому толкует, интерпретирует, дает иные понятия. Он обладает другим опытом и видением. «Технарь» анализирует жизнь по определенным критериями и правилам.

Также у всех типичных гуманитариев отмечается хорошая коммуникабельность. Они тянутся к другим людям. Всегда умело налаживают связи.

Нередко такие люди могут легко контактировать с людьми, которые являются для них посторонними и имеют антиподные взгляды. Гуманитарий может притягивать людей разных религий, специальностей и темпераментов.

Дети-гуманитарии

есть математический склад ума а есть. Смотреть фото есть математический склад ума а есть. Смотреть картинку есть математический склад ума а есть. Картинка про есть математический склад ума а есть. Фото есть математический склад ума а есть

И математики, и гуманитарии определяются в раннем детстве. В этот период только раскрываются признаки того или иного склада ума. Важно их выявить. Например, начальные гуманитарные признаки у детей таковы:

Дети-«технари»

есть математический склад ума а есть. Смотреть фото есть математический склад ума а есть. Смотреть картинку есть математический склад ума а есть. Картинка про есть математический склад ума а есть. Фото есть математический склад ума а есть

Детей с математическим складом ума можно распознать по следующим признакам:

Чтобы таким детям было интересно обучаться, родители и педагоги должны:

Если у вашего ребенка обнаружены такие способности, необходимо организовывать его общественную и профильную стези. Здесь следует учесть, что в спектре гуманитарных дисциплин тоже есть точные науки. Например, психология, английский и прочие иностранные языки.

Оптимальные специальности для «гуманитария»

есть математический склад ума а есть. Смотреть фото есть математический склад ума а есть. Смотреть картинку есть математический склад ума а есть. Картинка про есть математический склад ума а есть. Фото есть математический склад ума а есть

Люди с гуманитарным умственным складом ума или синтетическим, но с преимуществом гуманитария, часто работают в следующих сферах деятельности:

Еще гуманитарии нередко становятся хорошими юристами, историками,

Оптимальные специальности для «технаря»

есть математический склад ума а есть. Смотреть фото есть математический склад ума а есть. Смотреть картинку есть математический склад ума а есть. Картинка про есть математический склад ума а есть. Фото есть математический склад ума а есть

Люди, у которых развит математический склад ума, часто трудятся в следующих областях:

Эти люди – хорошие исследователи, технологи, инженеры, программисты и т. д.

Источник

Что такое математический и гуманитарный склад ума

есть математический склад ума а есть. Смотреть фото есть математический склад ума а есть. Смотреть картинку есть математический склад ума а есть. Картинка про есть математический склад ума а есть. Фото есть математический склад ума а есть

Типы мышления и склад человеческого ума

Из основ психологии известно, что за мыслительную функцию отвечают полушария мозга. Люди с доминирующим правым полушарием более эмоциональные, они отличаются образным, абстрактным мышлением. У таких личностей гуманитарный склад ума. Если же доминирует левое полушарие, человек является более практичным, обладает аналитическим мышлением и математическим складом ума.

Различают 5 основных категорий человеческого мышления:
— практический склад ума;
— художественно-образный;
— гуманитарный;
— математический (аналитический);
— универсальный склад ума (синтетический).

Каким типом мышления вы обладаете?

Для того чтобы понять свой тип мышления, в первую очередь вам необходимо ознакомится более подробнее с каждым из них.

Практический склад ума. Люди, которые им обладают, в повседневной жизни отдают предпочтение предметному мышлению. Они последовательны во всем и обладают неразрывной связью между предметом-пространством-временем. Человек с таким складом ума по своей сути реалист, не склонный фантазировать и мечтать.

Художественно-образный склад ума. При таком мышлении вся информация обрабатывается при помощи образов. Такие люди имеют развитое воображение и превосходный запас слов. Им проще рассказать, чем показать действием. Человека с художественно-образным складом ума очень легко распознать, так как он резко реагирует на критику и эмоционален практически во всех проявлениях. Аналитические способности у такой личности выражены значительно меньше.

Человеку, обладающему художественно-образным складом ума, прекрасно подойдут профессии психолога, социального работника, а также творческие профессии.

Гуманитарный склад ума, который можно охарактеризовать как знаковое мышление. Личность подобного склада обрабатывает информацию при помощи умозаключения. Такой человек не выстраивает логическую цепочку по «мелким деталям», а привязывает ее к конкретной воображаемой цели. В этом ему помогает развитая интуиция и творческое начало, которое основано на воображении и чувствах. Эмоциональный метод познания – это первое, на что опирается человек-гуманитарий.

Математическое (аналитическое) мышление имеет большое сходство с практическим складом ума.

Универсальное (синтетическое) мышление. Людей, обладающих таким складом ума, можно назвать счастливчиками, ведь они обладают всеми способностями. У них прекрасно развиты и левое, и правое полушарие. Они достаточно ясно представляют картину мира и хорошо разбираются в технических дисциплинах. Они эмоциональные реалисты. Однако эти способности разделены не поровну, а с некоторым перевесом. И чтобы выявить преобладающий тип мышления, необходимо пройти специальный психологический тест.

Исходя из вышесказанного, знания о типах мышления и складе ума имеют огромное влияние на ваше дальнейшее успешное будущее. Развивайтесь в правильном направлении! Успехов вам!

Источник

Привычки людей с математическим складом ума

есть математический склад ума а есть. Смотреть фото есть математический склад ума а есть. Смотреть картинку есть математический склад ума а есть. Картинка про есть математический склад ума а есть. Фото есть математический склад ума а естьПривет, Geektimes! На днях разработчикам Wirex, финтех-стартапа, предоставляющего услуги платежей и денежных переводов без банковского посредничества, на глаза попался весьма интересный материал. Его автор проанализировал некоторые особенности, присущие людям с математическим складом ума, рассказал, какие навыки действительно могут пригодиться в жизни и обозначил преимущества математического подхода при оценке событий. Для того чтобы данная публикация не осталась лишь в поле зрения аудитории зарубежных медиа, мы решили сделать ее перевод, которым спешим поделиться со всеми пользователями Geektimes.

Далее мы приводим оригинальный перевод статьи с блог-платформы Medium, посвященной привычкам, которыми обладает каждый математик.

Один из самых популярных вопросов, которые студенты задают преподавателям математики, звучит так: «Где вообще мне это пригодится?». Немногим учителям удается сразу дать резонный ответ, выходящий за рамки общепринятой точки зрения. Обычно они дают стандартное объяснение на тему полезности развития «критического мышления» и на этом конкретика заканчивается. В то же время эти же учителя должны уметь с невозмутимым видом рассказать своим студентам о важности знания производной арккосинуса.

Предлагаю вам свой список. В него я включил реальные, четко сформулированные навыки, которые, будучи хорошенько освоены студентами, пригодятся им на практике и будут полезны в жизни за рамками их математической деятельности. Некоторые из них имеют прикладной характер: математики используют каждый день для рассуждения о сложных, разносторонних задачах. Другие полезны в социальном плане и позволяют вам натренировать свой эмоциональный интеллект, столь необходимый каждому, кто хочет преуспеть в сфере деятельности, где почти все свое время приходится проводить в попытках понять то, чего в действительности не существует. Все они изучаются в своем чистейшем виде в рамках математики.

А вот и сам список:

Умение четко формулировать определения

Главный навык, который вырабатывается у математиков в ходе их профессиональной деятельности — гибкость и эффективность в работе с понятийным аппаратом. И навык этот имеет гораздо большее значение, нежели это может показаться на первый взгляд. Этим я хочу сказать, что математики буквально помешаны на поиске лучших и наиболее полезных значениях каждого используемого ими слова. Они нуждаются в логической точности потому, что работают в мире понятий, которые можно однозначно подтвердить или опровергнуть. И если какое-либо понятие имеет «смысловую завершенность», то оно обязательно должно быть определено.

Позвольте начать с математического примера, имеющего некоторое отношение к реальному миру. Поговорим о «случайном». Концепция случайности мозолила глаза математикам на протяжении почти всей новейшей истории науки, поскольку дать точное определение тому, какое событие может называться случайным, довольно сложно. Ученые-статистики решают эту головоломку, считая случайными не вещи, а процессы и, соответственно, полагая, что вычислить вероятность события можно, опираясь на результаты процессов. Так можно вкратце охарактеризовать понятие, которое, несмотря на свою простоту, лежит в основе едва ли не всей статистики.

Тем не менее это не единственное определение случайности. Возьмем, например, ситуацию с подбрасывание монетки. Последовательность ОРООРОООРРРОРООРООРО покажется нам вполне случайной, тогда как двадцать одинаковых «орлов» подряд мы ни за что не захотим признать случайным стечением обстоятельств. Математики посмотрели на эту ситуацию и решили, что статистического определения случайности недостаточно и изобрели второе определение под названием «сложность по Колмогорову». Грубо говоря, событие называется «случайным по Колмогорову», если самая короткая воспроизводящая его компьютерная программа по сути состоит из этого события. Сразу замечу, что определение «компьютера» здесь используется чисто математическое, т. е. речь идет не о современных компьютерах, а о том понятии, с которым оперировал еще Алан Тьюринг. Говоря более простым языком, можно представить, что случайное по Колмогорову событие требует, чтобы вы описали его целиком в исходном коде воспроизводящей его компьютерной программы.

Из колмогоровской сложности выросла отдельная замечательная область математики и вычислительной теории, но на этом наша история не заканчивается. Изучая и развивая это направление, математики вскоре обнаружили, что для многих событий колмогоровская сложность расчету не поддается и поэтому использовать ее для решения практических задач бывает очень трудно. Требовалось определение, способное описать числа, которые выглядели бы случайно и были достаточно случайны для практического применения, даже несмотря на свою фактическую неслучайность в колмогоровском смысле. Результатом этих поисков было применяемое сегодня определение криптографически безопасной случайности.

Упрощенное определение случайности с точки зрения криптографии предполагает, что ни одна эффективная компьютерная программа, ставящая своей целью определить различие между псевдослучайными и истинно случайными событиями (в статистическом понимании), не будет иметь в этом деле значительного преимущества по сравнению с попыткой угадать результат с вероятностью 50 на 50. Такой подход гарантирует, что ваша последовательность чисел будет достаточно случайной, чтобы ваши враги оказались неспособны определить, какие числа вы будете использовать, потому что их попытки сделать точные вычисления будут сопоставимы по времени со сроком их жизни. Это и есть основа современной криптографии, взяв на вооружение которую, инженеры спроектировали системы, поддерживающие безопасность и конфиденциальность наших интернет-коммуникаций сегодня.

Итак, математики потратили немало времени, размышляя над определениями, что в конечном счете повлияло на то, как мы используем математику в реальном мире. Тем не менее я не считаю это аргументом в пользу необходимости обучать математике всех.

Как же размышление над определениями может помочь людям в реальном мире? Давайте рассмотрим конкретные примеры. Первым будет случай Кейта Девлина, математика и консультанта, помогавшего оборонным ведомствам США улучшить анализ данных после событий 11 сентября. Описание своей первой презентации он начинает с того, что оказался в помещении с большой группой представителей военных подрядчиков и начал свою беседу с попытки разобраться с определением слова «контекст». Далее я привожу вам основные выдержки из его рассказа.

Я готовил свой PowerPoint-проект… и был уверен, что присутствующие остановят меня на половине презентации, попросят перестать тратить их время и посадят на ближайший самолет до Сан-Франциско.

Дальше одного слайда дело не зашло. Но не потому, что меня выпроводили из кабинета. Просто оставшаяся часть сессии была проведена в обсуждении содержимого того самого слайда… Как мне сказали уже потом: «Всего лишь один этот слайд оправдал твое участие в проекте».

Так что же такого я сказал? На мой взгляд, ничего особенного. Моей задачей было найти способ проанализировать то, как контекст влияет на анализ данных и принятие решений в крайне сложных сферах деятельности, существующих на стыке военных ведомств, политики и социальных факторов. Я сделал ну очень очевидный (для меня) первый шаг. Мне нужно было записать настолько точное математическое определение понятия «контекст», насколько это возможно. На это у меня ушло несколько дней… Не могу сказать, что я был абсолютно доволен результатом… Тем не менее это было лучшим, что я мог сделать, и этот процесс, по крайней мере, дал мне твердое основание для того, чтобы начать развивать некоторые элементарные математические идеи.

Довольно большая группа умных людей, настоящих академиков, военных подрядчиков и старшего персонала Министерства обороны провела весь оставшийся час выделенного мне времени, обсуждая всего лишь одно это определение. Дискуссия выявила, что разные эксперты имели разное понимание того, что такое контекст, а это верный путь к катастрофе. Я же с самого начала задал им вопрос: «Что такое контекст?» Каждый из присутствующих в комнате, не считая меня, имел хорошее рабочее определение этого понятия, однако все определения отличались друг от друга. И никто из участников ранее не предлагал записать единое формальное определение. Они просто не привыкли делать это в рамках своей работы. Как только это было сделано, у них появилась общая отправная точка, позволявшая сравнивать и противопоставлять ей прежде всего собственные идеи. Благодаря этому нам удалось избежать катастрофы.

Как математик, Девлин не сделал ничего необычного. Фактически самый обычный вопрос, который возникает у математика, столкнувшегося с новым предметом обсуждения, звучит как: «Что именно вы имеете в виду под этим словом?»

Каждому из нас приходится иметь дело с новыми определениями, неважно идет ли речь о новом определении брака или половой принадлежности, или о юридических определениях «намерения», «разумности», «неприкосновенности частной жизни». Искушенный математик без промедления заметит, что правительство не может предоставить ни одного полезного определения такого понятия, как «религия». Способность мыслить критически, опираясь на определения — основа любого цивилизованного диалога.

Привычка задумываться об определениях вырабатывается у студентов-математиков еще на раннем этапе своего обучения в ВУЗе и укрепляется в магистратуре и последующих этапах их научной деятельности. Обычно математик сталкивается с новыми определениями ежедневно и происходит это в самых разных контекстах. Ну а само умение уверенно разбираться с понятиями и терминами окажется полезным для каждого, кто его освоит.

Обдумывание примеров и контрпримеров

Ну, а сейчас предлагаю немного попрактиковать работу с определениями в неформальной обстановке. Под «контрпримером» я понимаю такой пример, который показывает, что что-то перестает работать или неверно. К примеру, число 5 представляет собой контрпример утверждения о том, что 10 — простое число, потому что 10 делится на 5 без остатка.

Математики проводят много времени, придумывая примеры и контрпримеры для самых разных утверждений. Этот пункт очень тесно связан с предыдущим об определениях поскольку:

А заключается он в следующем. Работая над задачей, вы изучаете некий математический объект и записываете ту информацию о нем, которую хотите доказать. То есть, вы делаете обоснованную (или необоснованную) догадку о некоторой закономерности, которая характеризует изучаемый объектом. За этим следует доказательство, когда вы пытаетесь подтвердить или опровергнуть утверждение.

В качестве плохой аналогии можно привести догадку о том, что Земля находится в центре вселенной. Вы подкрепляете эту догадку характеристиками объекта, которые удовлетворяют этому утверждению. В нашей Солнечной системе вы могли бы сделать игрушечную модель, показывающую пример того, как, на ваш взгляд, могла бы выглядеть модель вселенной с Землей в ее центре, если бы вселенная могла быть такой же простой, как игрушка. Или же вы, напротив, могли бы выполнить некоторые измерения, включающие в себя учет характеристик Солнца и Луны и получить доказательство того, что это утверждение ложно, и на самом деле Земля вращается вокруг Солнца. Так вот в мире математики это «доказательство» — контрпример и называть его таковым можно, только если его истинность подлежит однозначному подтверждению. «Доказательство» в математике часто выступает всего лишь в роли временного заполнителя, до тех пор, пока истина не будет выявлена. Несмотря на все это, впрочем, существуют некоторые широко известные задачи, над решением которых математики бьются уже сотни лет, так до сих пор и не предоставив для них ничего, кроме «доказательств».

Аналогия эта описывает то, что происходит в математике даже на самом микроскопическом уровне. Когда вы с головой погружаетесь в проект, вы делаете новые небольшие предположения каждые несколько минут, как правило, в итоге опровергая их, поскольку позже вы понимаете, что они были не чем иным, как совершенно необоснованными догадками. Это — очень интенсивный, «прокачанный» научный процесс, состоящий из анализа сотен ложных гипотез, приводящих в итоге к приятному результату. Контрпримеры, которые вы находите по пути, выступают в роли дорожных указателей. Впоследствии они помогают вашей интуиции, и стоит им только прочно укорениться у вас в голове, как процесс принятия или отрицания более сложных догадок становится относительно простым.

И вот мы снова подходим к тому, что способность придумывать интересные и полезные примеры и контрпримеры — один из столпов продуктивного рассуждения. Если вы когда-либо читали протоколы слушания Верхновного суда, например, случая с обсуждением легальности ношения заключенными бороды по религиозным соображениям, вы увидите, что большинство аргументов — проверочные примеры и контрпримеры, позволяющие проверить ранее установленные юридические определения «разумности», «религии» и «намерения» на прочность. Этот подход также нашел бесчисленное количество применений в физике, инженерном деле и вычислительной теории.

Есть и другой, гораздо менее очевидный, но не менее важный момент. В силу того, что на протяжении всей своей карьеры математикам приходится регулярно высказывать столь большое количество неверных, глупых и ложных догадок, они становятся иммунны к слепому принятию утверждений, основанных на силе чьего-либо голоса или культурных предубеждениях. Если мы признаем, что в условиях современного коллективного общества люди стали слишком склонны верить голосам других (политиков, «экспертов» СМИ, финансовых ораторов), тогда изучение математики — прекрасный способ культивировать в людях здравое чувство скептицизма. Этот навык будет одинаково полезен как для инженеров, так и для водопроводчиков, медсестер или сборщиков мусора.

Умение часто ошибаться и признавать ошибки

Два математика, Изабель и Гриффин, обсуждают математическое утверждение у доски. Изабель думает, что утверждение истинно и горячо отстаивает свою точку зрения в споре с Гриффином, который верит в обратное. Спустя 10 минут они меняют свои точки зрения на прямо противоположные и теперь уже Изабель считает это утверждение ложным, тогда как Гриффин верит, что они истинно.

Подобные ситуации я наблюдаю постоянно, но только в мире математики. Единственная причина, по которой такое может произойти заключается в том, что оба математика, независимо от того, кто из них на самом деле прав, готовы не только принять свою неправоту, но и охотно поменять сторону спора, как только почувствуют в своих аргументах хотя бы малейший изъян.

Иногда в группе из 4–5 человек, обсуждающих некое утверждение, я оказываюсь единственным несогласным с мнением большинства. Если предложенный мной аргумент будет достаточно хорош, каждый из присутствующих немедленно примет тот факт, что он был неправ, сделав это без каких-либо сожалений или негативных эмоций. Чаще, впрочем, я оказываюсь на стороне большинства и вынужден возвращаться назад в своих рассуждениях или пересматривать и совершенствовать свои взгляды.

Привычка поощрять сомнение, быть неправым, признавать это и начинать все сначала как можно чаще — все это отличает математическую дискуссию даже от хваленой научной дискуссии. Здесь вы не увидите никаких попыток добиться нужного показателя p-значения или скрытого лоббирования. Нет в математике места и для стремления прославиться, ведь почти все, что вы говорите, как правило, не покидает пределов небольшой группы участников дискуссии. Математик в деле полностью поглощен процессом поиска истины, а его профессиональные привычки позволяют ему отбросить личную славу или страх позора ради главной цели — проникновения в суть проблемы.

Оценка следствий утверждения

Скот Ааронсон написал в своем блоге пост про убийство Джона Кеннеди и посвященные этому теории заговора. В нем он рассматривает утверждение «убийство Джона Кеннеди было заговором, масштаб которого сопоставим с размером ЦРУ» и дает ему оценку, основанную на простых и понятных аргументах, очень похожих по своей сути на подход математиков и информатиков. Рассмотрим пример из его поста:

10. Почти все конспирологические теории о Джоне Фицджеральде Кеннеди, по всей видимости, ложны просто потому, что все они противоречат друг другу. Как только вы поймете это и начнете рассматривать их исходя из того, что хотя бы одна из них могла бы быть верна, на вас сразу же снизойдет озарение: вы поймете, что ничто не мешает вам просто отмести их все.

12. Если организаторы заговора были столь могущественны, то почему они ограничились одним только убийством президента, не добившись никаких более впечатляющих результатов? И почему заговорщики не начали еще раньше, с подтасовки выборов, дабы помешать Кеннеди стать президентом? В математике вы часто обнаруживаете недочеты в своем аргументе благодаря пониманию того, что он сам по себе дает вам гораздо больше, нежели вы изначально полагали. И тем не менее все аргументы в пользу конспирации, с которыми я ознакомился, по всей видимости, обладают одним и тем же недостатком. К примеру, что случилось с заговорщиками после успешного выполнения задуманного? Их организация просто расформировалась? Или они продолжили вынашивать планы других убийств и организовывать их? Если этого не произошло, то что им помешало? Разве работа тайных мировых кукловодов не является бессрочной деятельностью? И где вообще, если, конечно, это возможно, заканчивается власть этой организации?

На самом деле исследование пределов того или иного утверждения — хлеб насущный для любого математика. Это один из простейших доступных каждому инструментов высокого уровня, позволяющих оценить справедливость утверждения перед тем, как начать подробное рассмотрение аргументов. И этот метод можно использовать как лакмусовую бумажку для определения того, какие аргументы следует рассматривать подробнее.

Иногда доведение того или иного аргумента до пределов позволяет получить улучшенную и более элегантную теорему, включающую в себя начальное утверждение. Но гораздо чаще вы просто понимаете, что были неправы. Поэтому эта привычка — менее формальная вариация на тему частых ошибок и придумывания контрпримеров.

Способность рассматривать предположения, лежащие в основе утверждения, отдельно друг от друга

Есть у математики и одна, пожалуй, досадная черта: она полна двусмысленностей. Мы любим относиться к ней, как к некоему олицетворению непоколебимости. И я даже готов поспорить в пользу этой идеи. Как бы то ни было, процесс занятия математикой — изучения существующих идей или придумывания новых — имеет гораздо больше общего с коммуникацией между двумя людьми, нежели суровой и холодной как лед непоколебимостью.

Так, когда математик делает какое-либо утверждение, он, как правило, старается сформулировать базовую идею максимально просто, с целью донести ее до других людей. Обычно это означает, что смысл используемых в формулировке выражений может оказаться неясным для других людей, особенно если разговор происходит между двумя математиками, знакомыми с общим контекстом разговора, а вы в этой ситуации — посторонний человек, пытающийся их понять.

Когда вы оказываетесь в подобной ситуации в математике, вы тратите много времени на то, чтобы вернуться к основам. Вы задаете вопросы вроде: «Что означают эти слова в данном контексте?» и «Какие очевидные попытки уже были предприняты и отклонены и почему?». Стараясь глубже проникнуть в суть вопроса, вы спросите: «Почему именно эти вопросы так важны?» и «Куда вообще ведет эта линия исследования?»

Это и есть методы, которые математик использует, чтобы собрать сведения о предмете обсуждения. Единый лейтмотив такого подхода заключается в изоляции каждой йоты смущающей вас информации, каждого предположения, лежащего в основе того или иного убеждения или утверждения. Этот подход решительно отличается от любых других видов дискуссий, наблюдаемых сегодня в мире.

Пытался ли, например, кто-нибудь основательно понять мировоззрение Дональда Трампа в ходе его подготовки к весьма спорным президентским выборам этого года? Большинство либералов слышат только: «Я построю стену и заставлю Мексику платить за это», смеясь над Трампом и объявляя его сумасшедшим. Применяя математический подход к этому утверждению, для начала необходимо понять, где оно берет свое начало. К какой целевой аудитории Трамп апеллирует? Какие альтернативные способы решения иммиграционной проблемы он рассмотрел и исключил и почему? Почему иммиграция — столь важная для его сторонников тема, и какие предположения в его логике приводят к подобным решениям? Что такого особенного понимает и знает Трамп, что делает его предвыборные предложения столь популярными?

Нет, я не пытаюсь занять ту или иную политическую позицию. Я всего лишь хочу обратить ваше внимание на то, что если математик окажется в крайне неоднозначной ситуации, раздельный анализ предположений, лежащих в основе того или иного утверждения, будет частью общей схемы его действий. Феномен «либеральные СМИ недооценивают Трампа» обязан своим существованием во многом именно нежеланию задать вопросы, подобные приведенным выше, и получить на них ответы. Вместо этого, противники Трампа всего лишь делают твиты с цитатами его заблуждающихся и оторванных от реальности сторонников. Однако, если верить результатам опросов, такой подход не приносит ощутимых результатов…

«Лестница абстракции»

Последняя в моем списке привычка — концепция «лестницы абстракции», которую я позаимствовал у Брета Виктора. Ее суть заключается в том, что во время рассуждения над решением проблемы вы можете абстрагироваться, посмотреть на нее и обдумать ее с высоты разных уровней, по аналогии с движением вверх и вниз по лестнице, где более высокая ступенька означает более высокий уровень абстракции. Виктор приводит интерактивный пример разработки алгоритма вождения автомобиля. В нем вы можете рассмотреть его работу в мельчайших деталях, сопоставляя конкретную вариацию алгоритма и результаты наблюдения за его поведением.

На более высоком уровне (более высокой ступеньке) вы можете контролировать разные параметры алгоритма (и время) с помощью слайдера, превращая один вариант алгоритма в целое семейство производных алгоритмов, каждый из которых также может быть отлажен. Вы можете и далее обобщать то, какие параметры и варианты поведения могут поддаваться отладке, чтобы расширить пространство возможных вариантов алгоритмов. Так, в ходе работы вы ищете обобщенные схемы действия, которые могут помочь вам добиться конечной цели — разработки качественного алгоритма вождения автомобиля с точки зрения самого низкого уровня, с которого и началась ваша работа.

Математики регулярно применяют этот прием, особенно на более позднем этапе обучения в магистратуре, когда вам нужно научиться обрабатывать огромное количество исследований. Там у вас нет времени на глубокое изучение каждой части и каждого утверждения в той или иной работе, за исключением разве что самых важных из них. Вместо этого вы создаете «лестницу абстракции», нижняя ступень которой содержит отдельные определения, теоремы и примеры из работы, следующий уровень — ее обобщенное содержание, а более высокий уровень рассматривает то, как данная работа соотносится с другими исследованиями и вписывается в более широкий математический контекст. Еще выше идут системообразующие для этой области знаний тенденции, то, что считается для нее важным, модным и так далее.

Вы можете начать с самой нижней ступеньки лестницы, разобрав и поняв несколько примеров определений и получив тем самым надежный ориентир, после чего перепрыгнуть к основной теореме работы и понять, какие именно улучшения она предлагает по сравнению с предыдущей работой в этой области. В ходе чтения вы можете натолкнуться на какую-нибудь технику из незнакомой вам области, придуманную в 50-х. Просто воспользуйтесь ей как готовым решением, сосредоточившись на более полезном для вас доказательстве основной теоремы, и спустившись, таким образом, на одну ступень ниже. После этого вы можете перейти к главам, посвященным нерешенным задачам, чтобы посмотреть, что еще осталось сделать в этой области, и если они покажутся вам достаточно заманчивыми, вы можете подготовить себя к работе над ними путем внимательного прочтения остальной части работы.

На самом деле математикам приходится упражнять свои «абстрагирующие мышцы» всякий раз, когда они рассказывают о собственной работе. Публика на лекциях бывает разная, и каждый слушатель может оценить содержание математической идеи на разном уровне детализации. Некоторые теоремы лучше всего поддаются объяснению на примере соревновательных игр и их контекста, задачи по оптимизации — на других примерах, а в некоторых случаях бывает уместно даже приводить аналогии из металлургии.

Пожалуй, можно сказать, что объединение информации со всех ступенек лестницы в единую гармоничную модель, которую вы сможете рассматривать самостоятельно и в нужном вам масштабе — одна из распространенных и непростых задач в мире математики. Виктор старается упростить это упражнение для ума путем разработки функционального пользовательского интерфейса. Другие же математики практикуют его с помощью самых разных техник, которые попадают к ним в руки. Так или иначе, каким бы ни был подход, конечный результат всегда представляет большую ценность.

Заключение

Ни в коем случае я не намекаю на то, что развитие продвинутых математических привычек — занятие совершенно однозначно полезное. В реальном мире многие из этих привычек представляют собой палку о двух концах. Каждый, кто получил вузовское математическое образование, знает человека (или сам был им), который постоянно делает замечания о том, что выражение А не всегда оказывается истинно в особом случае Б, который никто с самого начала рассматривать не собирался. Чтобы понять, когда подобный подход продуктивен, а когда просто бесит окружающих, требуется немало социальной зрелости, которая, в свою очередь, достигается за рамками чисто математических бесед.

Более того, чтобы свыкнуться с необходимостью «всегда быть неправым», часто требуется несколько первых лет полноценной работы. Из-за этого многие студенты, не имеющие поддержки товарищей на том же этапе обучения или хорошего примера для подражания бросают занятия. Карьера математика действительно представляет собой эмоциональные американские горки.

Продолжайте следить за обновлениями блога банковского блокчейн-сервиса Wirex и будьте среди первых, прочитавших наиболее обсуждаемые материалы из зарубежных источников, переведенные специально для пользователей Geektimes.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *