иннервация тела сегментами спинного мозга
Иннервация тела сегментами спинного мозга
Каждый спинномозговой нерв дает начало своей возвратной ветви, которая обеспечивает твердую мозговую оболочку, заднюю продольную связку позвоночника и межпозвонковый диск механорецепторами и рецепторами боли. Каждый синовиальный фасеточный (межпозвонковый) сустав (сустав между суставными отростками позвонков) иннервируют три близлежащих спинномозговых нерва. Боль, вызванная прямым повреждением или заболеванием перечисленных выше структур, проецируется на участок кожи, иннервируемый соответствующими задними ветвями.
Иннервация кожи задними ветвями спинномозговых нервов.
а) Зоны сегментарной чувствительной иннервации: дерматомы. Дерматом — это участок кожи, иннервируемый нервными волокнами одного заднего нервного корешка. Дерматомы «правильной формы» существуют только у эмбриона, позднее их очертания искажаются из-за роста конечностей. Спинномозговые нервы сегментов С5-Т1 спинного мозга идут в верхнюю конечность, поэтому дерматом С4 в области угла грудины примыкает к дерматому Т2.
Спинномозговые нервы сегментов L2-S2 спинного мозга идут в нижнюю конечность, поэтому дерматом L2 в области над ягодицами примыкает к дерматому S3. Схемы, подобные представленной на рисунке ниже, не отражают смешанную иннервацию кожи в области, иннервируемой несколькими следующими друг за другом задними нервными корешками.
Так, например, кожа на туловище над межреберными промежутками получает дополнительную импульсацию от спинномозговых нервов, находящихся сразу над и под основным иннервирующим нервом.
б) Зоны сегментарной двигательной иннервации. Каждая мышца верхней или нижней конечности получает иннервацию более чем от одного спинномозгового нерва, что обусловлено взаимным обменом импульсации в плечевом и пояснично-крестцовом сплетениях. Изменение сегментарной иннервации конечностей в зависимости от движений человека представлено на рисунке ниже.
Направляющиеся от центра к периферии чувствительные сегментарные нервы взаимодействуют с идущими от периферии к центру двигательными сегментарными нервами при осуществлении сгибательного или избегающего рефлекса. (Распространенный термин «сгибательный рефлекс» довольно условен, так как, например, стимуляция латеральной поверхности конечности может вызвать ее приведение, а не сгибание.)
Сегментарный контроль движений конечностей человека.
в) Сгибательный рефлекс нижней конечности. На рисунке ниже показан сгибательный рефлекс нижней конечности при перекрестной тяге разгибателей.
(А) Начало опорной фазы движения с правой ноги.
(Б) Контакт ноги с острым предметом вызывает сгибательный рефлекс нижней конечности, одновременно с которым происходит перекрестный ответ мышц-разгибателей, необходимый для поддержки всей массы тела.
1. Импульсы идут от подошвенных ноцицепторов по афферентным большеберцово-седалищным путям к телам ганглиев задних корешков, находящимся в межпозвонковых отверстиях на уровне L5-S1. Импульсация поднимается по конскому хвосту (б) и попадает в сегмент L5 спинного мозга. Часть импульсов распространяется вверх и вниз по тракту Лиссауэра (в) для активации сегментов L2-L4 и S1 спинного мозга.
2. Во всех пяти сегментах первичные ноцицептивные афференты возбуждают вставочные нейроны дуги сгибательного рефлекса, находящиеся в основании задних рогов (2а). Между ноцицептивными афферентами и конечными мотонейронами может существовать цепочка из нескольких последовательных вставочных нейронов. При этом аксоны медиально расположенных вставочных нейронов пересекают спинной мозг в его комиссуре, тем самым делая возможным переход возбуждения на контралатеральные вставочные нейроны (2б).
3. На стороне возбуждения α- и γ-мотонейроны сегментов L3-S1 спинного мозга осуществляют сокращение подвздошно-поясничной мышцы (а), мышц задней поверхности бедра (б), а также мышц, отвечающих за тыльное сгибание голеностопного сустава (г). При этом происходит активация ипсилательных ингибиторных вставочных нейронов 1а (не показаны на рисунке), отвечающих за ингибирование импульсации по мотонейронам антигравитационных мышц.
4. На контралатеральной стороне α- и γ-мотонейроны сегментов L2-L5 спинного мозга осуществляют сокращение большой ягодичной мышцы (не указана здесь) и четырехглавой мышцы бедра (в).
Обратите внимание: на рисунке не указаны переключающие нейроны спиноталамического тракта. Данные нейроны получают возбуждение в тракте Лиссауэра от ноцицептивных афферентных волокон, перенаправляя поток импульсации к участкам мозга, способным определить локализацию и природу первоначальных импульсов.
Сгибательный рефлекс. МН—мотонейрон.
в) Синдромы сдавления нервных корешков. Самые частые места возникновения сдавления нервных корешков внутри позвоночного канала — области наибольшей подвижности спинного мозга, т.е. нижний шейный и нижний поясничный уровни. Сдавление нервного корешка может проявляться пятью следующими симптомами.
1. Боль в мышцах, иннервируемых соответствующими спинномозговыми нервами.
2. Парестезии (онемение или покалывание) в области соответствующего дерматома.
3. Потеря кожной чувствительности, особенно при совпадении двух видов иннервации при поражении двух соседних дерматомов.
4. Двигательная слабость.
5. Потеря сухожильных рефлексов при поражении иннервации на соответствующем уровне.
Обратите внимание: синдромы компрессии (защемления) периферических нервов описаны в отдельной статье на сайте.
г) Компрессия нервных корешков:
1. Компрессия шейных нервных корешков. У 50 % пациентов в возрасте 50 лет и у 70 % пациентов в возрасте 70 лет межпозвонковые диски и синовиальные суставы шеи становятся мишенью для такого дегенеративного заболевания, как шейный спондилез Несмотря на то, что заболевание может поражать любые шейные межпозвонковые суставы, чаще всего дегенеративные патологические процессы развиваются на уровне шейного позвонка С6—центра вращения при сгибательных и разгибательных движениях шеи.
Располагающийся над позвонком С6 спинномозговой нерв и находящийся под позвонком С7 спинномозговой нерв могут сдавливаться в области межпозвонкового сустава при экструзии межпозвонкового диска или образовании костных выростов (остеофитов). При ситуациях, представленных на рисунках ниже, а также в таблице ниже возможно возникновение чувствительных и двигательных нарушений, а также нарушений рефлексов.
2. Компрессия пояснично-крестцовых нервных корешков. Стеноз позвоночного канала поясничного отдела позвоночника — термин, означающий сужение позвоночного канала поясничного отдела позвоночника из-за внедрения в него остеофитов или межпозвонкового диска (при его пролапсе). Место локализации 95 % пролапсов межпозвоночного диска — уровень сразу над или под последним поясничным позвонком. Типичное направление грыжеобразования—заднелатеральное, при котором происходит компрессия нервных корешков, идущих к следующему межпозвонковому отверстию.
При этом возникают такие симптомы, как боль в спине, обусловленная разрывом фиброзного кольца, и боль в ягодицах/бедре/ноге, обусловленная сдавлением задних нервных корешков (идущих к седалищному нерву). Боль усиливается при растяжении поврежденного корешка, например, если врач поднимает выпрямленную ногу пациента.
Пролапс межпозвонкового диска на уровне L4-L5 вызывает боль или парестезии в области дерматома L5. Двигательную слабость можно диагностировать при тыльном сгибании большого пальца ноги (а позднее—всех пальцев и лодыжки) и при эверсии стопы. Кроме того, двигательную слабость можно диагностировать при отведении бедра (тест проводят в положении пациента на боку).
При пролапсе межпозвонкового диска на уровне L5-S1 (наиболее частый вариант) симптомы субъективно ощущают в области задней поверхности ноги и подошвенной поверхности стопы (дерматом S1). Также можно выявить двигательную слабость при подошвенном сгибании стопы, снижение или отсутствие ахиллова рефлекса.
Спондилез шейного позвонка С7 справа.
Компрессия ствола спинномозгового нерва С7 остеофитами. Сдавление нервов (стрелки) при заднелатеральном пролапсе двух нижних межпозвонковых дисков.
МРТ, сагиттальная проекция.
Определяется пролапс диска L5/S1 с компрессией cauda equina (стрелка).
д) Резюме. В эмбриогенезе нейроэпителиальные клетки спинного мозга митотически делятся в вентрикулярной зоне нервной трубки. После этого дочерние клетки переходят в промежуточную зону и дифференцируются до нейробластов или глиобластов. Аксоны развивающихся задних рогов спинного мозга образуются из спинальных ганглионарных клеток нервного гребня. Передние рога спинного мозга образуют аксоны, которые позднее формируют передние нервные корешки. Внешняя зона нервной трубки (маргинальная) содержит аксоны развивающихся нервных путей.
Каудальный конец спинного мозга развивается отдельно, из клеток каудальной зоны, связанной нервной трубкой. После 12-й недели развития начинается быстрый рост позвоночника, за счет которого нижний край спинного мозга перемещается выше в позвоночном канале; при рождении он соответствует уровню L2-L3, а еще через восемь недель—находится на уровне поясничных позвонков L1-L2. Результатом данного смещения становится прогрессирующее несоответствие между уровнем сегмента, от которого отходит нервный корешок, и уровнем межпозвонкового отверстия, через которое он выходит из позвоночного канала. Рефлекторные дуги представляют собой дорсальные нервные волокна мезенхимы позвонков; в норме расщепленное строение нервной трубки исчезает за счет объединения этих нервных волокон в спинномозговые нервы.
Спинной мозг и нервные корешки взрослого человека, находящиеся в субарахноидальном пространстве, покрыты мягкой мозговой оболочкой и прикреплены к твердой мозговой оболочке зубчатыми связками. В экстрадуральном пространстве расположены вены, по которым происходит отток крови от красного костного мозга позвонков. Данные вены не обладают клапанами, что делает возможным перемещение по ним раковых клеток. На уровне окончания спинного мозга расположен конский хвост, образованный парами спинномозговых нервов сегментов L3-S5.
По мере выхода через межпозвонковое отверстие (в котором расположен ганглий заднего корешка) спинномозговой нерв дает начало своей возвратной ветви, отвечающей за иннервацию связок и твердой мозговой оболочки.
Сегментарная чувствительная иннервация в норме проявляется дерматомным характером иннервации кожи задними корешками (посредством смешанных периферических нервов). Сегментарная двигательная иннервация проявляется в форме двигательной активности, осуществляемой специфическими группами мышц. Сдавление нервного корешка (например, при пролапсе межпозвонкового диска) может проявляться на сегментарном уровне мышечной болью, парестезиями в области определенных дерматомов, потерей кожной чувствительности, двигательной слабостью, потерей сухожильных рефлексов.
Поясничная (спинномозговая) пункция — процедура, при которой осуществляют аккуратное введение иглы в промежуток между остистыми отростками позвонков L3-L4 или L4-L5. Проведение данной процедуры противопоказано при подозрении на повышение внутричерепного давления. Спинальную анестезию осуществляют путем введения местного анестетика в поясничную цистерну; при эпидуральной анестезии анестетик вводят в поясничное эпидуральное пространство; при каудальной анестезии анестетик вводят через крестцовую щель.
Видео урок анатомии спинномозговых нервов и шейного нервного сплетения
— Вернуться в оглавление раздела «Неврология.»
Редактор: Искандер Милевски. Дата публикации: 14.11.2018
Спинной мозг и периферические нервы человека
Одним из важнейших органов центральной нервной системы является спинной мозг. Эта часть центральной нервной системы связана с органами и кожей. Спинной мозг выполняет две основные функции:
Выполнение первой обеспечивается проводящими путями, а второй – центральными отделами мозга. Для внутреннего строения спинного мозга характерно наличие центрального канала – это полость, расположенная по всей длине спинномозгового тяжа. Спинной мозг условно разделяется на сегменты, каждому из которых соответствует одна пара нервов. Как и головной мозг, спинной образован белым и серым веществом.
Но если в головном мозге серое вещество находится снаружи, то спинному мозгу свойственно внутреннее его расположение. Серое вещество – это скопление миллионов нейронов. В поперечном сечении серое вещество по очертаниям напоминает бабочку и имеет несколько отделов, называемых рогами. Продольно серое вещество расположено в виде столбов и также разделяется на задний, передний и боковой столбы. Вокруг серого вещества располагаются нервные волокна – отростки нейронов, или белое вещество мозга.
Периферические нервы находятся за пределами центральной нервной системы. Эти нервы являются сообщением между головным, спинным мозгом и органами человеческого тела. Три составляющие периферической нервной системы:
Периферические нервы участвуют в обеспечении согласованной работы нервной системы, выступая транспортировщиками сигналов и импульсов. Если в головном мозге появилась команда согнуть руку в локте, то именно благодаря периферическим нервам этот сигнал поступает к мышцам, активизируя выполнение движения. Перемещение импульсов от органов в головной и спинной мозг происходит по сенсорным нейронам. Передача же импульсов из нервных центров к мышцам и органам осуществляется при прямом участии двигательных нейронов.
Задачи периферических нервов многообразны – это и координация и контроль движений, и проведение импульсов, получаемых из внешней среды, и обеспечение своевременного реагирования организма на опасность, и активизация работы внутренних органов (начиная от пищеварения и заканчивая сердцебиением и дыханием), и ряд других функций.
13. Строение и функции спинного мозга. Зоны сегментарной иннервации.
СПИННОЙ МОЗГ сверху на уровне затылочной кости переходит в продолговатый мозг, а внизу оканчивается на уровне второго поясничного позвонка. Длина спинного мозга 40-45 см, толщина 1 см. Спинной мозг расположен в спинномозговом канале.Снаружи спинной мозг покрыт тремя оболочками (твердой,паутинной и мягкой)и свободно плавает в спинномозговой жидкости. Это предохраняет его от механического повреждения. Спинной мозг имеет шейное и поясничное утолщения. В шейном утолщении расположены клетки, контролирующие движения верхних конечностей, в поясничном – нижних. У человека лучше развито шейное утолщение. Это связано со сложной и разнообразной деятельностью руки как органа труда. Узародыша длина спинного мозга и спинномозгового канала одинаковы, но в дальшейшем спинной мозг растет медленнее туловища. Поэтому у новорожденного нижняя граница спинного мозга расположена на уровне третьего поясничного позвонка, а у взрослого – на уровне второго. В верхних отделах корешки отходят от спинного мозга горизонтально, в средних отделах – косо вниз, а в нижних – отвесно вниз, образуя так называемый «конский хвост».
Спинной мозг состоит из 31 сегмента. Сегмент – это участок спинного мозга, который дает начало одной паре спинномозговых нервов. Спинной мозг разделяется на пять частей: шейную (C-cervicalis, 8 сегментов), грудную (Th-thoracica, 12 сегментов), поясничную (L-lumbalis, 5 сегментов), крестцовую (S-sacralis, 5 сегментов) и копчиковую (Co-coccygis, 1 сегмент). Каждый сегмент контролирует определенный участок кожи (дерматом) и группу мышц (миотом).
В центре спинного мозга расположен центральный канал, заполненный спинномозговой жидкостью. Вдоль средней линии спинного мозга проходят передняя щель и задняя срединная борозда. Они делят спинной мозг на две симметричные половины – правую и левую. Передние корешки состоят из аксонов двигательных нейронов, лежащих в передних рогах спинного мозга. Задние корешки содержат аксоны чувствительных нейронов. Тела этих нейронов расположены за пределами спинного мозга – в спинномозговых узлах.После выхода из спинного мозга передний и задний корешки сливаются, образуя спинномозговой нерв. Серое вещество спинного мозга на поперечном срезе имеет вид бабочки или буквы «Н». В сером веществе выделяют передние и задние рога. Передние рога широкие и короткие, задние – узкие и длинные. В передних рогах расположены двигательные нейроны, аксоны которых через передние корешки направляются к поперечно-полосатым мышцам и обеспечивают произвольные движения. Задние рога содержат чувствительные клетки, воспринимающие боль, прикосновение, тепло-холод. В грудном отделе спинного мозга развиты боковые рога. В них расположены клетки вегетативной нервной системы. Их отростки выходят из спинного мозга через передние корешки. Белое вещество расположено снаружи и имеет форму канатиков. Между передней щелью и передними корешками расположены передние канатики,между переднимии задними корешками – боковые канатики, а между задними корешкамии задней срединнойбороздой – задние канатики.Канатики содержат проводящие пути от периферии к головному мозгу и обратно. Передние канатики состоят из проводников нисходящего направления (от головного мозга к периферии), задние канатики – из восходящих путей, боковые канатики содержат и нисходящие и восходящие проводники.
Функции спинного мозга:
Проводниковая функция заключается в проведении импульсов от периферии(кожа,слизистые,мышцы) к головномумозгу и обратно по восхо- дящим и нисходящим путям.
Рефлекторная функция спинного мозга обеспечивается простейшей сегментарной рефлекторной дугой.
Выделяют следующие зоны сегментарной иннервации:
—шейные сегменты иннервируют кожу головы, шеи, надплечий, наружной поверхности рук
Анатомо-физиологические предпосылки преимущественного грыжеобразования поясничных дисков и особенности биомеханики поясничного отдела позвоночника в норме и при патологии
Патология поясничного отдела позвоночника занимает одно из ведущих мест среди патологии периферической нервной системы. Для понимания причин наиболее частого поражения поясничных дисков следует учитывать анатомо-функциональные особенности поясничного отдела позвоночника, которые играют значительную роль в патогенезе остеохондроза. Актуальность изучения биомеханики поясничного отдела позвоночника обусловлена также недостаточностью возможностей современных нейровизуализационных методов исследования для уточнения биомеханических изменений в позвоночнике. В связи с этим клинические тесты кинетических дисфункций поясничного отдела остаются наиболее востребованными и определяющими дальнейшую лечебную тактику.
В связи со значительной осевой нагрузкой, испытываемой поясничным отделом позвоночника, поясничные позвонки (L1—L5) имеют массивное тело. Тело поясничного позвонка бобовидное, поперечный размер его больше переднезаднего. Высота и ширина постепенно увеличиваются от первого до пятого позвонка. Тела трех нижних позвонков спереди выше, чем сзади, вследствие развития физиологического поясничного изгиба кпереди (лордоза), который начинает формироваться с момента начала прямохождения ребенка.
Тела позвонков, соединенные между собой межпозвоночными дисками образуют позвоночный столб – передний опорный комплекс позвоночника. Дужки позвонков, остистые отростки, межпозвонковые суставы и связки образуют задний опорный комплекс позвоночника. Позвоночный канал, большой, треугольной формы, с закругленными углами, образован задней поверхностью тел позвонков, дужками позвонков и межпозвонковыми суставами, соединенными связочным аппаратом.
Содержимым позвоночного канала является спинной мозг и его корешки, покрытые оболочками, кровеносные и лимфатические сосуды, жировая и соединительная ткань. Таким образом, позвоночный канал – это анатомо-функциональное образование позвоночника, образованное совокупностью стабильных (или фиксированных) и мобильных структур. К фиксированным структурам относятся тела, ножки и дужки позвонков. К мобильным структурам – суставные отростки и желтые связки. Позвоночный канал условно делят на 3 части: центральную (дуральный канал) и две латеральные (корешковые каналы).
Центральный позвоночный канал, расширяясь сверху вниз, имеет наибольшую площадь на нижнепоясничном уровне. В норме его сагиттальный диаметр составляет 15-25 мм, фронтальный – 26-30 мм, а площадь поперечного сечения – не менее 145-230 мм2. При сагиттальном диаметре от 10 до 12 мм могут возникать клинические проявления центрального стеноза позвоночного канала. По принятой в настоящее время классификации (Verbiest H., 1975), центральный позвоночный стеноз считается относительным при сагиттальном диаметре до 12 мм и абсолютным – при диаметре 10 мм и менее. Следует помнить, что параметры позвоночного канала на уровне фиксированной и подвижной его частей различны. Грыжа диска, задние остеофиты тел позвонков, а также утолщение желтой связки в совокупности с гипертрофией межпозвонковых суставов могут явиться причиной стенозирования позвоночного канала на поясничном уровне (Кузнецов В.Ф., 1992; Алтунбаев Р.А., 1993; Аносов Н.А., Топтыгин С.В., 2000).
Рис. 1. Строение типичного поясничного позвонка.
Корешковый канал снаружи ограничен ножкой вышележащего позвонка, спереди телом позвонка и межпозвонковым диском, сзади – вентральными отделами межпозвонкового сустава. Корешковый канал представляет собой полуцилиндрический желоб длиной около 2,5 см, имеющий ход от центрального канала сверху косо вниз и кпереди. Нормальный сагиттальный размер канала – не менее 3 мм. C.K. Lee с соавт. (1988) предложили разделять корешковый канал на зоны: “входа” корешка в латеральный канал, “среднюю часть” и “зону выхода” корешка из межпозвонкового отверстия.
Рис. 2. Позвоночный канал и его содержимое
“Зона входа” в межпозвонковое отверстие является латеральным карманом. Причинами компрессии корешка здесь являются гипертрофия верхнего суставного отростка нижележащего позвонка, врожденные особенности развития фасеточного, остеофиты края позвонка.
“Средняя зона” спереди ограничена задней поверхностью тела позвонка, сзади – межсуставной частью дужки позвонка, медиальные отделы этой зоны открыты в сторону центрального канала. Причинами стенозов на этом уровне являются остеофиты в месте прикрепления желтой связки, а также спондилолиз с гипертрофией суставной сумки фасеточного сустава.
В “зоне выхода” корешка спереди находится нижележащий межпозвонковый диск, сзади – наружные отделы фасеточного сустава. Основной причиной компрессии на этом уровне являются гипертрофические изменения и подвывихи в фасеточных суставах, остеофиты верхнего края межпозвонкового диска.
Рис. 3. Суставные отростки и образуемые ими суставы.
Соединения
Межпозвонковый диск
Межпозвонковый диск (рис. 4) обеспечивает: соединение тел позвонков, подвижность позвоночника и амортизацию нагрузок. Благодаря особенностям своего строения диски обеспечивают определенную динамику позвоночного столба, а также определяют его конфигурацию. Диаметр межпозвонковых дисков несколько больший, чем сами тела позвонков, и поэтому они незначительно выступают за их пределы, благодаря чему позвоночник приобретает вид бамбуковой палки.
Диски имеют разную высоту: в шейном отделе приблизительно 4 мм, а в поясничном — 10-12 мм. Длина всех межпозвонковых дисков составляет 1/4 длины всего позвоночного столба.
Диск состоит из двух гиалиновых пластинок, плотно примыкающих к замыкательным пластинам тел смежных позвонков, а также из пульпозного ядра и фиброзного кольца.
Пульпозное ядро занимает 50—60 % объема поперечника межпозвонкового диска и располагается несколько асимметрично — ближе к заднему отделу фиброзного кольца. Оно имеет консистенцию полузастывшего желе и вид белого, блестящего, просвечивающего тела. Ядро состоит из отдельных хрящевых и соединительнотканных клеток и межуточного вещества. В состав последнего входят: протеины и мукополисахариды, в том числе гиалуроновая кислота. Полисахариды обладают высокой способностью связывать воду, благодаря чему ядро становится эластичностью. Вода составляет от 65 до 90% тканей диска.
С возрастом ядро меняется, изменяется в нем также содержание воды и других компонентов. С 50-летнего возраста содержание мукополисахаридов снижается, но повышается содержание коллагена. Затем различий между ядром и фиброзным кольцом становится все меньше.
Пульпозное ядро составляет наиболее специализированный и важный в функциональном отношении элемент межпозвонкового диска. Под действием сильного сжатия оно теряет воду и незначительно уменьшает свою форму и объем (сжимается).
Пульпозное ядро выполняет три функции:
1) является точкой опоры для вышележащего позвонка; утрата этого качества является началом целой цепи патологических состояний позвоночника;
2) выполняет роль амортизатора при действии сил растяжения и сжатия и распределяет эти силы равномерно во все стороны (по всему фиброзному кольцу и на хрящевые пластинки тел позвонков);
3) является посредником в обмене жидкости между фиброзным кольцом и телами позвонков.
Содержание воды в межпозвонковом диске изменяется в зависимости от возраста и характера выполняемой работы. В норме сила всасывания воды уравновешивает силу сжатия ядра при нормальной его гидратации. По мере возрастания сил сжатия наступает момент, когда давление извне превышает силу всасывания и происходит вытеснение жидкости из межпозвонкового диска. В результате потери жидкости возрастает сила всасывания воды и восстанавливается равновесие. Уменьшение сил сжатия вызывает временное преобладание силы всасывания, в результате чего увеличивается содержание жидкости в ядре; повышение гидратации ядра ведет к уменьшению силы всасывания и возвращению состояния равновесия. Эта способность пульпозного ядра объясняется специфическими свойствами геля.
По мере старения организма ядро не может удерживать воду в условиях сжатия. В стареющем организме гель студенистого ядра способен выдерживать воздействие на позвоночник сил сжатия лишь средней интенсивности.
Передние участки межпозвонковых дисков и тел позвонков составляют заднюю стенку брюшной полости. Наиболее важными образованиями, непосредственно прилегающими к этой стенке, являются крупные кровеносные сосуды. Так, аорта, расположенная несколько справа, прилегает к трем верхним поясничным позвонкам, а ее бифуркация находится на уровне L4 позвонка. Левая общая бедренная артерия проходит в непосредственном соприкосновении с четвертым межпозвонковым диском. Нижняя полая вена берет начало на уровне верхней поверхности L5 и соприкасается с L4 позвонком. Боковые части межпозвонковых дисков поясничного отдела соприкасаются с поясничными мышцами, которые берут начало от передних поверхностей поперечных отростков и от боковых поверхностей тел поясничных позвонков.
Рис. 4. Межпозвонковый диск
Имеющиеся данные свидетельствуют о том, что до 30-летнего возраста межпозвонковые диски насыщены сетью кровеносных сосудов. Затем диск полностью деваскуляризируется и его питание в дальнейшем осуществляется исключительно за счет диффузии через хрящевые замыкательные пластинки. У взрослого человека межпозвонковый диск состоит из трех элементов: хрящевых пластинок, покрывающих его сверху и снизу, фиброзного кольца и студенистого ядра.
Гиалиновые пластинки покрывают центральную часть тел позвонков, спереди и с боков граничат с эпифизарным костным кольцом, а сзади достигают самого края тела позвонка. Отсюда берут начало волокна фиброзного кольца и студенистого ядра.
Фиброзное кольцо эмбриогенетически связано с сосудами надкостницы. Оно образуется из концентрически уложенных пластинок, волокна которых идут наискось от места прикрепления к хрящевым пластинкам и контурным кольцам соседних позвонков. В поясничном отделе фиброзное кольцо состоит из 10—12 пластинок, имеющих большую толщину с боков, а спереди и сзади — они более тонкие и волокнистые. Пластинки отделены друг от друга рыхлой фиброзной тканью.
Спереди и с боков фиброзное кольцо прочно фиксировано к телу позвонка, при этом передний отдел фиброзного кольца соединяется с передней продольной связкой. Сзади фиксация фиброзного кольца более слабая, особенно в нижнепоясничном отделе. Кроме того, не отмечается плотного сращивания его с задней продольной связкой.
Боковые участки фиброзного кольца по толщине в два раза превосходят передние и задние его отделы, где слои волокон более узкие и менее многочисленные, волокна в отдельных слоях идут более параллельно и в них содержится меньшее количество соединительной субстанции. Волокна слоев, залегающих более центрально, проникают в студенистое ядро и сплетаются с его межклеточной стромой, в связи с чем отчетливой границы между кольцом и ядром не определяется.
Развитие фиброзного кольца тесно связано с действующими на него силами растяжения и сжатия. С годами содержание воды в нем снижается до 70 %. Однако с 30-летнего возраста содержание воды остается неизменным.
Фиброзное кольцо окружает студенистое ядро и образует эластический ободок межпозвонкового диска. Более глубоко залегающие пластинки фиброзного кольца прикрепляются к хрящевым замыкательным пластинкам тел позвонков и контурному костному кольцу.
Фиброзное кольцо служит для объединения отдельных тел позвонков в цельное функциональное образование; фиброзные кольца обеспечивают небольшой объем движений между позвонками. Эта подвижность обеспечивается растяжимостью фиброзного кольца и ядер, а кроме того — специфическим косым и спиральным расположением его волокон. Фиброзное кольцо является важнейшим стабилизирующим элементом позвоночного столба, а также выполняет роль аварийного тормоза в случае попытки совершить движение непомерно большой амплитуды.
В задних отделах фиброзного кольца содержатся лишенные миелиновой оболочки нервные волокна, иннервирующие заднюю продольную связку.
Прочностные характеристики поясничного диска:
Важно помнить, что при комбинированном приложении силы эти характеристики снижаются. Например, сопротивление разрыву с одновременным форсированным сгибанием в ПДС составляет всего 250 ньютон. Еще меньшую нагрузку диск выдерживает при поворотах тела вокруг вертикальной оси – около 31 ньютона, т.е. разрыв диска может произойти при резкой ротации в ПДС более чем на 16 градусов. Форсированное сгибание или разгибание в ПДС более чем на 15 градусов может также стать причиной разрыва диска (Шустин В.А., Парфенов В.Е., Топтыгин С.В., Труфанов Г.Е., Щербук Ю.А., 2006).
Фасции
На уровне поясничного отдела позвоночника хорошо развита пояснично-грудная фасция, которая покрывает глубокие мышцы спины. Она представлена поверхностной и глубокой пластинками, которые формируют фасциальное влагалище для мышцы, выпрямляющей позвоночник.
У латерального края мышцы, выпрямляющей позвоночник, поверхностная и глубокая пластинки пояснично-грудной фасции соединяются в одну. Глубокая пластинка пояснично-грудной фасции отделяет мышцу, выпрямляющую позвоночник, от квадратной мышцы поясницы.
Связки
Собственные связки поясничных позвонков аналогичны связкам грудного отдела позвоночника и включают в себя:
Передняя продольная связка охватывает переднебоковые поверхности тел позвонков, рыхло соединяясь с диском и прочно — с телами позвонков у места соединения их с краевыми каемками. Эта связка наиболее мощная в поясничном и грудном отделах. Основная функция этой связки – ограничение избыточного разгибания позвоночника.
Задняя продольная связка (рис.) идет по задней поверхности тел позвонков и дисков в полости позвоночного канала. Она соединена с телами позвонков рыхлой клетчаткой, в которой заложено венозное сплетение, принимающее вены из тел позвонков. Массивная в центральной части, эта связка истончается кнаружи, т.е. по направлению к межпозвонковым отверстиям. Это обстоятельство объясняет тот факт, что среди всех задних выпячиваний дисков превалируют заднебоковые.
Межостистые связки (рис.) соединяют обращенные друг к другу поверхности остистых отростков. У верхушек отростков они сливаются с надостной связкой, у основания отростков подходят к желтой связке.
Надостная (или надостистая) связка (рис.) натянута в виде непрерывного тяжа, в шейном отделе она расширяется и утолщается по направлению кверху, переходя выйную связку, которая прикрепляется к затылочному бугру и наружному затылочному гребешку.
Межпоперечные связки парные, соединяют верхушки поперечных отростков. Кроме фиброзных волокон в указанных связках имеются эластичные желтые связки, которые вместе с дисками обеспечивают упругость позвоночного столба.
Желтые связки (рис. 5) соединяют дужки позвонков и суставные отростки. В силу своей эластичности эти связки сближают позвонки, противодействуют обратно направленной силе студенистого ядра, стремящегося увеличить расстояние между позвонками. Желтые связки, состоящие из вертикально расположенных эластических волокон, достигают предельной мощности на нижнепоясничном уровне, где их толщина достигает 4-5 мм. Эластические свойства желтых связок позволяют им растягиваться при наклоне туловища и сокращаться при выпрямлении, играя тем самым наиболее важную роль в биомеханике позвоночника (Шустин В.А., Парфенов В.Е., Топтыгин С.В., и др. 2006).
Рис. 5. Желтые связки
Рис. 6. Задняя продольная связка
Рис. 7. Связки поясничного отдела позвоночника (вид сбоку)
Мышцы
Поверхностный слой представлен широчайшей мышцей спины, m. latissimus dorsi. Она начинается от остистых отростков Th7-L5 позвонков, от поверхностного листка грудопоясничной фасции и от заднего отдела гребня подвздошной кости. Пучки этой мышцы направляются вверх и латерально, образуя заднюю стенку подмышечной ямки и, заканчиваются на гребне малого бугорка плечевой кости.
Средний слой представлен нижней задней зубчатой мышцей и квадратной мышцей поясницы. Нижняя задняя зубчатая мышца, m. serratus posterior inferior, начинается от поверхностного листка грудопоясничной фасции на уровне остистых Th11-12 позвонков. Пучки её направляются косо вверх и латерально и прикрепляются четырьмя зубцами к наружной поверхности четырёх нижних рёбер.
Квадратная мышца поясницы, m. quadratus lumborum, выполняет промежуток между двенадцатым ребром и гребнем подвздошной кости и залегает на задней стенке живота и отделяется от глубоких мышц спины глубоким листком грудопоясничной фасции. Мышца состоит из трёх пучков:
Глубокий слой представлен мышцей, выпрямляющей позвоночник, поперечно-остистыми, межостистыми и межпоперечными мышцами.
Мышца, выпрямляющая позвоночник, m. erector spinae. Она начинается от крестца, остистых отростков поясничных позвонков, гребней подвздошных костей и пояснично-подвздошной фасции. Отсюда мышца протягивается до затылка и делится на 3 части соответственно прикреплению:
подвздошно-рёберная мышца, m. iliocostalis, прикрепляется к ребрам (латеральный тракт);
длиннейшая мышца, m.longissimus, прикрепляется к поперечным отросткам поясничных и грудных позвонков (средняя часть );
остистая мышца, m.spinalis, прикрепляется к остистым отросткам (медиальный тракт).
Мышечные пучки поперечно-остистых мышц, m. transversospinales, направляются косо от поперечных отростков нижележащих позвонков к остистым отросткам вышележащих. Чем поверхностнее мышцы, тем круче и длиннее ход их волокон, и через большее число позвонков они перебрасываются. По длине мышечных пучков, т. е. по количеству позвонков, через которые перебрасываются мышечные пучки, в ней различают три части:
Межостистые мышцы, mm. interspinales. Короткие парные мышечные пучки, натягиваются между остистыми отростками двух соседних позвонков.
Межпоперечные мышцы, mm. intertransversales. Короткие мышцы, натягиваются между поперечными отростками двух соседних позвонков.
Глубокий передний слой представлен подвздошно-поясничная мышца, m.iliopsoas, образуется в результате соединения дистальных мышечных пучков подвздошной и большой поясничной мышц. Большая поясничная мышца, m.psoas major, длинная веретенообразной формы, начинается от боковой поверхности тел 12-грудного, четырёх верхних поясничных позвонков, их поперечных отростков, а также, соответствующих межпозвонковых дисков. Мышца направляется книзу и немного кнаружи и, соединяясь с пучками подвздошной мышцы, m.iliacus, образует общую подвздошно-поясничную мышцу, которая внизу прикрепляется к малому вертелу бедренной кости.
На поясничных позвонках также имеет точки прикрепления поясничная часть диафрагмы (ножки диафрагмы).
Нервы
Позвоночник, его связки, суставы и паравертебральные мышцы иннервируются 3-мя группами нервов:
Задняя ветвь спинномозгового нерва делится на медиальную и латеральную ветви на уровне межпозвонкового отверстия. Медиальная ветвь иннервирует межпозвонковый сустав, желтую связку, межостистую и надостистую связки, а также медиальную группу паравертебральных мышц и часть кожи поясничной и ягодичной областей. Латеральная ветвь иннервирует крестцово-подвздошный сустав, латеральную часть паравертебральных мышц, межпоперечные мышцы и связки, а также подвздошно-поясничную связку.
Менингеальный нерв (синувертебральный, Люшка) иннервирует наружные отделы фиброзного кольца, заднюю продольную связку, надкостницу, капсулы суставов, сосуды и оболочки корешков. Нерв образован 2-мя ветвями: от симпатического ствола и от спинномозгового нерва (соматические волокна). Раздражение нерва Люшка играет ведущую роль в дебюте большинства дискогенных болевых синдромов поясничного уровня (Шустин В.А., 1966; V.T. Inman, P.M. Saunders, 1944). Неврологические проявления рефлекторных спондилогенных синдромов в значительной степени определяются функциональными патобиомеханическими нарушениями в позвоночно-двигательном сегменте. При этом, основным механизмом возникновения и/или поддержания функциональных блокад на уровне ПДС является индуцированный ирритацией синувертебрального нерва Люшка дисбаланс мотонейронального пула (Беляков В.В. 2005).
Поясничное сплетение (plexus lumbalis) формируется из передних ветвей трех верхних поясничных спинномозговых нервов, а также части волокон Th12 и L4 спинномозговых нервов. Оно располагается кпереди от поперечных отростков поясничных позвонков, на передней поверхности квадратной мышцы поясницы и в толще большой поясничной мышцы. От этого сплетения отходят последовательно следующие нервы: подвздошно-подчревный (Th12-L1), подвздошно-паховый (L1, реже L2), бедренно-половой (L1-L3), латеральный кожный нерв бедра (L2-L3), запирательный (L2-L4) и бедренный (L2-L4).
При помощи двух-трех соединительных ветвей поясничное сплетение анастомозирует с поясничной частью симпатического ствола. Двигательные волокна, которые входят в состав поясничного сплетения, иннервируют мышцы брюшной стенки и тазового пояса. Эти мышцы сгибают и наклоняют позвоночник, сгибают и разгибают в тазобедренном суставе нижнюю конечность, отводят, приводят и ротируют нижнюю конечность, разгибают ее в коленном суставе. Чувствительные волокна этого сплетения иннервируют кожу нижних отделов живота, передней, медиальной и наружной поверхности бедра, мошонки и верхненаружных отделов ягодицы.
Сосуды
Поясничные артерии, аа. lumbales, представлены в виде четырех пар сосудов, которые отходят от задней полуокружности брюшной части аорты и направляются к мышцам живота. Они по своему ветвлению соответствуют задним межреберным артериям. Каждая артерия отдает дорсальную ветвь, r. dorsalis, к мышцам и коже спины в области поясницы. От спинной ветви отходит спинномозговая ветвь, r. spinalis, проникающая через межпозвоночное отверстие к спинному мозгу.
Венозный отток от поясничной зоны происходит в поясничные вены, которые затем впадают в нижнюю полую вену.
Лимфоток от поясничной области позвоночника осуществляется за счет поясничных лимфатических узлов, которые располагаются забрюшинно и образуют большое сплетение вокруг аорты и нижней полой вены. Выносящие лимфатические сосуды поясничных лимфатических узлов формируют правый и левый поясничные стволы, дающие начало грудному протоку.
Биомеханика
Для движений поясничного отдела, как и для грудного и шейного отделов позвоночника, применимы законы Фрайета (H. Fryette, 1918).
Впервые Х. Фрайет представил свою концепцию физиологических движений позвоночника в 1918 году на съезде Американской Остеопатической Ассоциации. В основу его труда легла более ранняя работа Роберта Ловетта (R. Lovett “Spinal Curvatures and Round Shoulders”). Однако сам Фрайет много экспериментировал с рентгенограммами и анализировал движения позвоночного столба, результатом чего стало формулирование нескольких принципов, которые сегодня называют Законами Фрайета.
I закон Фрайета – В нейтральном положении суставных фасеток латерофлексия вызывает ротацию в противоположную сторону (NSR). Дисфункции в NSR – это дисфункции, возникающие в нейтральном положении. Они являются полисегментарными, захватывая несколько позвонков. Полиартикулярные мышцы и диски осуществляют адаптацию и вызывают большую степень латерофлексии, по которой и обозначают дисфункцию. Позвонок, находящийся в наибольшей ротации, обычно является ключевым для группы позвонков в дисфункции. Данные дисфункции являются вторичными, адаптационными.
II закон Фрайета – В состоянии контакта суставных фасеток позвонков для того, чтобы сделать латерофлексию, необходимо сделать ротацию в сторону латерофлексии. Другими словами, ротация предваряет латерофлексию и латерофлексия происходит в сторону ротации. Данный закон справедлив для позвонков, находящихся во флексии или экстензии (FRS, ERS).
F. Mitchell, Jr., в своем руководстве “The Muscle Energy Manual”, (2002) упоминает еще об одном законе биомеханики, называя его законом Beckwith`а.
Закон Беквита – Увеличение подвижности позвонка в одной плоскости автоматически огранивает его мобильность в двух других плоскостях.
Дисфункции во флексии и экстензии являются моносегментарными, захватывая обычно один или два позвонка. В дисфункции участвуют моносегментарные мышцы и кинетика суставных поверхностей. Называется дисфункция по стороне наибольшей подвижности, а не по стороне ограничения движения. Данные дисфункции являются первичными. Могут быть двойные дисфункции, наложившиеся друг на друга в одном позвонке – FRS (d) и ERS (s). В таком случае первым подлежит исправлению дисфункция в FRS.
Однако поясничный отдел позвоночника более всего участвует в сгибательных и разгибательных движениях и в меньшей степени в движениях в стороны. В суставах между Th9 и L3 позвонками возможны все движения, а между L3 и L5 позвонками движения почти отсутствуют. Однако механические нарушения здесь встречаются не реже, чем в других отделах позвоночника. В действительности пальпировать FRS или ERS на уровне двух нижних поясничных ПДС, особенно при выраженном болевом синдроме, крайне трудно.
Надо отметить, что роль биомеханических нарушений в пояснично-крестцовом отделе позвоночника в патогенезе остеохондроза на сегодняшний день остается не определенной и, следовательно, спорной. Актуальность изучения биомеханики поясничного отдела позвоночника обусловлена также недостаточностью возможностей современных нейровизуализационных методов исследования для уточнения биомеханических изменений в позвоночнике. В связи с этим клинические тесты кинетических дисфункций поясничного отдела пока остаются наиболее востребованными и определяющими дальнейшую лечебную тактику.
Важное значение здесь приобретает оценка пояснично-крестцово-подвздошной зоны, в частности крестцово-подвздошного сустава. Через этот сустав передаются движения нижних конечностей и таза на позвоночник и, кроме того, блокада этого сустава (в основном односторонняя) приводит к функциональной асимметрии крестца с нарушением статики в поясничных сегментах. И, если атлантозатылочный сустав играет важную роль в регуляции и координации тонуса задних групп мышц, то суставы таза оказывают значительное влияние на статику тела (F. Crammer, 1951).
Первоначальное напряжение мягких тканей приводит к нарушению и возможному повреждению нервных структур с рефлекторным ответом. Функция позвоночника, как оси движения тела, является условием нормального функционирования всей двигательной системы. Функции позвоночника включают функцию суставов конечностей, мышц, рефлекторные процессы в отдельных сегментах. Очевидно, что функция позвоночника должна рассматриваться во взаимосвязи с тазом, нижними конечностями и мышечной системой.
Опыт показывает, что определенное изменение положения или функции позвоночника на одном конце вызывает мгновенный рефлекторный ответ вдоль всей оси корпуса. Согласно данным Crammer, суставы головы посредством тонического шейного рефлекса воздействуют на тонус всех постуральных мышц и, таким образом, на позвоночник, как ось тела. На статику же решающее влияние оказывает таз. Каждое отклонение и функциональное нарушение между этими фиксирующими точками позвоночник должен компенсировать сам. Нередко адаптация таких нарушений приходится на грудной отдел, в котором практически всегда можно найти кинетические дисфункции.
При диагностике поражения поясничного отдела важным является подробный сбор анамнеза, динамические тесты флексии, латерофлексии и ротации в положении сидя и стоя.
В поясничном отделе позвоночника возможны следующие движения: флексия (60 градусов), экстензия (45 градусов), латерофлексия (35 градусов) и ротация (5 градусов).
Во время флексии поясничного отдела позвоночника тело вышележащего позвонка наклоняется и следует кпереди. При этом межпозвонковый диск уменьшает свою толщину спереди и увеличивает сзади, пульпозное ядро смещается кзади и растягивает задние волокна фиброзного кольца. Суставные отростки смежных позвонков расходятся, в результате чего суставные связки сильно натягиваются. Натягиваются также и связки между позвонковыми дугами (желтая связка, межостистая, надостистая и задняя продольная связки). Именно они являются ограничителями сгибания в поясничном отделе позвоночника.
В момент разгибания поясничного отдела позвоночника тело вышележащего позвонка наклоняется и смещается кзади. Межпозвонковый диск уплощается сзади и расширяется спереди. Пульпозное ядро устремляется вперед, растягивая передние волокна фиброзного кольца и переднюю продольную связку. При этом задние продольные связки расслабляются. Суставные отростки смежных позвонков плотно сближаются, а остистые отростки соприкасаются друг с другом. Таким образом, ограничителями разгибания являются костные структуры позвонковой дуги и натянутая передняя продольная связка.
При латерофлексии поясничного отдела позвоночника тело вышележащего позвонка наклоняется ипсилатерально. При этом поперечные отростки на стороне латерофлексии сближаются, межпозвонковые отверстия сужаются, а межпозвонковый диск компремируется. Мягкие ткани также испытывают компрессию. На противоположной латерофлексии стороне происходит обратный процесс. Ограничителями латерофлексии являются крестцово-бугорные связки и пояснично-подвздошные связки.
Во время ротации суставные отростки сближаются на стороне ротации и расходятся на противоположной стороне. На стороне ротации поперечный отросток идет кзади, а противоположный – кпереди. Остистый отросток отклоняется в сторону, противоположную ротации. Ограничителями ротации в поясничном отделе позвоночника являются межпоперечные связки, межостистые связки и межпозвонковый диск.
Несколько слов о роли в биомеханике поясничного отдела L3 позвонка. Это первый по-настоящему подвижный поясничный позвонок, т.к. L4 и L5 позвонки тесно связаны с крестцом и подвздошными костями. Тело L3 имеет параллельные горизонтальные поверхности сверху и снизу. С другой стороны, третий поясничный позвонок являет собой вершину поясничного изгиба. К поперечным отросткам L3 позвонка прикрепляются подвздошно-поясничные волокна широчайшей мышцы. Здесь также берет начало остистая мышца, т.е. L3 может считаться точкой начала мышц грудного отдела позвоночника. Из-за своего анатомического строения, функциональных связей и большой степени подвижности L3 позвонок играет особую роль в поддержании вертикального положения позвоночника в пространстве. Третий поясничный позвонок является опорной точкой центра тяжести тела (наряду с C2 и Th4 позвонками). Кроме того, имеет связь с брыжейкой тонкого кишечника.
По данным других авторов (Шустин В.А., Парфенов В.Е., Топтыгин С.В., и др. 2006). позвонок L4 обладает наибольшей подвижностью, что является одной из предпосылок наиболее раннего и частого дегенеративно-дистрофического поражения нижнепоясничных сегментов. Другой важной предпосылкой является неполное соответствие переднезаднего размера L5 и S1 позвонков (разница может варьировать в пределах 1,5 – 6 мм), что наряду с максимальной статической и динамической нагрузкой на тела этих позвонков приводит к частой травматизации соответствующих дисков.
Таким образом, избирательная локализация наиболее частого поражения межпозвонковых дисков L4-L5, L5-S1 обусловлена диссоциацией между максимальными величинами предельной нагрузки на них и минимальными показателями прочности последних.
В шейном отделе позвоночника межпозвонковые диски имеют большую высоту, а площадь поперечного сечения тел позвонков здесь невелика. В связи с этим шейные позвонки обладают значительным углом наклона относительно друг друга. Данное обстоятельство в сочетании со специфической конфигурацией межпозвонковых суставов обеспечивают большую подвижность шейного отдела позвоночника в сагиттальной (флексия/экстензия), фронтальной (латерофлексия) и в горизонтальной (ротация) плоскостях. Необходимо отметить, что значительной подвижности шейного отдела позвоночника способствует также большой диаметр позвоночного канала и межпозвонковых отверстий.
В грудном отделе соотношение высоты межпозвонковых дисков к площади поперечного сечения тел позвонков выглядит гораздо менее выгодно, и, кроме того, поверхности тел позвонков плоские, а не выпуклые, что значительно ограничивает подвижность тел позвонков относительно друг друга. Практически в грудном отделе позвоночника возможны лишь небольшие движения в сагиттальной плоскости. В месте перехода грудного отдела позвоночника в поясничный отдел суставные отростки изменяют свое расположение: суставные поверхности их переориентируются из фронтальной плоскости в сагиттальную.
Отношение высоты межпозвонковых дисков к диаметру тел позвонков в поясничном отделе позвоночника является менее выгодным, чем в шейном отделе, но более выгодным, чем в грудном, что обеспечивает относительно большой объем движений. Принимая во внимание то, что суставы, образованные отростками дужек, располагаются в сагиттальной плоскости, наибольший объем движений наблюдается при флексии и экстензии, в то время как амплитуда ротационных движений и латерофлексии не так велика.
Объем движения позвоночника в сагиттальной плоскости, т. е. сгибания и разгибания, зависит главным образом от отношения высоты межпозвонкового диска к диаметру тела позвонка.
Амплитуда движений позвоночника во фронтальной плоскости (латерофлексия), зависит как от вышеупомянутых факторов, так и от направления плоскости, в которой располагаются поверхности суставов, образованных отростками дужек позвонков.
Объем вращательных движений (ротация) зависит в первую очередь от расположения суставных поверхностей отростков дужек. Если направление движений лимитируется формой суставных поверхностей, то объем движений ограничивается суставными капсулами и системой связок. Так, флексия ограничивается желтыми, межостистыми и надостистыми связками, межпоперечными связками, а также задней продольной связкой и задней частью фиброзного кольца. Разгибание ограничено передней продольной связкой и передней частью фиброзного кольца, а также смыканием суставных, остистых отростков и дужек. Наклоны в стороны ограничиваются обеими продольными связками, боковыми участками фиброзного кольца, желтой связкой (с выпуклой стороны) и межпоперечными связками, а также суставными капсулами (в грудном отделе дополнительно ребрами).
Вращательные движения ограничиваются фиброзным кольцом и капсулами межпозвонковых суставов. Одновременно все движения и их амплитуда контролируются мышцами.
Объем подвижности позвоночника изменяется с возрастом. Характер этих изменений зависит от индивидуальных особенностей, но, несмотря на это, наибольший объем движений сохраняется в местах лордозов позвоночника, т. е. в шейном и поясничном его отделах.
Широкий размах движений в поясничном отделе позвоночника находится в прямой связи с большой высотой межпозвонковых дисков.
Движения позвоночника в поясничном отделе связаны с двумя мощными группами мышц, действующих на позвоночник непосредственно и опосредованно. К первой группе относятся: m. erector spinae, m. quadratus lumborum и m. psoas, ко второй группе относятся мышцы живота.
При движениях позвоночника (даже в концевых его отделах) происходит совсем небольшое смещение позвонков. Так, в положении крайнего разгибания межпозвонковое пространство расширяется спереди и суживается сзади совсем незначительно. Подобное происходит при сгибании с той только разницей, что отмечается обратное соотношение расширения и сужения щели. Рассчитано, что общая высота передней поверхности поясничного отдела позвоночника увеличивается на 12 мм при переходе из полного сгибания в полное разгибание. Это происходит в результате растяжения межпозвонковых дисков (каждый диск растягивается на 2,4 мм). При разгибании общая высота задних поверхностей тел позвонков и межпозвонковых дисков в поясничном отделе уменьшается на 5 мм (на каждый диск, таким образом, приходится 1 мм).
Движения отдельных позвонков происходят при наличии определенных постоянных точек опоры. В качестве точки опоры может служить только студенистое ядро в связи с его устойчивостью и относительной несжимаемостью. Студенистое ядро залегает между телами позвонков несколько кзади и по оси поясничного отдела позвоночника.
В фиброзном кольце при сгибании и разгибании позвоночника с вогнутой его стороны происходит выбухание кольца, а с выпуклой — уплощение. Чрезмерная подвижность позвоночника ограничивается фиброзными кольцами и связками позвоночного столба, а в исключительных случаях — смыканием самих позвонков.
В положении разгибания поясничный отдел позвоночника устанавливается в лордозе. Кривизна лордоза подвержена индивидуальным колебаниям, она более выражена у женщин, чем у мужчин. Это связано с большим углом наклона таза у женщин. В условиях нормального поясничного лордоза наибольшее выстояние кпереди отмечается у L3 и L4 поясничных позвонков, и в положении разгибания вертикальная ось позвоночника проходит через грудопоясничное соединение, а также пояснично-крестцовое сочленение. Подвижность отдельных поясничных позвонков уменьшается в каудальном направлении.
В целом амплитуда разгибания (экстензии) поясничного отдела позвоночника меньше амплитуды сгибания (флексии), что обусловлено напряжением передней продольной связки, мышц живота, а также смыканием остистых отростков. Сгибание ограничивается межостистыми связками, желтой связкой, а также суставными капсулами, сдерживающими скольжение суставных поверхностей. Задняя продольная связка незначительно ограничивает сгибание. Наклоны в стороны ограничиваются глубокой поясничной фасцией и суставными капсулами. Однако наклоны в стороны в поясничном отделе совершаются свободно, в то время как объем ротации резко ограничен в связи с тем, что плоскости суставов, образованных отростками дужек позвонков, имеют направление, перпендикулярное оси вращательных движений.
Подвижность поясничного отдела позвоночника ограничивается также структурами, морфологически связанными с ним. К этим образованиям относятся спинной мозг, твердая мозговая оболочка, корешки и нервы конского хвоста.
При сгибании и разгибании позвоночника спинной мозг и нервы конского хвоста могут свободно перемещаться относительно костного канала, причем возможность такого перемещения более выражена по мере удаления от основания черепа.
Нервные корешки конского хвоста свободно идут внутри костного канала, так что даже при максимальном сгибании и разгибании поясничного отдела позвоночника не отмечается их чрезмерного натяжения.
В других отделах позвоночника твердая мозговая оболочка представляет собой плотную и малорастяжимую соединительнотканную мембрану, в поясничном отделе она рыхлая и эластичная, что исключает ее чрезмерное натяжение в положении максимального сгибания поясничного отдела позвоночника.
Спереди твердая мозговая оболочка испытывает большее натяжение и плотно прилегает к задней поверхности тел позвонков и межпозвонковых дисков. Кроме того, она фиксируется выходящими из нее и направляющимися к межпозвонковым отверстиям корешками. Адаптация корешков и твердой мозговой оболочки к небольшим экскурсиям (5 мм из положения крайнего разгибания в положение крайнего сгибания) структурных элементов позвоночного канала происходит без лишнего напряжения.