инженер по машинному обучению

Специалист по машинному обучению: кто такой, чем занимается и сколько получает

Разбираемся, нужно ли творцам искусственного интеллекта знать математику и Python.

инженер по машинному обучению. Смотреть фото инженер по машинному обучению. Смотреть картинку инженер по машинному обучению. Картинка про инженер по машинному обучению. Фото инженер по машинному обучению

инженер по машинному обучению. Смотреть фото инженер по машинному обучению. Смотреть картинку инженер по машинному обучению. Картинка про инженер по машинному обучению. Фото инженер по машинному обучению

Специалист по машинному обучению (ML, machine learning) — это программист, который с помощью специальных наборов данных и алгоритмов обучает искусственный интеллект.

Посмотрим, например, как приложение «Яндекс.Навигатор» выбирает маршрут до пункта назначения. У него есть ваши GPS-координаты и карта, но при этом он знает и о пробках, авариях, дорожном ремонте. Всё это благодаря графу дорог — алгоритм быстро анализирует возможные пути и находит самый быстрый. А программисты следят, чтобы машинный интеллект не ошибался.

Но ситуация на дорогах постоянно меняется: вчера здесь был поворот, а сегодня висит «кирпич» и водители вынуждены объезжать это место. Добавлять на карту все изменения вручную, особенно в реальном времени, слишком трудозатратно и дорого, требуется много людей. Но алгоритму совсем не обязательно знать про запрет — ему достаточно увидеть, что машины стали двигаться по-другому, чтобы перенаправить всех водителей на другие маршруты.

Научить компьютер принимать такие решения — задача специалистов по ML. Без этого мы не смогли бы обработать море информации, которую люди генерируют каждый день, и сделать нашу жизнь комфортнее.

инженер по машинному обучению. Смотреть фото инженер по машинному обучению. Смотреть картинку инженер по машинному обучению. Картинка про инженер по машинному обучению. Фото инженер по машинному обучению

Пишет про digital и машинное обучение для корпоративных блогов. Топ-автор в категории «Искусственный интеллект» на Medium. Kaggle-эксперт.

Чем занимается специалист по машинному обучению

Задачи специалиста по МL отличаются в разных компаниях и проектах, но чаще всего он делает вот что:

Собирать данные вручную сложно: если это, например. изображения, требуются сотни тысяч фото с разных ракурсов и разными условиями освещённости. «ВКонтакте» недавно запустил новую функцию — сеть показывает фото пользователей их друзьям и спрашивает: «Это Вася Иванов?» Чтобы отметить друга на фото, требуется меньше секунды. Не поленитесь и сделайте это. Так вы поможете нейросети научиться распознавать лица, а заодно почувствуете себя специалистом по ML — хоть немножко 🙂

Алгоритмы для построения модели программируют под конкретные задачи. Иногда они довольно простые — например, алгоритм для предсказания предпочтений туристов из разных городов занимает всего 20 строчек кода.

Но бывают и очень сложные — такие как гигантская нейросеть DeepCoder. Она копирует и миксует готовые фрагменты кода, создавая на выходе новые программы. Эта технология называется программным синтезом.

Получается, что сама нейросеть, состоящая из миллионов строк кода, может заимствовать его из множества других программ. Алгоритм порождает другие алгоритмы — чем не цифровая жизнь?

Кому подойдёт профессия специалиста по ML

Стать специалистом по машинному обучению за три дня не получится. Но вы можете попробовать профессию и попытаться предсказать курс доллара с помощью машинного обучения на бесплатном марафоне «Напишите первую модель машинного обучения за 3 дня».

Какие навыки нужны специалистам по МL

Предположим, нам нужно построить автоматическую систему рекомендаций для соцсети. Что должно лежать в основе рекомендаций? Хороший вариант — посмотреть, что лайкают друзья: людей часто объединяют интересы. Но чтобы система работала ещё лучше, придётся учитывать время года или суток, события в стране и в мире. Например, «ВКонтакте» утром чаще рекомендует новости, а вечером — мемасики про котиков и другой развлекательный контент. Чтобы всё это продумать и учесть сотни различных факторов, нужно быть готовым к кропотливой и даже монотонной работе.

Как определить, хороший контент в соцсети или плохой? Можно посадить сотни модераторов и разработать сложную систему правил, а можно просто добавить кнопку эмоциональной реакции — например, лайк. Если у поста много лайков, значит, людям он нравится, следовательно, материал хороший и нейросеть будет показывать его как можно большему количеству людей. Возможно, эта система не идеальна, но она позволяет решить проблему относительно эффективно и с минимальной затратой ресурсов.

Перспективы развития профессии

Сегодня МL помогает людям практически в любой области — от выбора сериалов на Netflix до заботы о здоровье. Востребованность специалистов по ML с каждым годом растёт. Например, hh.ru отмечает, что с 2015 по 2019 год количество вакансий в сфере машинного обучения выросло в семь раз.

Больше всего таких специалистов требуется в сфере информационных технологий, разработке программного обеспечения, финансовом секторе, бизнес-среде, маркетинге и розничной торговле.

На какую зарплату могут рассчитывать Junior, Middle и Senior

Яндекс, «Тинькофф» и другие компании нуждаются в крутых профессионалах в области ML. По наличию опыта такие специалисты делятся на три группы: Junior, Middle и Senior.

Junior (младший)

Нужно уметь работать с библиотеками для обработки данных — Pandas, NumPy, Matplotlib, и понимать системы управления базами данных — MySQL/PostgreSQL.

В регионах такой специалист может рассчитывать на зарплату от 40 тысяч рублей. В Москве джуны получают значительно больше — от 80 тысяч.

Middle (средний)

Уверенный специалист с опытом от 2 до 5 лет. Он способен перевести задачи бизнеса на язык математики, реализовать с нуля и оценить производительность модели машинного обучения, проанализировать и проверить данные — соответствуют ли они заданным критериям.

Среди требований к мидлу — навыки работы с современными аналитическими пакетами на R/Python и промышленными хранилищами данных (Teradata, DB2), а также понимание BigData. Приветствуется владение статистическими инструментами — SPSS, MATLAB, SAS Data Miner.

В регионах средняя зарплата — 60–80 тысяч, в Москве — не меньше 100 тысяч рублей.

Senior (старший)

Опытный специалист. Работодатели ожидают, что у сеньора за плечами 5–7 лет работы над проектами в сфере data mining, data analysis, машинного обучения или математического моделирования. В списке компетенций: уверенный Python, SQL/CQL, глубокое понимание архитектуры нейросетей, знание Spark Streaming (используется с Apache Spark), Cassandra (система управления базами данных), фреймворков TensorFlow, CV, PyTorch или других — в зависимости от стека компании.

Иногда выделяют ML Team Lead (тимлид, лидер команды). Тимлидами становятся сеньоры, возглавляющие подразделения Machine Learning. Здесь важны лидерские качества, тайм-менеджмент и умение работать в команде.

Сеньоры и тимлиды в регионах зарабатывают 100–120 тысяч, в Москве — от 200 и до 400–500 тысяч. Это хороший стимул освоить профессию. А учитывая, что потребность в машинном обучении с годами будет только расти, зарплаты опытных специалистов по ML точно не станут ниже.

Где учиться

Изучать машинное обучение можно в университете, на курсах или самостоятельно.

Университет даёт студентам хорошую базу, особенно в математике и статистике. Вы получите диплом государственного образца — это может быть плюсом при трудоустройстве. Но поступить на специальность Data Science обычно непросто и дорого. Например, двухлетняя магистратура по наукам о данных в «Высшей школе экономики» обойдётся в 1 155 000 рублей.

Курсы позволяют получить структурированную информацию в сжатые сроки. Такой вариант образования гораздо дешевле университетской программы. Кроме того, на курсах готовят выпускников к практической деятельности, дают поработать над реальными проектами. Стоимость стартует от 50 тысяч рублей и доходит до 150 тысяч.

Самостоятельное обучение подходит тем, у кого уже есть технический бэкграунд. В интернете много бесплатных книг и курсов, и некоторые из них весьма хороши. Но есть сложность: придётся самостоятельно планировать обучение и развитие, получать знания и навыки, которые понадобятся на работе. Без старшего товарища ориентироваться в океане информации и проверять рецепты из интернета непросто.

Вывод

Специалисты по машинному обучению работают над сложными, увлекательными проектами, которые хорошо оплачиваются. Созданные ими решения делают нашу жизнь проще, интереснее и безопаснее. Так что если вам хочется быть на переднем крае технологий и заниматься самыми современными проектами, без которых немыслимо не только будущее, а уже и настоящее, — возможно, это идеальная карьера для вас.

Самому освоить профессию специалиста по машинному обучению трудно. Но можно записаться на курс «Профессия Data Scientist: машинное обучение», где опытные специалисты по ML собрали сбалансированную программу, учли типичные ошибки новичков и делятся лучшими практиками. За год с небольшим вы научитесь разбираться в программировании и моделях МL и поработаете с реальными проектами в машинном обучении.

Источник

Сколько зарабатывает специалист по машинному обучению: обзор зарплат и вакансий в 2021

инженер по машинному обучению. Смотреть фото инженер по машинному обучению. Смотреть картинку инженер по машинному обучению. Картинка про инженер по машинному обучению. Фото инженер по машинному обучению

Привет, Хабр! Мы продолжаем свою серию аналитических статей о рынке зарплат и вакансий в IT. И сегодня на очереди ML-инженер, или специалист по машинному обучению, тем более, что 23 марта Skillfactory запускает новый поток продвинутого курса Machine Learning и Deep Learning.

Machine Learning Engineer – специальность № 1 в разработке и проектировании сложных систем, которая в декабре 2020 года занимала 38,54 % вакансий отрасли и примерно 9 % всех вакансий на российском рынке IT. Так давайте разберёмся, сколько на самом деле получают специалисты по машинному обучению, как попасть в ML и куда можно развиваться. Поехали!

Ранее в нашем блоге уже выходили подобные материалы про дата-сайентистов и дата-аналитиков, если вы заинтересованы в этих специальностях — рекомендуем ознакомиться.

Кто такой ML-инженер

Machine Learning Engineer – это эксперт в области искусственного интеллекта. Именно он разрабатывает алгоритмы, по которым «думает» компьютер.

Машинное обучение позволяет автоматизировать труд человека. ML нужен для создания нейросетей, которые анализируют всё что угодно: от комбинаций в шахматах до максимальной персонификации рекламы в соцсетях. ML позволяет создавать программы для прогнозов, которые работают гораздо лучше человека.

А ещё специалист по машинному обучению создает ботов, которые общаются с клиентами. Так что именно им нужно говорить спасибо за «Бот, позови оператора». «Алиса», Siri и голосовой помощник Олег, – это, кстати, тоже детище ML-инженеров.

Профессия инженера машинного обучения – это подраздел Data Science. И деятельность ML-инженера больше ориентирована на практические задачи. Он решает бизнес-задачи, используя алгоритмы машинного обучения. Он может использовать существующие наработки или писать каждый раз новые – это не важно. Единственная цель – качественное выполнение задачи с наименьшими затратами ресурсов.

инженер по машинному обучению. Смотреть фото инженер по машинному обучению. Смотреть картинку инженер по машинному обучению. Картинка про инженер по машинному обучению. Фото инженер по машинному обучениюОсновные компетенции специалиста ML-Engineer

Что требуют работодатели от ML-Engineer

Пул навыков довольно большой. Мы проанализировали свыше 350 вакансий и заметили, что в большинстве из них чётко разделены компетенции специалиста по Data Science и ML. Но требования к вакансиям всё равно очень схожие.

Дело в том, что специалистов по машинному обучению прицельно ищут крупные компании, которые используют или планируют использовать алгоритмы искусственного интеллекта в своих проектах.

Работодатели в большинстве случаев знают, для чего им нужен специалист по ML и какими компетенциями он должен обладать. Вот те, что попадаются в вакансиях чаще всего:

Высокие математические навыки. Линейная алгебра, теория вероятностей, прикладная статистика – всё это нужно знать на очень высоком уровне. В ML довольно часто используются байесовы сети, марковский процесс принятия решений, скрытые марковские модели, условные вероятности. А ещё нужно хорошо разбираться в дисперсионном анализе и уметь проверять статистические гипотезы.

Базис программирования. Python упоминается в абсолютном большинстве вакансий – примерно 92 % всех, но также работодатели требуют знания R, Java, C++, Scala. Также необходимы навыки использования библиотек вроде pandas, OpenCV, Numpy, Eigen, NLTK, Spacy, scikit-learn или других.

Моделирование данных. Ещё один базовый навык, который необходим в большинстве вакансий. Именно от навыков моделирования данных зависит эффективность машинного обучения. В основном необходимо знать паттерны моделирования, алгоритмы итеративного обучения и стратегии оценки точности моделей.

SQL. В 73 % вакансий требуют знания SQL, но очень много вакансий, в которых необходимы навыки в NoSQL СУБД.

Английский язык. Все без исключения международные команды требуют уровень английского не ниже, чем Intermediate, а лучше – Upper Intermediate. Для проектов на российском рынке это не обязательно, но почти всегда выделяется как дополнительный плюс.

Гибкие методологии разработки проектов. Примерно в трети вакансий упоминаются Agile, Scrum, Kanban и другие гибкие методологии. Опыт работы с ними считается плюсом, но не обязателен.

В целом требования в вакансии ML-инженера и дата-сайентиста довольно сильно пересекаются. Компании малого и среднего бизнеса не делают между ними практически никакой разницы и часто ищут сразу «Data Scientist / ML-Engineer».

Софт-скилы предсказуемы. Они с минимальными расхождениями копируют требования из вакансий Data Scientist и Data Analyst:

аналитический склад мышления, логика;

внимательность к деталям.

Но все же есть и любопытные наблюдения. В целом софтскиллы упоминают в два раза меньше компаний, чем, к примеру, в вакансиях Data Analyst. Здесь ключевую роль играют хард-скилы. Личностные навыки и особенности характера вторичны.

Зарплаты и вакансии в России и не только

Подходим к самому интересному. По состоянию на 04.03.2021 и данным с hh.ru, в России имеются 1052 вакансии, которые содержат упоминания ML или машинного обучения.

Но больше половины из них – это пересечение Python-девелопера с навыками в ML и дата-сайентиста, который должен хотя бы в общих чертах понимать, как работает машинное обучение.

Непосредственно к машинному обучению относится чуть больше 500 вакансий. За 2020 год востребованность специальности выросла более чем в 2 раза и продолжает расти.

Большинство вакансий открыто в Москве – 55 %. Примерно 17,5 % размещены для Санкт-Петербурга. Примерно 24,5 % разбросаны по другим крупным городам России с населением выше 500 000 человек. Количество вакансий в населённых пунктах меньше 200 000 жителей не превышает 2 %.

В целом локации и востребованность коррелируют с отраслями Data Science и Data Analyst. Основной работодатель – московские компании и международные бренды, у которых есть офис в Москве.

Основная проблема – 80 % компаний не указывает вилку зарплат или хотя бы примерный уровень, на который может рассчитывать соискатель.

Мы проанализировали 200 вакансий к открытыми предложениями по зарплате. Результаты довольно неплохие. Медиана проходит по точке в 165 000 рублей. Это уровень месячной зарплаты, на который реально может рассчитывать специалист с 1–2-летним опытом в ML.

Junior ML-engineer или специалист, который хочет попасть в машинное обучение из смежных отраслей, может рассчитывать на оплату от 80 тысяч рублей.

Опытный сеньор может зарабатывать от 200 000 рублей. И это далеко не предел. В крупных международных компаниях отделы ML сегодня растут очень быстро, и специалист топового уровня может рассчитывать на зарплату 330 000 рублей.

В регионах ситуация значительно хуже. Примерно половина вакансий вообще смешивает специалистов по ML, DS и DA в одного. А в остальных навыки машинного обучения – это дополнительная компетенция, а не основная.

Даже если компания понимает, зачем ей нужен ML, то с зарплатами в регионах не очень. Есть предложения для джунов от 25 000 рублей, а выше 80 000 уже считается отличной зарплатой для профи.

Зато на международном рынке всё хорошо у специалистов по машинному обучению.

По данным salary.com, годовая зарплата ML-инженера в США составляет 120 000 долларов по медиане. Это 10 000 долларов в месяц или, в переводе на деревянные, 730 000 рублей.

Glassdoor, к примеру, считает профессию специалиста по машинному обучению одной их самых защищённых на сегодня. И прогнозирует в ближайшие несколько лет ещё большее повышение спроса на неё.

С удалёнкой всё не очень радужно. Большинство компаний стремятся взять ML-инженера на фултайм в офис. Даже в условиях пандемии вакансий, которые допускают удалённую работу, это очень немного.

Откуда прийти и куда расти специалисту по машинному обучению

ML-инженер – не очень дружелюбная специальность для новичков. В неё можно попасть «с нуля», но для этого нужна как минимум крепкая математическая база. В идеале – математическое или экономическое высшее образование. И даже в этом случае нужно быть готовым к сложностям – изучать придётся очень много всего.

Для успешного продвижения и роста нужно понимать, как работает сфера Data Science целиком. Поэтому идеальные стартовые площадки для перехода в ML – это дата-сайентист и дата-аналитик.

Также в машинное обучение могут перейти разработчики на Python. Для этого нужно будет разобраться с основными ML-библиотеками.

Специалист по машинному обучению – довольно узкая специальность и в большинстве случаев является конечным этапом развития специалиста. Но при желании ML-инженер всегда может перейти и в аналитику данных, дата-сайенс или фулстек-разработку. С его опытом и умениями на любую из этих позиций его оторвут с руками и ногами. Старайтесь, учитесь – и у вас получится.

ML-инженер — универсальный специалист, подобный швейцарскому ножу. Для желающих стать таким специалистов, у нас есть специальный продвинутый курс Machine Learning и Deep Learning. А промокод HABR даст скидку 50%.

инженер по машинному обучению. Смотреть фото инженер по машинному обучению. Смотреть картинку инженер по машинному обучению. Картинка про инженер по машинному обучению. Фото инженер по машинному обучению

Узнайте, как прокачаться и в других специальностях или освоить их с нуля:

Источник

Зачем изучать машинное обучение и кем потом работать

инженер по машинному обучению. Смотреть фото инженер по машинному обучению. Смотреть картинку инженер по машинному обучению. Картинка про инженер по машинному обучению. Фото инженер по машинному обучению

инженер по машинному обучению. Смотреть фото инженер по машинному обучению. Смотреть картинку инженер по машинному обучению. Картинка про инженер по машинному обучению. Фото инженер по машинному обучению

инженер по машинному обучению. Смотреть фото инженер по машинному обучению. Смотреть картинку инженер по машинному обучению. Картинка про инженер по машинному обучению. Фото инженер по машинному обучению

Факультет Big Data в Geek University объединяет разные сферы знаний, необходимые современному дата-сайентисту. Чтобы предоставить ученикам более гибкие возможности обучения, мы решили открыть «Машинное обучение» в виде отдельной, новой специальности. В этом посте на важные вопросы об этой специальности ответят наши преподаватели — практикующие эксперты.

Где применяют машинное обучение

инженер по машинному обучению. Смотреть фото инженер по машинному обучению. Смотреть картинку инженер по машинному обучению. Картинка про инженер по машинному обучению. Фото инженер по машинному обучению

Отвечает Сергей Ширкин – куратор специальности, декан факультетов искусственного интеллекта и аналитики Big Data в GeekUniversity, приглашённый преподаватель ВШЭ. С помощью машинного обучения строил финансовые модели в компании Equifax, автоматизировал процессы в Сбербанке и Росбанке. Применял ИИ для прогнозирования просмотров рекламы в Dentsu Aegis Network Russia.

Машинное обучение (Machine Learning, ML) позволяет автоматизировать умственный и физический труд человека. Поэтому ML используют поисковые системы, банки и страховые компании, ритейл, сотовые операторы, промышленные предприятия, рекламные и маркетинговые агентства.

Модель машинного обучения может делать прогнозы и распознавать образы точнее и быстрее, чем живой эксперт. Например, банки с помощью ML-моделей считают вероятность добросовестной выплаты по кредиту для каждого конкретного заёмщика. Причём, если эксперт анализирует одного клиента несколько минут, модель делает прогноз по миллионам клиентов за считаные секунды.

Искусственный интеллект, машинное обучение – в чём разница?

Машинное обучение – это большой подраздел науки об искусственном интеллекте — Data Science. Machine Learning наиболее часто применяется для практических целей. В целом внутри Data Science много направлений, и некоторые из них — например, обучение с подкреплением – ещё развиваются. По сравнению с ними машинное обучение – хорошо развитая область, востребованная бизнесом и наукой.

В чём специфика кода для машинного обучения

Чтобы писать хороший код для целей ML, обязательно понимать, как работают модели машинного обучения. Для этого нужно хорошо знать математику и алгоритмы анализа данных. А также уметь понимать данные: их специфику, возможные проблемы, способы обработки и очистки. Без этого даже готовые реализации из библиотек не получится использовать грамотно.

Чем конкретно занимается ML-специалист

инженер по машинному обучению. Смотреть фото инженер по машинному обучению. Смотреть картинку инженер по машинному обучению. Картинка про инженер по машинному обучению. Фото инженер по машинному обучению

Отвечает Никита Варганов, преподаватель GeekBrains, Senior Data Scientist, руководитель направления по исследованию данных в Сбербанке, Kaggle competitions master.

ML-специалист решает бизнес-задачи клиента с применением алгоритмов машинного обучения. При этом он может брать существующие алгоритмы или разрабатывать новые. Но важно понимать, что в Data Science построение модели – это 10-20% времени проекта. Остальное время уходит на согласование задач, поиск и подготовку данных, составление и приоритизацию гипотез, анализ, внедрение и презентацию полученного решения. Надо быть к этому готовым.

Важно помнить, что оптимизация процессов – не самоцель. В конце концов ML-специалисты помогают бизнесу больше зарабатывать и выводить на рынок новые продукты.

Какие навыки нужны в машинном обучении

Для начала карьеры достаточно уметь использовать алгоритмы, связанные с задачами вашей команды. Если же вы хотите расти и создавать новые алгоритмы, понадобятся хорошие фундаментальные знания математики, готовность творить и экспериментировать без гарантии результата.

В то же время дорасти до позиции Senior в машинном обучении будет проще людям, которые хорошо умеют разговаривать с бизнесом, понимать его проблемы, переходить с технического языка на уровень бизнес-специалиста.

инженер по машинному обучению. Смотреть фото инженер по машинному обучению. Смотреть картинку инженер по машинному обучению. Картинка про инженер по машинному обучению. Фото инженер по машинному обучению

Статистика требуемых скилов на позиции, связанные с машинным обучением. Данные 2018 года, но основные общие и ряд компетенций, специфических для определённых сфер, здесь перечислены.

Каких кандидатов берут на работу

Как руководитель направления в Сбербанке, на должности Junior Data Scientist я хотел бы видеть кандидата, который владеет базовыми понятиями машинного обучения и математической статистики, умеет писать SQL-запросы, готов постоянно развивать свои навыки в machine learning и учиться у более опытных коллег.

Очень ценю, если кандидат уже решал задачи за рамками стандартных курсов по ML и анализу данных. Например, может показать свой pet-проект или свои результаты на соревнованиях по анализу данных (Kaggle Competitions).

Участие в соревнованиях учит решать реалистичные задачи в команде и оформлять своё решение на GitHub. Кстати, владение системами контроля версий — тоже плюс. По моим оценкам их используют лишь 30% специалистов в data science.

Сотрудник уровня Middle сам ведёт проект, но иногда нуждается в консультациях. Он приносит компании деньги и участвует в решении бизнес-проблем заказчика. А также помогает джунам с типовыми задачами.

Senior – это специалист «полного цикла». Он распознаёт проблему заказчика, продумывает её решение и выдаёт необходимый результат. Поэтому Senior DS должен уметь общаться с заказчиком на языке бизнеса и доносить до него свою позицию. Кроме того, он зачастую выступает ментором для джунов и мидлов, проводит код-ревью, распределяет задачи и контролирует их выполнение.

В целом ситуация на рынке труда, на мой взгляд, сейчас в пользу кандидата: спрос на специалистов по машинному обучению пока превышает предложение, особенно на уровнях Middle и Senior.

Где работают и сколько получают специалисты по ML

Рассказывает Сергей Ширкин, куратор специальности.

Специалисты по машинному обучению нужны и крупным компаниям (включая IТ, операторов связи, интернет-магазины, ритейл, банки), и SMB-сегменту со стартапами.

Ориентировочный диапазон зарплат:

Вакансии могут называться по-разному: Data Scientist, аналитик данных, ML-инженер, разработчик аналитических моделей и т.д.

Лайфхак: для поиска вакансий используйте не только описание должности, но и названия библиотек и технологий машинного обучения. Например, много релевантных вакансий можно найти по ключевому слову pandas – это название библиотеки Python для работы с данными.

Как обучают специальности в GeekBrains

инженер по машинному обучению. Смотреть фото инженер по машинному обучению. Смотреть картинку инженер по машинному обучению. Картинка про инженер по машинному обучению. Фото инженер по машинному обучению

Рассказывает Александр Скударнов – методист образовательных программ GeekBrains.

Основная цель курса – помочь вам освоить машинное обучение как инструмент для бизнеса. Программа рассчитана на подготовленных слушателей – она подойдёт вам, если:

К началу занятий на курсах машинного обучения вам понадобятся знание основ Python и SQL, прочные знания школьной математики и готовность их углублять.

Если это не ваши варианты, но вы хотите развиваться в Data Science – вам лучше выбрать факультет искусственного интеллекта или аналитики Big Data, где учат с нуля.

Преимущества курсов

Наши преподаватели — это специалисты из топовых компаний, которые сами проводят собеседования и знают, что нужно для трудоустройства. Мы готовим не исследователя data science, а человека, который сможет приносить пользу бизнесу. Поэтому в программе только то, что нужно для успешного старта карьеры: умение писать чистый код, понимать статистические методы анализа данных и алгоритмы машинного обучения. Остальное выпускник сможет добрать на первом рабочем месте.

Для получения практического опыта мы предусмотрели курсовые проекты, а также соревнования на площадке Kaggle. По окончании нашей программы студенты смогут успешно участвовать в соревнованиях Kaggle по машинному обучению, что тоже очень важно для резюме.

Этапы обучения и курсовые проекты

Рассказывает Сергей Ширкин, куратор специальности.

Мы обучаем специальности в три этапа:

Как курсовые проекты помогут найти работу

В ходе курсовых проектов вы научитесь делать разведочный анализ данных (EDA) – разберётесь, как устроены данные в конкретном примере, как их визуализировать. И конечно, что делать с ними дальше, какие модели машинного обучения применять. Эти навыки пригодятся любому аналитику.

Курсовой проект по прогнозированию стоимости недвижимости можно будет показать на собеседовании в агентствах недвижимости, таких как ЦИАН или ДомКлик.

Проект по кредитному скорингу — оценке кредитоспособности заёмщика — понравится банкам и микрофинансовым организациям.

Прогнозирование оттока клиентов будет актуально для интернет-магазинов, операторов связи, компаний развлекательной сферы, в том числе онлайн-кинотеатров и игровых сервисов. Им важно оценивать риски отказа от их услуг в режиме реального времени.

Особенно сложными и важными будут проекты на курсе «Алгоритмы анализа данных». При их выполнении нельзя будет пользоваться готовыми моделями Machine Learning. Вы должны будете практически с нуля написать на Python свою модель для выбранных задач.

В итоге вы научитесь строить модели разного типа — от деревьев решений, линейной и логистической регрессии до случайного леса и градиентного бустинга. Это умение пригодится при трудоустройстве ML-инженером, в ситуации, когда нужно написать свою библиотеку для машинного обучения, либо для научной работы в этом направлении.

Освоить востребованную профессию в Data Science можно всего за полтора года на курсах GeekBrains. После учёбы вы сможете работать по специальностям Data Scientist, Data Analyst, Machine Learning, Engineer Computer Vision-специалист или NLP-специалист.

Освоить востребованную профессию в Аналитике больших данных можно всего за полтора года на курсах GeekBrains.

инженер по машинному обучению. Смотреть фото инженер по машинному обучению. Смотреть картинку инженер по машинному обучению. Картинка про инженер по машинному обучению. Фото инженер по машинному обучению

Факультет Big Data в Geek University объединяет разные сферы знаний, необходимые современному дата-сайентисту. Чтобы предоставить ученикам более гибкие возможности обучения, мы решили открыть «Машинное обучение» в виде отдельной, новой специальности. В этом посте на важные вопросы об этой специальности ответят наши преподаватели — практикующие эксперты.

Где применяют машинное обучение

инженер по машинному обучению. Смотреть фото инженер по машинному обучению. Смотреть картинку инженер по машинному обучению. Картинка про инженер по машинному обучению. Фото инженер по машинному обучению

Отвечает Сергей Ширкин – куратор специальности, декан факультетов искусственного интеллекта и аналитики Big Data в GeekUniversity, приглашённый преподаватель ВШЭ. С помощью машинного обучения строил финансовые модели в компании Equifax, автоматизировал процессы в Сбербанке и Росбанке. Применял ИИ для прогнозирования просмотров рекламы в Dentsu Aegis Network Russia.

Машинное обучение (Machine Learning, ML) позволяет автоматизировать умственный и физический труд человека. Поэтому ML используют поисковые системы, банки и страховые компании, ритейл, сотовые операторы, промышленные предприятия, рекламные и маркетинговые агентства.

Модель машинного обучения может делать прогнозы и распознавать образы точнее и быстрее, чем живой эксперт. Например, банки с помощью ML-моделей считают вероятность добросовестной выплаты по кредиту для каждого конкретного заёмщика. Причём, если эксперт анализирует одного клиента несколько минут, модель делает прогноз по миллионам клиентов за считаные секунды.

Искусственный интеллект, машинное обучение – в чём разница?

Машинное обучение – это большой подраздел науки об искусственном интеллекте — Data Science. Machine Learning наиболее часто применяется для практических целей. В целом внутри Data Science много направлений, и некоторые из них — например, обучение с подкреплением – ещё развиваются. По сравнению с ними машинное обучение – хорошо развитая область, востребованная бизнесом и наукой.

В чём специфика кода для машинного обучения

Чтобы писать хороший код для целей ML, обязательно понимать, как работают модели машинного обучения. Для этого нужно хорошо знать математику и алгоритмы анализа данных. А также уметь понимать данные: их специфику, возможные проблемы, способы обработки и очистки. Без этого даже готовые реализации из библиотек не получится использовать грамотно.

Чем конкретно занимается ML-специалист

инженер по машинному обучению. Смотреть фото инженер по машинному обучению. Смотреть картинку инженер по машинному обучению. Картинка про инженер по машинному обучению. Фото инженер по машинному обучению

Отвечает Никита Варганов, преподаватель GeekBrains, Senior Data Scientist, руководитель направления по исследованию данных в Сбербанке, Kaggle competitions master.

ML-специалист решает бизнес-задачи клиента с применением алгоритмов машинного обучения. При этом он может брать существующие алгоритмы или разрабатывать новые. Но важно понимать, что в Data Science построение модели – это 10-20% времени проекта. Остальное время уходит на согласование задач, поиск и подготовку данных, составление и приоритизацию гипотез, анализ, внедрение и презентацию полученного решения. Надо быть к этому готовым.

Важно помнить, что оптимизация процессов – не самоцель. В конце концов ML-специалисты помогают бизнесу больше зарабатывать и выводить на рынок новые продукты.

Какие навыки нужны в машинном обучении

Для начала карьеры достаточно уметь использовать алгоритмы, связанные с задачами вашей команды. Если же вы хотите расти и создавать новые алгоритмы, понадобятся хорошие фундаментальные знания математики, готовность творить и экспериментировать без гарантии результата.

В то же время дорасти до позиции Senior в машинном обучении будет проще людям, которые хорошо умеют разговаривать с бизнесом, понимать его проблемы, переходить с технического языка на уровень бизнес-специалиста.

инженер по машинному обучению. Смотреть фото инженер по машинному обучению. Смотреть картинку инженер по машинному обучению. Картинка про инженер по машинному обучению. Фото инженер по машинному обучению

Статистика требуемых скилов на позиции, связанные с машинным обучением. Данные 2018 года, но основные общие и ряд компетенций, специфических для определённых сфер, здесь перечислены.

Каких кандидатов берут на работу

Как руководитель направления в Сбербанке, на должности Junior Data Scientist я хотел бы видеть кандидата, который владеет базовыми понятиями машинного обучения и математической статистики, умеет писать SQL-запросы, готов постоянно развивать свои навыки в machine learning и учиться у более опытных коллег.

Очень ценю, если кандидат уже решал задачи за рамками стандартных курсов по ML и анализу данных. Например, может показать свой pet-проект или свои результаты на соревнованиях по анализу данных (Kaggle Competitions).

Участие в соревнованиях учит решать реалистичные задачи в команде и оформлять своё решение на GitHub. Кстати, владение системами контроля версий — тоже плюс. По моим оценкам их используют лишь 30% специалистов в data science.

Сотрудник уровня Middle сам ведёт проект, но иногда нуждается в консультациях. Он приносит компании деньги и участвует в решении бизнес-проблем заказчика. А также помогает джунам с типовыми задачами.

Senior – это специалист «полного цикла». Он распознаёт проблему заказчика, продумывает её решение и выдаёт необходимый результат. Поэтому Senior DS должен уметь общаться с заказчиком на языке бизнеса и доносить до него свою позицию. Кроме того, он зачастую выступает ментором для джунов и мидлов, проводит код-ревью, распределяет задачи и контролирует их выполнение.

В целом ситуация на рынке труда, на мой взгляд, сейчас в пользу кандидата: спрос на специалистов по машинному обучению пока превышает предложение, особенно на уровнях Middle и Senior.

Где работают и сколько получают специалисты по ML

Рассказывает Сергей Ширкин, куратор специальности.

Специалисты по машинному обучению нужны и крупным компаниям (включая IТ, операторов связи, интернет-магазины, ритейл, банки), и SMB-сегменту со стартапами.

Ориентировочный диапазон зарплат:

Вакансии могут называться по-разному: Data Scientist, аналитик данных, ML-инженер, разработчик аналитических моделей и т.д.

Лайфхак: для поиска вакансий используйте не только описание должности, но и названия библиотек и технологий машинного обучения. Например, много релевантных вакансий можно найти по ключевому слову pandas – это название библиотеки Python для работы с данными.

Как обучают специальности в GeekBrains

инженер по машинному обучению. Смотреть фото инженер по машинному обучению. Смотреть картинку инженер по машинному обучению. Картинка про инженер по машинному обучению. Фото инженер по машинному обучению

Рассказывает Александр Скударнов – методист образовательных программ GeekBrains.

Основная цель курса – помочь вам освоить машинное обучение как инструмент для бизнеса. Программа рассчитана на подготовленных слушателей – она подойдёт вам, если:

К началу занятий на курсах машинного обучения вам понадобятся знание основ Python и SQL, прочные знания школьной математики и готовность их углублять.

Если это не ваши варианты, но вы хотите развиваться в Data Science – вам лучше выбрать факультет искусственного интеллекта или аналитики Big Data, где учат с нуля.

Преимущества курсов

Наши преподаватели — это специалисты из топовых компаний, которые сами проводят собеседования и знают, что нужно для трудоустройства. Мы готовим не исследователя data science, а человека, который сможет приносить пользу бизнесу. Поэтому в программе только то, что нужно для успешного старта карьеры: умение писать чистый код, понимать статистические методы анализа данных и алгоритмы машинного обучения. Остальное выпускник сможет добрать на первом рабочем месте.

Для получения практического опыта мы предусмотрели курсовые проекты, а также соревнования на площадке Kaggle. По окончании нашей программы студенты смогут успешно участвовать в соревнованиях Kaggle по машинному обучению, что тоже очень важно для резюме.

Этапы обучения и курсовые проекты

Рассказывает Сергей Ширкин, куратор специальности.

Мы обучаем специальности в три этапа:

Как курсовые проекты помогут найти работу

В ходе курсовых проектов вы научитесь делать разведочный анализ данных (EDA) – разберётесь, как устроены данные в конкретном примере, как их визуализировать. И конечно, что делать с ними дальше, какие модели машинного обучения применять. Эти навыки пригодятся любому аналитику.

Курсовой проект по прогнозированию стоимости недвижимости можно будет показать на собеседовании в агентствах недвижимости, таких как ЦИАН или ДомКлик.

Проект по кредитному скорингу — оценке кредитоспособности заёмщика — понравится банкам и микрофинансовым организациям.

Прогнозирование оттока клиентов будет актуально для интернет-магазинов, операторов связи, компаний развлекательной сферы, в том числе онлайн-кинотеатров и игровых сервисов. Им важно оценивать риски отказа от их услуг в режиме реального времени.

Особенно сложными и важными будут проекты на курсе «Алгоритмы анализа данных». При их выполнении нельзя будет пользоваться готовыми моделями Machine Learning. Вы должны будете практически с нуля написать на Python свою модель для выбранных задач.

В итоге вы научитесь строить модели разного типа — от деревьев решений, линейной и логистической регрессии до случайного леса и градиентного бустинга. Это умение пригодится при трудоустройстве ML-инженером, в ситуации, когда нужно написать свою библиотеку для машинного обучения, либо для научной работы в этом направлении.

Освоить востребованную профессию в Data Science можно всего за полтора года на курсах GeekBrains. После учёбы вы сможете работать по специальностям Data Scientist, Data Analyst, Machine Learning, Engineer Computer Vision-специалист или NLP-специалист.

Освоить востребованную профессию в Аналитике больших данных можно всего за полтора года на курсах GeekBrains.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *