иванова т а теория и технология обучения математике в средней школе
Теория и технология обучения математике в средней школе
Описание книги
Учеб. пособие для студентов математических специальностей педагогических вузов / Под ред. Т.А. Ивановой. — 2-е изд., испр. и доп. — Н. Новгород: НГПУ, 2009. — 355 с. В пособии проектируется современная методическая система обучения математике, методологическую основу которой составляют концепции гуманитаризации образования, личностно-ориентированного, компетентностного, деятельностного и технологического подходов к обучению. С этих позиций анализируются цели общего математического образования, и.
Учеб. пособие для студентов математических специальностей педагогических вузов / Под ред. Т.А. Ивановой. — 2-е изд., испр. и доп. — Н. Новгород: НГПУ, 2009. — 355 с. В пособии проектируется современная методическая система обучения математике, методологическую основу которой составляют концепции гуманитаризации образования, личностно-ориентированного, компетентностного, деятельностного и технологического подходов к обучению. С этих позиций анализируются цели общего математического образования, их конкретизация на уровне учебной темы и отдельного урока; выявляется структура гуманитарно ориентированного содержания математического образования; излагается технология обучения основным дидактическим единицам и построение уроков различных типов, где ученик выступает как субъект учебной деятельности; описывается диагностика процесса обучения на всех его этапах. Пособие предназначено для студентов математических специальностей педвузов, обучающихся по специальности 050201.65 (032100) – математика, учителей математики. Книга «Теория и технология обучения математике в средней школе» авторов Иванова Т.А., Л. И. Кузнецова, Перевощикова Е.Н. оценена посетителями КнигоГид, и её читательский рейтинг составил 0.00 из 10.
Для бесплатного просмотра предоставляются: аннотация, публикация, отзывы, а также файлы для скачивания.
Иванова т а теория и технология обучения математике в средней школе
Программа курса
«Теоретические основы обучения математике»
Иванова Тамара Алексеевна,
доктор педагогических наук,
заведующая кафедрой теории и методики
обучения математики
Нижегородского государственного
педагогического университета.
Нижний Новгород
Одним из критериев профессиональной подготовленности учителя служит умение синтезировать психолого-педагогические и специальные знания. На математическом факультете Нижегородского педагогического университета формирование у студентов этого умения осуществлялось в разных формах на протяжении нескольких лет. Результатом явилась разработка нового курса «Теоретические основы обучения математике», который ставится на кафедре теории и методики обучения математике, начиная с 1995 года.
Ниже публикуется программа этого курса. Основные знания и умения, формируемые в курсе:
— знание и понимание роли общего математического образования в решении задач современной общеобразовательной школы;
— знание концепции современного общего математического образования и его основных принципов;
— знание содержания всех компонентов методической системы обучения математике в их современной трактовке;
— умение ставить диагностируемые цели и разрабатывать соответствующие проекты при изучении основных дидактических единиц: математических понятий, теорем, алгоритмов, ключевых задач;
— умение реализовывать разработанные проекты (деловые игры, практикумы);
— умение анализировать готовые технологии, проекты своих товарищей;
— умение анализировать реальные педагогические ситуации, в том числе и посещенные уроки;
— умение анализировать психолого-педагогическую и методическую литературу и адаптировать ее к собственной деятельности;
— умение общаться как с преподавателями, так и со студентами при обсуждении рассматриваемых на занятиях вопросов.
Основные принципы, положенные в основу моделирования программы и соответствующего содержания курса:
— системный подход к анализу педагогических ситуаций, связанных с.обучением математике;
— синтез изученных студентами ранее дисциплин: психология развития личности, дидактика, методология научного познания, математика, социология, культурология;
— направленность будущей профессиональной деятельности студента на развитие личности ученика средствами математики;
— формирование субъектного опыта студентов по разработке и проектированию учебных технологий, учитывающих принципы гуманизации, гуманитаризации, уровневой дифференциации.
Основное содержание курса.
Математическое образование. История развития математического образования. Роль общего математического образования в решении задач современной средней школы. Основные принципы среднего математического образования на современном этапе: гуманизация, гуманитаризация, дифференциация, непрерывность.
Понятие методической системы обучения математике: психологическая структура личности и закономерности ее развития, цели, гуманитарно-ориентированное содержание, дидактические процессы, средства, организационные формы.
Цели обучения математике в современной средней школе, их содержание и способы постановки. Иерархия в целях обучения.
Содержание математического образования, его гуманитарная направленность.
Деятельностный подход в обучении математике. Специфика творческой математической деятельности. Организация учебно-познавательной деятельности учащихся с позиций гуманизации, гуманитаризации, личностно-ориентированного обучения.
Познавательные средства в обучении математике. Гипотетико-дедуктивные методы научного познания: аналогия, неполная индукция, обобщение. Роль интуиции в поисковой математической деятельности.
Познавательные средства в обучении математике. Методы доказательств: синтетический, аналитический, от противного, полная индукция, метод исчерпывающих проб, контрапозиция, приведение контрпримера, математическая индукция. Аксиоматический метод в школьном образовании.
Понятие технологического подхода в обучении и возможности его применения в обучении математике.
Основные дидактические единицы математического содержания: понятия и их определения, математические предложения (аксиомы и теоремы), правила (алгоритмы), задачи.
Математические понятия. Научно-педагогические аспекты определения математических понятий. Психологическая основа формирования математических понятий. Эвристические и логические составляющие математической деятельности при работе с определением. Технология организации усвоения математических понятий на уровнях «знание», «понимание», «применение в простейших ситуациях».
Математические предложения: аксиомы и теоремы. Эвристические и логические составляющие математической деятельности при работе с теоремой. Технология организации усвоения теорем на уровнях «Знание», «Понимание», «Применение в простейших ситуациях».
Алгоритмы и алгоритмический подход в обучении математике. Обучение школьников алгоритмической деятельности. Проектирование технологии обучения алгоритмам на основе теории поэтапного формирования умственных действий. Требования к системе упражнений.
Роль задач в обучении математике, в интеллектуальном развитии учащихся. Принципы анализа и отбора задачного материала. Технология работы с ключевой задачей.
Методы обучения математике. Два общедидактических типа обучения математике: объяснительно-репродуктивный и проблемно-развивающий. Роль каждого из них в обучении математике. Пути создания проблемных ситуаций при обучении математике. Специальные методы обучения математике: наглядно-конструктивный и метод УДЕ. Выбор методов обучения.
Организационные формы обучения математике: индивидуальная, парная, групповая. Классно-урочная система; типы уроков математики. Дидактические игры. Лекционно-семинарская система обучения математике. Кружки, факультативы, спецкурсы по математике.
Средства обучения математике. Компьютеризация процесса обучения.
Уровни усвоения математического содержания. Диагностика результатов обучения. Технология разработки тестовых заданий.
Моделирование в обучении математике. Проектирование методических систем обучения математике. Логико-дидактический анализ темы, его основные принципы. Тематическое планирование (модель изучения темы).
Методика преподавание и методы обучения математике в средней образовательной школе.
Ищем педагогов в команду «Инфоурок»
Учитель математики Шараб Насирович Жулиев
Методика преподавание и методы обучения математике в средней образовательной школе.
Математика как наука и как учебный предмет.
Предмет методики преподавания математики.
Методы обучения математики.
Математика как наука и как учебный предмет.
Математика — слово, пришедшее к нам из Древней Греции: mathema переводится как «познание, наука». Математика — это наука о количественных отношениях и пространственных формах действительного мира. Развитие науки и техники заставляет математику непрерывно расширять представления о пространственных формах и количественных отношениях.
Математика как учебный предмет в школе представляет собой элементы арифметики, алгебры, начал математического анализа, евклидовой геометрии плоскости и пространства, аналитической геометрии, тригонометрии.
Обучение учащихся математике направлено: на овладение ими системой математических знаний, умений и навыков, необходимых для дальнейшего изучения математики и смежных учебных предметов решения практических задач; на развитие логического мышления пространственного воображения, устной и письменной математической речи; на формирование навыков вычислений, алгебраических преобразований, решения уравнений и неравенств, а также инструментальных и графических навыков. От математики как науки математика как учебный предмет отличается не только объемом, системой и глубиной изложения, но и прикладной направленностью изучаемых вопросов.
Предмет методики преподавания математики.
В Постановление Президента республики Узбекистан от 05.09.2018 года
О мерах по внедрению новых принципов управления в систему народного образования – отмечается, одним из основных задач в сфере образования является, внедрение в учебно-воспитательный процесс инновационных форм образования, современных педагогических и информационных технологий, эффективных методов профессиональной ориентации, обучения и воспитания с учетом оптимизации учебных, психологических и физических нагрузок учащихся.
Преподавание – это деятельность учителя, направленная на:1) передачу информации ученикам; 2) развитие их познавательной деятельности; 3) воспитание средствами учебного предмета; 4) организацию учебного процесса.
— методика преподавания математики — раздел педагогики, исследующий закономерности обучения математике на определенном уровне ее развития в соответствии с целями обучения подрастающего поколения, поставленными обществом. Цель методики обучения математике заключается в исследовании основных компонентов системы обучения математике в школе и связей между ними. Под основными компонентами понимают цели, содержание, методы, формы и средства обучения математике.
Предметом методики обучения математике являются цели и содержание математического образования, методы, средства и формы обучения математике.
Основными задачами методики преподавания математики являются:
— определение конкретных целей изучения математики по классам, темам, урокам;
— отбор содержания учебного предмета в соответствии с целями и познавательными возможностями учащихся;
— разработка наиболее рациональных методов и организационных форм обучения, направленных на достижение поставленных целей;
— выбор необходимых средств обучения и разработка методики их применения в практике работы учителя математики.
Методика преподавания математики призвана дать ответы на три вопроса: 1.Зачем надо учить математике?
3.Как надо обучать математике?
Зачем надо учить математике?
Цели и задачи курса математики в среднее образовательной школе.
Обучение решению задач. Функции решения задач. Элементы теории математических задач. Методы формирования умений и навыков в процессе решения задач. Смысл аналитико-синтетического метода.
Как надо обучать математике?
3. Развитие мышления и воображения учащимися начальной школы.
4. Методика организации учебного процесса.
При обучении математике следует установить те качества личности ученика, воспитание, формирование которых возможно лишь в процессе обучения именно математике. Установить, ради чего ученики должны изучать именно математику, а не какой-то другой учебный предмет.
Традиционная методика решения задач не обеспечивает формирование у учащихся общих умений и способность к решению задач. Решение задач выполняет следующие функции в обучении математике:
1) решение задач используется для формирования у учащихся нужной мотивации их учебной деятельности, интереса и склонности к этой деятельности;
2) решение задач используется для иллюстрации и конкретизации изучаемого учебного материала;
3) одной из задач обучения является выработка у учащихся определенных умений и навыков (счета, измерения, преобразования различных выражений и т.д.);
4) решение задач есть наиболее адекватное и удобное средство для контроля и оценки учебной работы учащихся;
5) решение задач есть способ приобретения учащимися новых знаний;
6) решение задач – это способ формирования у учащихся общего подхода, общего умения решать любые части.
Когда ученик решает задачу, то его цель – решить задачу, найти ответ. Промежуточные действия, которые он выполняет в процессе решения, могут им актуально не осознаваться, а поэтому умения и тем более навыки в выполнении этих действий не вырабатываются. Прочные умения и навыки в выполнении каких-либо действий вырабатываются только тогда, когда выполнение этих действий является непосредственной целью деятельности человека, а, следовательно, эти действия должны актуально осознаваться.
Очень полезным видом учебных заданий является самостоятельное составление учащимися математических задач. Составление задач способствует лучшему уяснению самих задач, их структуры и механизма решения. Например, в младших классах можно использовать такие задания:
1.Подбор вопроса (требования) к данным условиям. Сколько и какие
вопросы можно поставить, зная данные условия?
2.Подбор условий для данного вопроса, или иначе. Что нужно знать, чтобы ответить на данный вопрос?
3.Составление задачи по рассказу, по краткой ее записи в виде схемы, в виде таблицы, в виде графика.
4.Составление задач, подобных данной.
5. Составление задачи, решение которой состояло бы из двух (трех и т.д.) действий.
6.В текст задачи, в которой числовые данные пропущены, вставить на определенные места возможные числовые данные и т.д.
Очень полезным упражнением является составление обратных задач по отношению к решенной задаче. Обратной задачей называется задача, в которой одним из требований является какое-то известное условие прямой задачи, а это условие заменяется ответом прямой задачи.
Важнейшей задачей обучения математике является развитие мышления и воображения. Кстати, это цель и других дисциплин.
Когда ребенок приходит в школу, у него в некоторой степени развиты лишь два вида мышления: наглядно-действенное и наглядно-образное.
Наглядно-действенное мышление – это первый вид мышления, возникающий у ребенка в самом раннем возрасте.
В дошкольном возрасте у ребенка постепенно развивается второй вид мышления – наглядно-образное, когда ребенок начинает оперировать чувственными образами и представлениями, выявляя тем самым скрытые от наблюдения свойства и отношения объектов познания.
И только в школьном обучении у ребенка начинает развиваться рассуждение, словесно-логическое мышление.
Словесно-логическое мышление (рассуждение) осуществляется с помощью следующих мыслительных действий.
Анализ – мысленное расчленение объекта познания на части с целью установления его свойств и особенностей взаимосвязей этих частей объекта. Ребенок осуществляет анализ практически, расчленяя предмет на части, даже ломая его.
Синтез – мысленное воссоединение отдельных элементов или частей в единое целое.
Следует отметить, что понятия «анализ» и «синтез» часто используются еще для обозначения характера познания объекта. Ребенок сначала воспринимает объект познания как нечто целое (синтетически), не замечая в нем отдельных частей (свойств), а лишь затем, на пороге подросткового возраста переходит к аналитическому взгляду на объекты познания, расчленяя эти объекты на части, выделяя в них отдельные свойства.
В методике математики говорят еще об аналитическом и синтетическом методах решения задач, имея в виду ход рассуждений в процессе решения: от требования к условиям или наоборот, от условий к требованию задачи.
Методы обучения математике и их классификация
Метод (от греч. methodos — путь исследования) — способ достижения цели.
Метод обучения — упорядоченный комплекс дидактических приемов и средств, с помощью которых реализуются цели обучения и воспитания. Методы обучения включают взаимосвязанные, последовательно чередующиеся способы целенаправленной деятельности учителя и учащихся.
Любой метод обучения предполагает цель, систему действий, средства обучения и намеченный результат. Объектом и субъектом метода обучения является ученик.
Какой-либо один метод обучения используется в чистом виде лишь в специально спланированных учебных или исследовательских целях. Обычно преподаватель сочетает различные методы обучения.
Метод обучения — историческая категория. На протяжении всей истории педагогики проблема методов обучения разрешалась с различных точек зрения: через формы деятельности; через логические структуры и функции форм деятельности; через характер познавательной деятельности. Сегодня существуют разные подходы к современной теории методов обучения.
Классификация методов обучения проводится по различным основаниям:
По характеру познавательной деятельности:
объяснительно-иллюстративные (рассказ, лекция, беседа, демонстрация и т.д.);
репродуктивные (решение задач, повторение опытов и т.д.);
проблемные (проблемные задачи, познавательные задачи и т.д.);
По компонентам деятельности:
организационно-действенные — методы организации и осуществления учебно-познавательной деятельности;
стимулирующие — методы стимулирования и мотивации учебно-познавательной деятельности;
контрольно-оценочные — методы контроля и самоконтроля эффективности учебно-познавательной деятельности.
По дидактическим целям:
методы изучения новых знаний;
методы закрепления знаний;
По способам изложения учебного материала:
монологические — информационно-сообщающие (рассказ, лекция, объяснение);
диалогические (проблемное изложение, беседа, диспут).
По формам организации учебной деятельности:
По уровням самостоятельной активности учащихся:
самостоятельная работа учащихся
работа учащихся с помощью учителя
работа учащихся под руководством учителя
По источникам передачи знаний:
словесные (рассказ, лекция, беседа, инструктаж, дискуссия);
наглядные (демонстрация, иллюстрация, схема, показ материала, график);
практические (упражнение, лабораторная работа, практикум).
По учету структуры личности:
сознание (рассказ, беседа, инструктаж, иллюстрирование и др.);
поведение (упражнение, тренировка и т.д.);
чувства — стимулирование (одобрение, похвала, порицание, контроль и т.д.).
Все указанные классификации рассматриваются в дидактическом аспекте; предметное содержание математики учитывается здесь в недостаточной мере, поэтому невозможно отразить всю номенклатуру методов обучения математике.
Педагогическая классификация методов обучения разделяет методы преподавания и методы изучения (учения). Последние, в свою очередь, представлены научными (наблюдение, анализ, синтез и т.д.) и учебными (эвристический, обучение на моделях и др.) методами изучения математики.
Методы преподавания — средства и приемы, способы информации, управления и контроля познавательной деятельности учащихся.
Методы учения — средства и приемы, способы усвоения учебного материала, репродуктивные и продуктивные приемы учения и самоконтроля.
Основными методами математического исследования являются: наблюдение и опыт; сравнение; анализ и синтез; обобщение и специализация; абстрагирование и конкретизация.
Современные методы обучения математике: проблемный (перспективный), лабораторный, программированного обучения, эвристический, построения математических моделей, аксиоматический и др.
Рассмотрим классификацию методов обучения (схема 1).
Преподавание математики в школе
ПЕРВУШКИН БОРИС НИКОЛАЕВИЧ
ЧОУ «Санкт-Петербургская Школа «Тет-а-Тет;
Учитель Математики Высшей категории
Преподавание математики в школе
Введение
Перед преподаванием математики в школе кроме общих целей обучения стоят ещё свои специфические цели, определяемые особенностями математической науки. Одна из них – это формирование и развитие математического мышления. Это способствует выявлению и более эффективному развитию математических способностей школьников, подготавливает их к творческой деятельности вообще и в математике с ее многочисленными приложениями в частности.
Вообще интеллектуальное развитие детей можно ускорить по трём направлениям: понятийный строй мышления, речевой интеллект и внутренний план действий.
Прочное усвоение знаний невозможно без целенаправленного развития мышления, которое является одной из основных задач современного школьного обучения.
Хочется обратить внимание на две главные проблемы дидактики математики: модернизация содержания школьного математического образования и совершенствование структуры курса.
Быстрый рост объема научной информации, ограниченность срока школьного обучения и невозможность сокращения объема изучаемых в школе основ науки с целью включения новой информации усложняют проведение реформ по модернизации школьного образования, а поэтому готовить их придется в течение более длительного времени, тщательно и строго на научной основе.
Имеют место успешные эксперименты по модернизации курса начальных классов и изучению в нем начал алгебры, что позволило дать значительную пропедевтику алгебры и геометрии в I-V классах, позволяющую изучить систематические курсы этих предметов в более быстром темпе и перенести ряд тем из старших классов в средние; включить в программу старших классов элементы высшей математики. Таким образом, улучшение системы курса возможно и в период между реформами, т.е. независимо от модернизации образования.
Мы не беремся решать эти вопросы, т.к. работаем в более узком направлении, предлагая на данном этапе ввести в общеобразовательный курс тему «Комплексные числа».
Говоря об алгебраической культуре, заметим, что некоторые разделы алгебры, которые иногда даже не рассматриваются в математических классах, целесообразно вводить в общеобразовательную программу. Так, например, понятие числа в школе заканчивается изучением действительных чисел, что можно считать существенным пробелом в математической подготовке учащихся, т.к. более естественным является формирование понятия комплексного числа.
Борьба за сознание учащихся твердой убежденности в научной обоснованности и даже неизбежности введения комплексных чисел вполне возможна и может вестись по нескольким различным линиям, учитывая то, что учащиеся обладают уже достаточно зрелым математическим развитием. В старших классах они в состоянии уже понимать и уважать нужды самой математической науки, являющейся косвенным проявлением нужд и запросов самой практики.
Взаимосвязь учителя и ученика происходит в виде передачи информации в двух противоположных направлениях: от учителя к ученику (прямая), от учения к учителю (обратная).
исследовать особенности математического мышления школьников;
исследовать учебные пособия для 5го – 11го классов
Глава 1 Понятие и особенности обучения математике
1.1Математика как учебный предмет
Первые сведения об учении детей простейшим вычислениям встречаются в источниках по истории стран Древнего Востока. Большое влияние на развитие школьного математического образования оказала математическая культура Древней Греции, где уже в 5 веке до н.э. в связи с развитием торговли, мореплавания, ремёсел в начальной школе изучались счёт и практическая геометрия.
Содержание учебного предмета математики меняется со временем в связи с расширением целей образования, появления новых требований к школьной подготовке, изменением стандартов образования1.
Кроме того, непрерывное развитие самой науки, появление новых ее отраслей и направлений влечет за собой также обновление содержания образования: сокращаются разделы, не имеющие практическую ценность, вводятся новые перспективные и актуальные темы. Вместе с тем, не стоят на месте и педагогические науки, новый педагогический опыт вводится в практику работы массовой школы.
Учебный предмет математики в школе представляет собой элементы арифметики, алгебры, начал математического анализа, евклидовой геометрии плоскости и пространства, аналитической геометрии, тригонометрии.
Обучение учащихся математике направлено на овладение учащимися системой математических знаний, умений и навыков, необходимых для дальнейшего изучения математики и смежных учебных предметов и решения практических задач, на развитие логического мышления, пространственного воображения, устной и письменной математической речи, формирование навыков вычислений, алгебраических преобразований, решения уравнений и неравенств, инструментальных и графических навыков.
Математика как учебный предмет отличается от математики как науки не только объёмом, системой и глубиной изложения, но и прикладной направленностью изучаемых вопросов.
Современный этап развития математики как учебного предмета характеризуется: жёстким отбором основ содержания; чётким определением конкретных целей обучения, межпредметных связей, требованиями к математической подготовке учащихся на каждом этапе обучения; усилением воспитывающей и развивающей роли математики, её связи с жизнью; систематическим формированием интереса учащихся к предмету и его приложениям2.
Дальнейшее совершенствование содержания школьного математического образования связано с требованиями, которые предъявляет к математическим знаниям учащихся практика: промышленность, производство, военное дело, сельское хозяйство, социальное переустройство и т.д.
Движение за гуманизацию, демократизацию и деидеологизацию среднего образования, характерное для развития отечественной педагогики 90-х годов, оказало определённое влияние и на содержание школьного математического образования. Идея дифференциации обучения проявилась в возникновении в Российской Федерации относительно нового типа школ (лицеев, гимназий, колледжей и др.) или классов различных направлений (гуманитарного, технического, экономического, физико-математического и др.). В связи с существенными различиями в построении курса математики для школ разного профиля возникает актуальная проблема «математического стандарта», под которым понимается содержание и уровень математической подготовки.
1.2 Предмет методики преподавания математики
Существуют разные точки зрения на содержание понятия «методика». Одни, признавая методику наукой педагогической, рассматривали ее как частную дидактику с общими для всех предметов принципами обучения. Другие считали методику специальной педагогической наукой, решающей все задачи обучения и развития личности через содержание предмета. Приведем несколько примеров определений.
Методика обучения математике – это педагогическая наука о задачах, содержании и методах обучения математике. Она изучает и исследует процесс обучения математике в целях повышения его эффективности и качества. Методика обучения математике рассматривает вопрос о том, как надо преподавать математику.
Методика преподавания математики в средней школе возникла с целью поиска педагогически целесообразных путей и способов изложения учебного материала. Методика преподавания математики начала разрабатываться чешским учёным Я.А. Коменским. Методика обучения математике впервые выделилась как самостоятельная дисциплина в книге швейцарского учёного И.Г. Песталоцци «Наглядное учение о числе» (1803, русский перевод 1806). Первым пособием по методике математики в России стала книга Ф.И. Буссе «Руководство к преподаванию арифметики для учителей» (1831). Создателем русской методики арифметики для народной школы считается П.С. Гурьев, который критерием правильности решения методических проблем признавал опыт и практику.
Цель методики обучения математике заключается в исследовании основных компонентов системы обучения математике в школе и связей между ними. Под основными компонентами понимаются: цели, содержание, методы, формы и средства обучения математике.
Предмет методики обучения математике отличается исключительной сложностью. Предметом методики обучения математике является обучение математике, состоящее из целей и содержания математического образования, методов, средств, форм обучения математике.
На функционирование системы обучения математике оказывает влияние ряд факторов: общие цели образования, гуманизация и гуманитаризация образования, развитие математики как науки, прикладная и практическая направленность математики, новые образовательные идеи и технологии, результаты исследований в психологии, дидактике, логике и т.д. Совокупность этих факторов образует внешнюю среду, которая оказывает непосредственное влияние на систему обучения математике. Многие компоненты внешней среды воздействуют на нее через цели обучения математике.
Методика преподавания математики претерпевает в своем развитии большие трудности, прежде всего, из-за сложностей преодоления разрыва между школьной математикой и математической наукой, а также из-за того, что она является пограничным разделом педагогики на стыке философии, математики, логики, психологии, биологии, кибернетики и, кроме того, искусства.
В методике преподавания математики, в практике обучения предмету находят свое отражение особенности многовековой истории развития математики от глубокой древности до наших дней. Для глубокого понимания методических закономерностей студентам необходимо знать историю развития методики преподавания математики.
1.3 Основные задачи методики преподавания математики
Определить конкретные цели изучения математики по классам, темам урокам.
Отбирать содержание учебного предмета в соответствии с целями и познавательными возможностями учащихся.
Разработать наиболее рациональные методы и организационные формы обучения, направленные на достижение поставленных целей.
Рассмотреть необходимые средства обучения и разработать рекомендации по их применению в практике работы учителя.
Методика преподавания математики призвана дать ответы на следующие три вопроса: Зачем надо учить математике? Что надо изучать? Как надо обучать математике?
Предусмотренное программой содержание школьного математического образования, несмотря на происходящие в нем изменения, в течение достаточно длительного времени сохраняет свое основное ядро. Такая устойчивость основного содержания программы объясняется тем, что математика, приобретая в своем развитии много нового, сохраняет и все ранее накопленные научные знания, не отбрасывая их как устаревшие и ставшие ненужными. Каждый из вошедших в это “ядро” разделов имеет свою историю развития как предмет изучения в средней школе. Вопросы их изучения подробно рассматриваются в специальной методике преподавания математики3.
Выделенное ядро школьного курса математики составляет основу его базисной программы, которая является исходным документом для разработки тематических программ. В тематической программе для средней школы, кроме распределения учебного материала по классам, излагаются требования к знаниям, умениям и навыкам учащихся, раскрываются межпредметные связи, даются примерные нормы оценок.
За рубежом, в школах развитых стран, значительное место в программах по математике отводится теории вероятностей и статистике. В программах школ Японии раздел «Статистика» является основным уже в 1-м классе начальной школы. Элементы теории вероятностей на строгой математической основе вводятся в старших классах школ Бельгии и Франции. Геометрия как самостоятельный учебный предмет во многих школах не изучается, отдельные её вопросы включены в курс арифметики, алгебры и начал математического анализа.
В большинстве развитых стран математическое образование на старшей ступени общеобразовательной подготовки дифференцировано в соответствии с определенным профилем специализации. На всех ступенях обучения большую роль играет развитие функциональных представлений, овладение математическими методами, формирование исследовательских навыков.
В качестве недостатков традиционного обучения можно выделить:
преобладание словесных методов изложения, способствующих распылению внимания и невозможности его акцентирования на сущности учебного материала;
средний темп изучения математического материала;
большой объем материала, требующего запоминания;
недостаток дифференцированных заданий по математике и др.
Недостатки традиционного обучения можно устранить путем усовершенствования процесса ее преподавания.
Любой метод обучения предполагает цель, систему действий, средства обучения и намеченный результат. Объектом и субъектом метода обучения является ученик.
Очень редко какой-либо один метод обучения используется в чистом виде. Обычно преподаватель сочетает различные методы обучения. Методы в чистом виде применяют лишь в специально спланированных учебных или исследовательских целях.
Классификация методов обучения проводится по различным основаниям:
По характеру познавательной деятельности (М.Н. Скаткин, М.И. Махмутов, И.Я. Лернер):
• объяснительно-иллюстративные (рассказ, лекция, беседа, демонстрация и т.д.);
• репродуктивные (решение задач, повторение опытов и т.д.);
• проблемные (проблемные задачи, познавательные задачи и т.д.);
• частично-поисковые – эвристические;
• исследовательские.
По компонентам деятельности (Ю.К. Бабанский):
• организационно-действенному – методы организации и осуществления учебно-познавательной деятельности;
• стимулирующему – методы стимулирования и мотивации учебно-познавательной деятельности;
• контрольно-оценочному – методы контроля и самоконтроля эффективности учебно-познавательной деятельности.
По дидактическим целям (методы изучения новых знаний, методы закрепления знаний, методы контроля).
По формам организации учебной деятельности.
По уровням самостоятельной активности учащихся.
По источникам передачи знаний ( А.А, Вагин, П.В. Гора):
• словесные: рассказ, лекция, беседа, инструктаж, дискуссия;
• наглядные: демонстрация, иллюстрация, схема, показ материала, график;
• практические: упражнение, лабораторная работа, практикум.
По учету структуры личности (сознания, поведение, чувства):
• сознание (рассказ, беседа, инструктаж, иллюстрирование и др.);
• поведение (упражнение, тренировка и т.д.);
• чувства – стимулирование (одобрение, похвала, порицание, контроль и т.д.).
Новое содержание образования порождает новые методы в обучении математике. Необходим комплексный подход в применении методов обучения, их гибкость и динамичность.
Основными методами математического исследования являются: наблюдение и опыт; сравнение; анализ и синтез; обобщение и специализация; абстрагирование и конкретизация.
Современные методы обучения математике: проблемный (перспективный) метод; лабораторный метод; метод программированного обучения; эвристический метод; метод построения математических моделей, аксиоматический метод и др.
Информационно-развивающие методы обучения разделяются на два класса:
а) передача информации в готовом виде (лекция, объяснение, демонстрация учебных кинофильмов и видеофильмов, слушание магнитозаписей и др.);
К проблемно-поисковым методам относятся: проблемное изложение учебного материала (эвристическая беседа), учебная дискуссия, лабораторная поисковая работа (предшествующая изучению материала), организация коллективной мыслительной деятельности (КМД) в работе малыми группами, организационно-деятельностная игра, исследовательская работа.
Репродуктивные методы: пересказ учебного материала, выполнение упражнения по образцу, лабораторная работа по инструкции, упражнения на тренажерах.
Творчески-репродуктивные методы: сочинение, вариативные упражнения, анализ производственных ситуаций, деловые игры и другие виды имитации профессиональной деятельности.
Методы обучения постоянно дополняются современными методами обучения, главным образом ориентированными на обучение не готовым знаниям, а деятельности по самостоятельному приобретению новых знаний, т.е. познавательной деятельностью4.
Глава 2 Цели и содержание обучения математике
2.1 Основные цели обучения математике
Овладение всеми учащимися элементами мышления и деятельности, которые наиболее ярко проявляются в математической ветви человеческой культуры и которые необходимы каждому для полноценного развития в современном обществе.
Создание условий для зарождения интереса к математике и развития математических способностей одаренных школьников.
Цели обучения математике (в узком смысле ) : общеобразовательные, воспитательные, развивающие.
Общеобразовательные цели: овладение учащимися системой математических знаний, умений и навыков, дающей представление о предмете математики, о математических приемах и методах познания, применяемых в математике.
Воспитательные цели: воспитание активности, самостоятельности, ответственности; воспитание нравственности, культуры общения; воспитание эстетической культуры, воспитание графической культуры школьников.
Развивающие цели: формирование мировоззрения учащихся, логической и эвристической составляющих мышления, алгоритмического мышления; развитие пространственного воображения.
Цели обучения могут формулироваться по-разному в зависимости от их ориентации. Например, можно определить цель обучения через деятельность учителя; через учебную деятельность учащихся.
Достижение целей обучения математике определяется функциями обучения математике.
2.2Основные дидактические принципы в обучении математике
Задачи дидактики состоят в том, чтобы: описывать и объяснять процесс обучения и условия его реализации; разрабатывать более совершенную организацию процесса обучения, новые обучающие системы и технологии. В дидактике обобщены те положения в обучении той или иной учебной дисциплине, которые имеют универсальный характер.
Дидактические принципы обучения математике представляют по существу совокупность единых требований, которым должно удовлетворять обучение математике: принцип научности; принцип воспитания; принцип наглядности; принцип доступности; принцип сознательности и активности; принцип прочности усвоения знаний; принцип систематичности; принцип последовательности; принцип учета возрастных особенностей; принцип индивидуализации обучения; принцип воспитывающего обучения.
В основу концепции математического образования сегодня положены следующие принципы:
— научности в обучении математике;
— сознательности, активности и самостоятельности в обучении математике;
— доступности в обучении математике;
— наглядности в обучении математике;
— всеобщность и непрерывность математического образования на всех ступенях средней школы;
— преемственность и перспективность содержания образования, организационных форм и методов
обучения;
— систематичности и последовательности;
— системности математических знаний;
— дифференциация и индивидуализация математического образования, создание таких условий, при которых возможен свободный выбор уровня изучения математики;
— гуманизация математического образования;
— усиление воспитательной функции обучения математике;
— практической направленности обучения математике;
— применения альтернативного учебно-методического обеспечения;
— компьютеризации обучения и т.д.
Информационно-развивающие методы обучения разделяются на два класса:
а) передача информации в готовом виде (лекция, объяснение, демонстрация учебных кинофильмов и видеофильмов, слушание магнитозаписей и др.);
К проблемно-поисковым методам относятся: проблемное изложение учебного материала (эвристическая беседа), учебная дискуссия, лабораторная поисковая работа (предшествующая изучению материала), организация коллективной мыслительной деятельности (КМД) в работе малыми группами, организационно-деятельностная игра, исследовательская работа.
Репродуктивные методы: пересказ учебного материала, выполнение упражнения по образцу, лабораторная работа по инструкции, упражнения на тренажерах.
Творчески-репродуктивные методы: сочинение, вариативные упражнения, анализ производственных ситуаций, деловые игры и другие виды имитации профессиональной деятельности.
Методы обучения постоянно дополняются современными методами обучения, главным образом ориентированными на обучение не готовым знаниям, а деятельности по самостоятельному приобретению новых знаний, т.е. познавательной деятельностью5.
2.3 Формы обучения математике
Важную роль в учебном процессе играют формы организации обучения или виды обучения, в качестве которых выступают устойчивые способы организаци педагогического процесса.
Основной формой организации учебно-воспитательной работы с учащимися в школе является урок.
Урок – это занятие с классом учеников, продолжительностью 40-45 минут. Количество таких занятий определяет учебный план школы а их содержание – госстандарт и школьные программы.
Выделяют четыре основных типа уроков:
— урок по ознакомлению с новым материалом;
— урок по закреплению изученного материала;
— урок проверки знаний, умений и навыков;
— урок по систематизации и обобщению изученного материала.
В практике обучения часто говорят как о самостоятельных видах об уроках-лекциях, уроках самостоятельной работы учащихся, уроках общественного смотра знаний и др.
Бесспорно, что ни одна из классификаций не может всесторонне и исчерпывающе охарактеризовать урок.
В качестве совета начинающему учителю можно рекомендовать как можно чаще посещать уроки опытных учителей, анализировать их приемы работы и практиковать наиболее рациональные в своей деятельности.
5. Нетрадиционные формы уроков
• Урок-лекция «Парадокс»
• Урок-«Эврика»
• Урок-сочинение
• Урок-аукцион
• Урок-деловая игра
• Игра-обобщение
• Урок-пресс-конференция
• Урок-диспут
• Уроки-творчества
• Урок-творческий отчет
• Урок-«общественный смотр знаний»
• Урок-соревнование
• Урок-соревнование (алгебра)
• Урок-турнир
• Урок типа «КВН»
• Урок «Что? Где? Когда?»
• Урок-эстафета
• Урок взаимообучения учащихся
• Уроки, которые ведут ученики
• Урок-экскурсия
• Урок-заочная экскурсия
• Урок-консультация
• Компьютерные игры
• Групповой урок внеклассного чтения
• Конференция старшеклассников
• Урок-семинар
• Урок-бенефис
• Уроки книжной панорамы
• Уроки обобщения (ролевая игра, устный журнал)
• Уроки решения задач
• Урок-эссе
• «Атака мыслей»
• Бинарный урок
• Консультанты на опросе
• Конспект-лекция
• Круглый стол
• Лекция-дискуссия
• Лекция-консультация
• Лекция с обратной связью
• «Определение понятий»
• Проблемное изложение
• Методика поабзацной проработки текста
• «Синтез мыслей»
• Лекция «Улучшить и повторить»
• Конференция однородных групп
• Урок-лабиринт
• Урок-путешествие
В результате проведенной работы можно предложить несколько методических рекомендаций к курсу математики:
В целях совершенствования преподавания математики целесообразна дальнейшая разработка новых методик использования нестандартных задач.
Систематически использовать на уроках задачи, способствующие формированию у учащихся познавательного интереса и самостоятельности.
Осуществляя целенаправленное обучение школьников решению задач, с помощью специально подобранных упражнений, учить их наблюдать, пользоваться аналогией, индукцией, сравнениями и делать соответствующие выводы.
Целесообразно использование на уроках задач на сообразительность, задач-шуток, математических ребусов, софизмов.
Учитывать индивидуальные особенности школьника, дифференциацию познавательных процессов у каждого из них, используя задания различного типа.
Умение учителя возбуждать, укреплять и развивать познавательные интересы учащихся в процессе обучения состоит в умении сделать содержание своего предмета богатым, глубоким, привлекательным, а способы познавательной деятельности учащихся разнообразными, творческими, продуктивными. Целью данной курсовой работы было показать, что уроки математики могут быть не только полезными и содержательными, но столь же увлекательными и интересными6.
Прочное усвоение знаний является главной задачей процесса обучения, но это очень сложный процесс. В него входят восприятие учебного материала, его запоминание и осмысливание, а также возможность использования этих знаний в различных условиях.
Многочисленные факты наблюдения педагогов и психологов, связанные с уроками математики, свидетельствуют о том, что в педагогической практике выработке у каждого ученика необходимых навыков самоконтроля уделяется крайне недостаточно внимания, а нередко оно просто отсутствует. В то время как и при отличных знаниях теории и умении применять ее нельзя полностью гарантировать себя от ошибок, и младшие школьники, даже зная как следует контролировать себя, не всегда производят действие самоконтроля. Поэтому они нуждаются в специальном побуждении, чтобы самоконтроль имел место в их учебной работе, чтобы они обращались к способам действия, обращались к образцу действия. Следовательно, надо учить учащихся самоконтролю.
Преподавание математики не может стоять на должном уровне, а знания учащихся не будут достаточно полными и прочными, если в работе учителя отсутствует система повторительно-обобщающих уроков.
Это объясняется психологическими особенностями процесса познания и свойств памяти. Только постоянное в определенной системе осуществляемое включение новых знаний в систему прежних знаний может обеспечить достаточно высокое качество усвоения предмета. Только через повторение можно приходить к логическим выводам. Без повторения невозможно, раскрыть сущность вещей и явлений, их развитие. Не даром говорят: «Повторение — мать учения».
Список использованной литературы
1. Епишева О.Б. Общая методика преподавания математики в средней школе / Тобольск, Изд-во ТГПИ им. Д.И. Менделеева, 1997
2. Ермолаева Н.А. Маслова Г. Г. Новое в курсе математики средней школы / М:, Просвещение, 1978.
3. Журнал «Математика в школе «.
5. Колягин Ю.М., Луканкин Г.Л., Мокрушин Е.Л. и другие. Методика преподавания математики в средней школе. Частные методики / М., Просвещение, 1977.
7. Программы школьных факультативов по математике.
9. Новосельцева З.И. Развернутые планы лекций и учебные задания для студентов по курсу «Теоретические основы обучения математике»/ С.-Петербург, Изд-во «Образование», РГПУ, 1997
10. Рогановский Н.М. Методика преподавания математики в средней школе / Минск, Изд-во «Высшая школа», 1990
11. Учебники для средней школы и соответствующие пособия для учителя.
12. Черкасов Р.С., Столяр А.А. Методика преподавания математики в средней школе / Москва, Изд-во «Просвещение», 1985
1 Колягин Ю.М., Луканкин Г.Л., Мокрушин Е.Л. и другие. Методика преподавания математики в средней школе. Частные методики / М., Просвещение, 1997
4 Новосельцева З.И. Развернутые планы лекций и учебные задания для удентов по курсу «Теоретические основы обучения математике»/ С.-Петербург, Изд-во «Образование», РГПУ, 1997
5 12. Черкасов Р.С., Столяр А.А. Методика преподавания математики в средней школе / Москва, Изд-во «Просвещение», 1985
