к нисходящим путям продолговатого мозга относятся
К нисходящим путям продолговатого мозга относятся
Medulla oblongata имеет вид луковицы, bulbus cerebri (отсюда термин «бульбарные расстройства»); верхний расширенный конец граничит с мостом, а нижней границей служит место выхода корешков I пары шейных нервов или уровень большого отверстия затылочной кости.
1. На передней (вентральной) поверхности продолговатого мозга по средней линии проходит fissura mediana anterior, составляющая продолжение одноименной борозды спинного мозга. По бокам ее на той и другой стороне находятся два продольных тяжа — пирамиды, pyramides medullae oblongatae, которые как бы продолжаются в передние канатики спинного мозга.
Составляющие пирамиды пучки нервных волокон частью перекрещиваются в глубине fissura mediana anterior с аналогичными волокнами противоположной стороны — decussatio pyramidum, после чего спускаются в боковом канатике на другой стороне спинного мозга — tractus corticospinal (pyramidalis) lateralis, частью остаются неперекрещенными и спускаются в переднем канатике спинного мозга на своей стороне — tractus corticospinalis (pyramidalis) anterior.
Пирамиды отсутствуют у низших позвоночных и появляются по мере развития новой коры; поэтому они наиболее развиты у человека, так как пирамидные волокна соединяют кору большого мозга, достигшую у человека наивысшего развития, с ядрами черепных нервов и передними рогами спинного мозга,
Латерально от пирамиды лежит овальное возвышение — оливa, oliva, которая отделена от пирамиды бороздкой, sulcus anterolateral.
2. На задней (дорсальной) поверхности продолговатого мозга тянется sulcus medianus posterior — непосредственное продолжение одноименной борозды спинного мозга. По бокам ее лежат задние канатики, ограниченные латерально с той и другой стороны слабо выраженной sulcus posterolaterals. По направлению кверху задние канатики расходятся в стороны и идут к мозжечку, входя в состав его нижних ножек, pedunculi cerebellares inferiores, окаймляющих снизу ромбовидную ямку.
Каждый задний канатик подразделяется при помощи промежуточной борозды на медиальный, fasciculus gracilis, и латеральный, fasciculus cuneatus. У нижнего угла ромбовидной ямки тонкий и клиновидный пучки приобретают утолщения — tuberculum gracilum и tuberculum cuneatum. Эти утолщения обусловлены соименными с пучками ядрами серого вещества, nucleus gracilis и nucleus cuneatus.
В названных ядрах оканчиваются проходящие в задних канатиках восходящие волокна спинного мозга (тонкий и клиновидный пучки). Латеральная поверхность продолговатого мозга, находящаяся между sulci posterolateralis et anterolateralis, соответствует боковому канатику. Из sulcus posterolateralis позади оливы выходят XI, X и IX пары черепных нервов. В состав продолговатого мозга входит нижняя часть ромбовидной ямки.


Внутреннее строение продолговатого мозга. Продолговатый мозг возник в связи с развитием органов гравитации и слуха, а также в связи с жаберным аппаратом, имеющим отношение к дыханию и кровообращению. Поэтому в нем заложены ядра серого вещества, имеющие отношение к равновесию, координации движений, а также к регуляции обмена веществ, дыхания и кровообращения.
1. Nucleus olivaris, ядро оливы, имеет вид извитой пластинки серого вещества, открытой медиально (hilus), и обусловливает снаружи выпячивание оливы. Оно связано с зубчатым ядром мозжечка и является промежуточным ядром равновесия, наиболее выраженным у человека, вертикальное положение которого нуждается в совершенном аппарате гравитации. (Встречается еще nucleus olivaris accessorius medialis.)
2. Formatio reticularis, ретикулярная формация, образующаяся из переплетения нервных волокон и лежащих между ними нервных клеток.
3. Ядра четырех пар нижних черепных нервов (XII —IX), имеющие отношение к иннервации производных жаберного аппарата и внутренностей.




Белое вещество продолговатого мозга содержит длинные и короткие волокна. К длинным относятся проходящие транзитно в передние канатики спинного мозга нисходящие пирамидные пути, частью перекрещивающиеся в области пирамид. Кроме того, в ядрах задних канатиков (nuclei gracilis et cuneatus) находятся тела вторых нейронов восходящих чувствительных путей. Их отростки идут от продолговатого мозга к таламусу, tractus bulbothalamicus.
Волокна этого пучка образуют медиальную петлю, lemniscus medialis, которая в продолговатом мозге совершает перекрест, decussatio lemniscorum, и в виде пучка волокон, расположенных дорсальнее пирамид, между оливами — межоливныи петлевой слой — идет далее. Таким образом, в продолговатом мозге имеется два перекрестка длинных проводящих путей: вентральный двигательный, decussatio pyramidum, и дорсальный чувствительный, decussatio lemniscorum.
К коротким путям относятся пучки нервных волокон, соединяющие между собой отдельные ядра серого вещества, а также ядра продолговатого мозга с соседними отделами головного мозга. Среди них следует отметить tractus olivocerebellaris и лежащий дорсально от межоливного слоя fasciculus longitudinalis medialis.
Топографические взаимоотношения главнейших образований продолговатого мозга видны на поперечном срезе, проведенном на уровне олив. Отходящие от ядер подъязычного и блуждающего нервов корешки делят продолговатый мозг на той и другой стороне на три области: заднюю, боковую и переднюю. В задней лежат ядра заднего канатика и нижние ножки мозжечка, в боковой — ядро оливы и formatio reticularis и в передней — пирамиды.
К нисходящим путям продолговатого мозга относятся
Существуют следующие нисходящие проводящие пути:
• корково-спинномозговой проводящий путь (пирамидный проводящий путь);
• ретикуло-спинномозговой проводящий путь (экстрапира-мидный путь);
• преддверно-спинномозговой проводящий путь;
• покрышечно-спинномозговой проводящий путь;
• шовно-спинномозговой проводящий путь;
• проводящие пути аминергических систем ЦНС;
• проводящие пути вегетативной нервной системы.
Корково-спинномозговой проводящий путь
Корково-спинномозговой проводящий путь представляет собой крупный проводящий путь произвольной двигательной активности. Около 40 % его волокон начинается из первичной моторной коры прецентральной извилины. Остальные волокна берут начало из дополнительной моторной области на медиальной стороне полушария, премоторной коры головного мозга на латеральной стороне полушария, соматической сенсорной коры, коры теменной доли и коры поясной извилины. Волокна от двух вышеупомянутых сенсорных центров заканчиваются на чувствительных ядрах ствола головного мозга и спинного мозга, где они регулируют передачу чувствительных импульсов.
Корково-спинномозговой проводящий путь спускается вниз через лучистый венец и заднюю ножку внутренней капсулы к стволу головного мозга. Затем он проходит в ножке (головного мозга) на уровне среднего мозга и базилярной части моста, достигая продолговатого мозга. Здесь он образует пирамиду (отсюда название — пирамидный проводящий путь).

Дополнительная моторная область на медиальной стороне полушария.
Стрелкой показан уровень перекреста пирамид. Чувствительные нейроны выделены синим цветом. 
демонстрирующий неокрашенные корково-спинномозговые волокна, идущие через ядра моста в сторону пирамид.
Характеристика волокон корково-спинномозгового пути выше уровня спинномозгового перехода:
• около 80 % (70-90 %) волокон переходят на противоположную сторону на уровне перекреста пирамид;
• эти волокна спускаются по противоположной стороне спинного мозга и составляют латеральный корково-спинномозговой проводящий путь (перекрещивающийся корково-спинномозговой проводящий путь); оставшиеся 20 % волокон не перекрещиваются и продолжают спускаться вниз в передней части спинного мозга;
• половина из этих неперекрещивающихся волокон вступает в передний/вентральный корково-спинномозговой проводящий путь и располагается в вентральном/переднем канатике спинного мозга на шейном и верхнем грудном уровнях; данные волокна переходят на противоположную сторону на уровне белой спайки и иннервируют мышцы передней и задней стенок брюшной полости;
• другая половина вступает в латеральный корково-спинномозговой проводящий путь на своей половине спинного мозга.
Считают, что корково-спинномозговой проводящий путь содержит около 1 млн. нервных волокон. Средняя скорость проведения импульса составляет 60 м/с, что указывает на средний диаметр волокна, равный 10 мкм («правило шести»). Около 3 % волокон — очень крупные (до 20 мкм); они отходят от гигантских нейронов (клетки Беца), расположенных в основном в области двигательной коры, отвечающей за иннервацию нижних конечностей. Все волокна корково-спинномозгового пути — возбуждающие и в качестве медиатора используют глутамат.

КСП — корково-спинномозговой проводящий путь;
ПКСТ — передний корково-спинномозговой проводящий путь;
ЛКСП — латеральный корково-спинномозговой проводящий путь.
Обратите внимание: показан только двигательный компонент; компоненты теменной доли опущены.
Клетки-мишени латерального корково-спинномозгового пути:
а) Мотонейроны дистальных отделов конечностей. В передних рогах серого вещества спинного мозга аксоны латерального корково-спинномозгового пути могут непосредственно образовывать синапсы на дендритах α- и γ-мотонейронов, иннервирующих мышцы конечностей, особенно верхних (однако, как правило, это происходит через интернейроны в пределах серого вещества спинного мозга). Отдельные аксоны латерального корково-спинномозгового пути могут активировать «большие» или «малые» двигательные единицы.
Двигательная единица — это комплекс, состоящий из нейрона переднего рога спинного мозга и всех мышечных волокон, которые этот нейрон иннервирует. Нейроны малых двигательных единиц избирательно иннервируют небольшое количество мышечных волокон и участвуют в выполнении тонких и точных движений (например, при игре на пианино). Нейроны переднего рога, иннервирующие крупные мышцы (например, большую ягодичную мышцу), способны по отдельности вызвать сокращение сотни мышечных клеток сразу, так эти мышцы отвечают за грубые и простые движения.
Уникальное свойство этих корковомотонейронных волокон латерального корково-спинномозгового пути демонстрирует понятие «фракционирования», относящееся к переменной активности интернейронов, в результате чего небольшие группы нейронов могут быть избирательно активированы для выполнения конкретной общей функции. Это легко показать на указательном пальце, который может быть согнут или разогнут независимо от положения других пальцев (хотя три из его длинных сухожилий имеют общее начало с мышечным ложем всех четырех пальцев).
Фракционирование имеет большое значение при выполнении привычных движений, таких как застегивание пальто или завязывание шнурков. Травматическое или другое повреждение корковомотонейронной системы на любом уровне влечет за собой утрату навыков выполнения привычных движений, которые затем редко поддаются восстановлению.
При выполнении данных движений α- и γ-мотонейроны активируются совместно через латеральный корково-спинномозговой проводящий путь таким образом, что веретена мышц, первично задействованных в движении, посылают импульсы об активном растяжении, а веретена мышц-антагонистов — о пассивном растяжении.

Продемонстрированы три группы нервных волокон левой пирамиды.
б) Клетки Реншоу. Функции синапсов латерального корково-спинномозгового пути на клетках Реншоу довольно многочисленны, так как торможение на некоторых клеточных синапсах главным образом происходит за счет интернейронов типа Iа; на других синапсах данную функцию выполняют клетки Реншоу. Вероятно, наиболее важная функция — контроль совместного сокращения основных движущих мышц и их антагонистов для фиксации одного или нескольких суставов, например при работе с кухонным ножом или лопатой. Совместное сокращение происходит за счет инактивации ингибирующих интернейронов Iа клетками Реншоу.
в) Возбуждающие интернейроны. Латеральный корково-спинно-мозговой проводящий путь влияет на деятельность двигательных нейронов, расположенных в средней части серого вещества и в основании переднего рога спинного мозга, иннервирующих осевые (позвоночные) мышцы и мышцы проксимальных отделов конечностей посредством возбуждающих интернейронов. г) la-ингибирующие интернейроны. Эти нейроны также расположены в средней части серого вещества спинного мозга и активируются латеральным корково-спинномозговым путем в первую очередь при совершении произвольных движений.
Активность Ia-интернейронов способствует расслаблению мышц-антагонистов до того, как начнут сокращаться мышцы-агонисты. Кроме того, они вызывают рефрактерность мотонейронов мышц-антагонистов к стимуляции афферентами нервно-мышечного веретена при их пассивном растяжении во время движения. Последовательность процессов при произвольном сгибания коленного сустава показана на рисунке ниже.
(Обратите внимание на терминологию: в спокойном положении стоя колени человека «закрыты» в небольшом переразгибании, а четырехглавая мышца бедра находится в неактивном состоянии, о чем свидетельствует «свободное» положение надколенника. При попытке сгибания одного или обоих колен происходит подергивание четырехглавой мышцы бедра в ответ на пассивное растяжение в ней десятков мышечных веретен. Поскольку таким образом происходит сопротивление сгибанию, рефлекс называют рефлексом сопротивления.
С другой стороны, во время произвольного сгибания коленного сустава мышцы способствуют данному движению с помощью такого же механизма, но уже через рефлекс помощи. Изменение знака с отрицательного на положительный называют рефлексом перемены направления.)
д) Пресинаптические ингибиторные нейроны, обеспечивающие рефлекс растяжения. Рассмотрим движения спринтера. На каждом шаге сила тяжести тянет его тело вниз, на выпрямленное четырехглавой мышцей колено. В момент соприкосновения с землей все нервно-мышечные веретена в сокращенной четырехглавой мышце резко растягиваются, в результате чего возникает опасность разрыва мышцы. Сухожильный орган Гольджи обеспечивает некоторую защиту посредством внутреннего торможения, однако основной защитный механизм обеспечивает латеральный корково-спинномозговой путь через пресинаптическое торможение афферентов веретен вблизи их контакта с мотонейронами.
В то же время удлинение паузы до ахиллового рефлекса служит преимуществом в этой ситуации, так как происходит восстановление мотонейронов, иннервирующих заднюю часть голени, для следующего рывка. Предполагают, что степень подавления рефлекса растяжения со стороны латерального корково-спинномозгового пути зависит от конкретных движений.
е) Пресинаптическое ингибирование чувствительных нейронов первого порядка. В заднем роге серого вещества спинного мозга существует некоторое подавление передачи чувствительных импульсов в спиноталамический проводящий путь при совершении произвольных движений. Это происходит путем активации синапсов, образованных ингибирующими вставочными нейронами и первичными чувствительными нервными окончаниями.
Еще более тонкую регуляцию наблюдают на уровне тонкого и клиновидного ядер, где волокна пирамидного пути (после пересечения) способны усиливать передачу чувствительных импульсов во время медленных аккуратных движений или ослаблять ее во время совершения быстрых движений.

(1) Активация la интернейронов ингибирует их антагонисты-α-мотонейроны.
(2) Активация агонистов α- и γ-мотонейронов.
(3) Активация экстрафузальных и интрафузальных мышечных волокон.
(4) Импульсация от активно растянутых нервно-мышечных веретен увеличивает активность агониста а-мотонейрона и снижает активность его антагонистов.
(5) Iа-волокна от пассивно растянутых нервно-мышечных веретен-антагонистов направляются к соответствующим рефрактерным а-мотонейронам.
Обратите внимание: последовательность «γ-мотонейронон—Ia-волокно—α-мотонейрон» образует γ-петлю.
Редактор: Искандер Милевски. Дата публикации: 15.11.2018
Как устроен продолговатый мозг?
Центральная нервная система разделена на отделы, которые передают друг другу информацию посредством импульсов. Ее работа контролируется механизмом из структур, объединенных нервными волокнами. Продолговатый мозг является продолжением спинного мозга.
Структура
Продолговатый мозг располагается на пересечении головного и спинного мозга. В районе затылочного отверстия спинной мозг немного толще и похож на луковицу, благодаря чему он получил такое второе название. Луковица объединяет малый мозг и мост. Продолговатый отдел имеет срединное углубление, которое является продолжением борозды спинного мозга. Рядом с углублением расположены пирамиды, переходящие в спинномозговые канатики. Дорсальную часть борозды можно обнаружить в задней части структуры. По бокам располагаются канатики, направляющиеся к мозжечку.
Структуру луковицы нельзя назвать однородной. Нейроны окружены ядрами, а длинные волокна идут через спинной мозг, а затем от них отходят небольшие отростки. Ядра серого вещества объединяются при помощи данных отростков, благодаря чему происходит функционирование органа. Сама же луковица имеет внутреннюю и наружную структуры.
Наружное строение
Внешняя часть луковицы образована из парных долей, которые имеют конусообразную форму. По бокам от пирамид находится олива, в которой содержатся ядра. Задняя часть луковицы имеет разделительную борозду. Тыльная сторона продолговатого отдела имеет связки и располагается около ромбовидной нижней части. Пирамидная система выполняет функцию координации движений.
Внутреннее строение
Внутреннее строение представлено в виде ядер. В разрезе продолговатые структуры имеют борозды и оливы. Какова роль ядра в оливе? Оно контролирует умение человека принимать вертикальное положение. Около пирамидного тракта и оливы есть углубления. Связь с другими отделами происходит посредством передачи импульсов.
Ядра черепных нервов
Нервные центры отвечают за функциональность структуры. Ядра черепных нервов представлены управляющими центрами. Они имеют такой состав:
Функциональные особенности
С рождения продолговатый отдел отвечает только за основные функции: дыхание, кровообращение и пищеварение. Полноценно данная структура начинает работать лишь с 7-летнего возраста. К основным функциям продолговатой структуры относятся:
Все рефлексы создаются в продолговатом мозге, а следующим шагом является передача импульса в заднюю мозговую структуру. Функции продолговатого мозга разделяются на жизненно важные и рефлекторные. Также можно поделить возможности луковицы на:
Надо отметить, что мозг нуждается в постоянных тренировках. Иначе постепенно его эффективность снижается. Улучшайте работу мозга с помощью тренажеров Викиум!
К нисходящим путям продолговатого мозга относятся
В головном мозге различают шесть отделов: продолговатый мозг, варолиев мост, средний мозг, промежуточный мозг, мозжечок, большие полушария (рис. 11.2–11.5).
4.2.1. Продолговатый мозг
Продолговатый мозг ( medulla oblongata ) располагается в полости черепа и является началом ствола мозга. На задней поверхности
находится борозда и два задних канатика, которые являются продолжением таких же канатиков спинного мозга.
Серое вещество продолговатого мозга располагается внутри в виде отдельных скоплений – ядер. Белое вещество находится снаружи.
Продолговатый мозг выполняет рефлекторную и проводниковую функции.
Проводниковая функция продолговатого мозга связала с восходящими и нисходящими путями, по нервным волокнам которых импульсы передаются из спинного мозга в головной и обратно. Кроме того, имеются проводящие пути, связывающие ядра продолговатого мозга с другими отделами ЦНС.
К моменту рождения продолговатый мозг является наиболее сформировавшейся частью головного мозга, так как формирование ядер находится в прямой зависимости от становления в онтогенезе функций дыхания, кровообращения и пищеварения. Созревание ядер продолговатого мозга заканчивается к 7 годам.
Варолиев мост ( pons Varolii ) является продолжением продолговатого мозга (рис. 11.8). Он характеризуется массой поперечно идущих волокон и лежащими между ними ядрами. К дошкольному возрасту в связи с ростом черепа он несколько перемещается и занимает место на e го скате, как у взрослого.
В скоплениях серого вещества располагаются центры такого же рода, как и в спинном мозге, но центры мозгового моста более высокого порядка, чем спинномозговые. Они контролируют совместные сокращения мышц конечностей и туловища, возникающие при сложных движениях. Белое вещество является продолжением проводящих путей продолговатого мозга.
Мозжечок ( cerebellum ) располагается над продолговатым мозгом и мостом (рис. 11.7). В нем различают два полушария, соединенных по средней линии анатомической структурой, которая называется червь. Состоит мозжечок из серого и белого вещества. Серое вещество образует снаружи сплошной слой – кору мозжечка. Под корой располагается белое вещество, внутри которого находятся ядра мозжечка.
Мозжечок связан с другими отделами головного мозга посредством нервных волокон, которые образуют утолщения – ножки мозжечка: верхние соединяют мозжечок со средним мозгом, средние – с мостом, нижние – с продолговатым мозгом.
Функционально мозжечок участвует в координации движений, обеспечивает их четкости и плавности, играет важную роль в сохранении равновесия тела в пространстве, оказывает влияние на тонус мышц. Мозжечок согласует силу, длительность и последовательность сокращений мышц. У больных с поражением мозжечка теряется плавность движений, нарушается равновесие, расстраивается речь, типичное нарушение работы мозжечка наблюдается под влиянием алкоголя. Академик Л.Л. Орбели установил вегетативно-трофическое влияние мозжечка на состав крови, работу желудка, кишечника, сосуды.
Деятельность мозжечка носит рефлекторный характер. У детей мозжечок отличается меньшим весом, размером и более высоким расположением. Усиленный рост и миелинизация нервных волокон мозжечка происходит в течение первого года жизни ребенка, когда
он учится сидеть, ползать, ходить, затем темпы роста снижаются.
Серое вещество мозжечка растет медленнее, чем белое вещество.
К 7 годам заканчивается развитие ножек мозжечка и устанавливаются связи мозжечка с другими отделами ЦНС. К 15 годам мозжечок достигает размеров мозжечка взрослого человека, причем раньше развивается червь, позже – полушария. При заболеваниях мозжечка у детей движения становятся неловкими, не рассчитанными. Ребенок ходит с поддержкой, широко расставляя ноги, высоко поднимая
и с силой опуская их вниз. В дальнейшем движения частично
восстанавливаются, что объясняется участием коры головного мозг a
в координации движений. При этом немалую роль играют зрительные ощущения, при закрытых глазах такие дети не могут сделать ни одного шага.
Средний мозг ( medulla media ) занимает место выше моста.
К среднему мозгу относятся ножки мозга и крыша среднего мозга (рис. 11.8).
Образованиями среднего мозга являются ядра четверохолмия, ядра глазодвигательного и тройничного нервов, красное ядро и черная субстанция, в ножках мозга проходят восходящие и нисходящие пути.
Самыми крупными являются красные ядра – регуляторы тонуса скелетной мускулатуры. Они имеют многочисленные связи с мозжечком, ретикулярной формацией, промежуточным мозгом, корой головного мозга. От красных ядер идут двигательные руброспинальные пути, по которым нервные импульсы следуют к двигательным ядрам передних рогов спинного мозга и регулируют тонус мышц сгибателей. У новорожденных и детей первых месяцев жизни они являются высшими подкорковыми центрами и обеспечивают бессознательные, хаотические движения.
В крыше среднего мозга различают пластинку крыши – четверохолмие, состоящее из четырех возвышений холмиков (бугров). Ядра верхних бугров четверохолмия являются подкорковыми центрами
зрительного анализатора. Получая сигналы от сетчатки глаза, они обеспечивают зрительный ориентировочный рефлекс: движение глаз, поворот головы в сторону источника света, регуляцию величины зрачка и аккомодацию глаз.
Ядра нижних бугров четверохолмия являются подкорковыми центрами слухового анализатора, получая импульсы от ядер слухового нерва при действии звукового раздражителя, они обеспечивают ориентировочный слуховой рефлекс: поворот головы в сторону источника звука, вздрагивание и даже вскакивание с места. Таким образом, ядра четверохолмия в целом обеспечивают сторожевой рефлекс, он позволяют организму включаться в действие, требующее быстрой ответной реакции.
Черная субстанция участвует в координации актов жевания
и глотания, регулируя их последовательность, а также обеспечивает мелкие движения пальцев рук, требующих большой точности (например, при письме). Видимо поэтому у человека она развита
в большей степени, чем у животных.
В углублении между верхними холмиками лежит эпифиз –шишковидная железа (железа внутренней секреции), которая структурно и функционально связана с надбугорной областью промежуточного мозга и участвует в регуляции циркадного цикла организма, влияя на сон.
Между четверохолмием и ножками мозга расположен водопровод – полость среднего мозга, являющийся продолжением четвертого желудочка продолговатого мозга.
Средний мозг приобретает особое значение в регуляции мышечного тонуса – состояния длительного напряжения и небольшого укорочения мышц без выраженных признаков утомления. Рефлекторный тонус имеет значение при движении, подготавливая мышцы
к быстрому переходу из одного состояния в другое, мобилизуя их к деятельности. Тонус позволяет сохранять на длительное время определенное положение тела, головы и конечностей: в положении сидя, стоя, наклон головы при письме и чтении, удержание вытянутой или поднятой руки и т. д. Тонус мышц обусловливает плавность наших движений.
Развитие среднего мозга тесно связано с развитием других отделов мозгового ствола и формированием нервных путей к мозжечку
и коре головного мозга. У новорожденных и грудных детей хорошо выражен ориентировочный рефлекс: при неожиданных звуках наблюдается общая двигательная реакция с преобладанием тонуса сгибателей, вздрагивание, изменение ширины зрачка, частоты дыхания и сердцебиения.
4.2.5. Промежуточный мозг
Промежуточный мозг ( medulla untermedia ) расположен выше среднего мозга, под мозолистым телом. К нему относятся два зрительных бугра, надбугровая область, забугровая область, включающая коленчатые тела, и подбугровая область.
Зрительные б y гры (таламусы) состоят из нервных клеток, которые образуют многочисленные ядра, являющиеся подкорковыми центрами чувствительности. Почти все центростремительные импульсы (кроме обонятельных) поступают в зрительные бугры, где происходит их обработка и интеграция, после чего переработанная информация передается в кору головного мозга. Таламусы оказывают влияние
на эмоциональное поведение, что выражается в своеобразных жестах, мимике, изменениях функций внутренних органов. При сильных эмоциях учащается пульс, дыхание, повышается артериальное давление. При поражении таламуса появляются сильные головные боли, нарушается сон и усиливается или уменьшается общая чувствительность, движения становятся несоразмерными, не точными.
Коленчатые тела располагаются кзади от зрительных бугров, они образованы скоплением нервных клеток. Коленчатые тела являются подкорковыми центрами зрения и слуха.
Гипоталамус (подбугровая область) включает серый бугор, гипофиз, зрительный перекрест и сосцевидные тела. Гипоталамус является высшим подкорковым вегетативным центром. В нем находятся центры регуляции обмена веществ, температуры тела, голода
и насыщения, страха и ярости, удовольствия и неудовольствия.
Между гипоталамусом и гипофизом существуют обширные нервные и сосудистые связи. Нейросекреторные клетки гипоталамуса вырабатывают нейросекреты – нейрогормоны, которые регулируют деятельность гипофиза. Гипофиз непосредственно или через посредство других эндокринных желез регулирует вегетативные функции организма. Гипоталамус участвует в регуляции эмоций и формировании мотиваций.
Формирование отделов промежуточного мозга происходит неодновременно. Наиболее интенсивный рост и созревание ядер гипоталамуса происходит в первые 3 года жизни. Ядра зрительных бугров
созревают позднее – к 4 годам. В постнатальном онтогенезе происходит увеличение объема зрительных бугров за счет дальнейшего роста нервных клеток и развития нервных волокон,
К моменту рождения у ребенка плохо развиты центры терморегуляции, поэтому дети первого года жизни легко перегреваются и переохлаждаются при резких изменениях температуры окружающей среды. В целом развитие промежуточного мозга заканчивается к 13–
15 годам.
4.2.6. Ретикулярная формация
В стволе головного мозга (в средней части продолговатого, среднего и промежуточного) выделяют участки диффузных скоплений нервных клеток разных типов и размеров, которые переплетаются множеством волокон, идущих в различных направлениях. Эти участки
назвали ретикулярной формацией (сетевидное образование). Ретикулярная формация тесно связана и с другими нервными центрами головного и спинного мозга. Ретикулярные нейроны, в отличии от нейронов других отделов мозга, характеризуются высокой чувствительностью к различным химическим веществам (продуктам обмена,
гормонам, медиаторам).
Ретикулярная формация по нисходящим ретикуло-спинальным путям оказывает активирующее и тормозящее влияния на деятельность мотонейронов спинного мозга. Устранение этих влияний (при отделении спинного мозга от ретикулярной формации) приводит
к появлению спинномозгового шока.
По восходящим путям ретикулярная формация оказывает активирующее влияние на кору головного мозга. Импульсы от ретикулярной формации и неспецифических ядер таламуса поддерживают бодрствующее состояние корковых нейронов. При отделении коры
головного мозга от ретикулярной формации животное впадает в сонное состояние и почти не реагирует на внешние раздражители.
В свою очередь кора регулирует функции и активность ретикулярной формации. Активность ретикулярной формации поддерживается также нервными импульсами, идущими к коре головного мозга от внешних рецепторов, от органов опорно-двигательного аппарата
и от внутренних органов, из коры головного мозга, мозжечка.
4.2.7. Большие полушария головного мозга
Большие полушарии головного мозга или конечный мозг ( telenc е phalon ) являются высшим отделом ЦНС и состоят из правого
и левого полушарий. Оба полушария соединены между собой мозолистым телом и другими спайками. У человека большие полушария достигают наибольшего развития и составляют почти 80 % от общей массы мозга. В каждом полушарии различают кору, покрывающую всю поверхность полушарий, белое вещество и базальные ядра – скопления серого вещества в нижних и боковых стенках полушарий.
Кора головного мозга представляет собой слой серого вещества (толщина 1,5–5 мм), образованного скоплениями нейронов, их количество составляет 12–18 млрд. Кора имеет многослойное строение
(6 слоев), в которых нейроны отличаются по форме тела (веретенообразные, пирамидные, звездчатые), величине и густоте расположения. Поверхность полушарий имеет сложный рисунок благодаря бороздам (углублениям), идущим в различных направлениях, и извилинам (складкам), что увеличивает ее площадь. Борозды делят кору на доли: лобную, теменную, височную, краевую (рис. 11.5). Самые глубокие основные борозды:
1) центральная борозда, отделяющую лобную долю от теменной.
2) боковая борозда, отделяющая височную долю от лобной и теменной долей полушария.
3) теменно-затылочная борозда, отделяющую теменную долю от затылочной.
Кора покрывает всю поверхность полушарий и заходит вглубь борозд. Каждая доля вторичными бороздами делится на дольки. По особенностям клеточного состава и строения вся кора подразделяется
на ряд участков, которые называют корковыми полями. Цитоархитектоническая карта, составленная Бродманом, насчитывает 52 поля, они выполняют различные функции. Несколько корковых полей объединены в зоны. Каждая зона выполняет какую-то общую функцию,
а поля, ее составляющие, – отдельные элементы этой функции. Различают сенсорные, ассоциативные и моторные зоны коры.
Ассоциативные зоны получают импульсы от всех зон коры, интегрируют всю полученную информацию, обеспечивают протекание психических функций, контролируют эмоции, поведенческие реакции. Особенно большое значение имеют лобные доли коры, которые
у человека составляют 25 % от общей площади коры больших полушарий (у человекообразных обезьян – 12 %).
Моторные зоны расположены в передней центральной извилине, связаны с ядрами ствола мозга и мотонейронами спинного мозга и регулируют произвольные движения.
Кора головного мозга выполняет тонкий анализ поступающих сигналов. В ней возникают ощущения, запоминается поступающая
информация, происходит процесс мышления. Кора головного мозга регулирует деятельность нижележащих отделов ЦНС, координирует рефлекторную деятельность всего организма.
Под корой находится белое вещество полушарий мозга, оно состоит из большого количества нервных волокон, проходящих в различных направлениях. Одни из них соединяют нейроны в пределах одного полушария, другие – нейроны левого и правого полушарий,
третьи – с нижележащими отделами ЦНС (подкорковыми отделами и спинным мозгом).
Роль каждого полушария в их совместной деятельности относительно неравнозначна, отмечается относительное доминирование одного из полушарий, т. е. межполушарная функциональная асимметрия. Левое доминирующее полушарие обеспечивает абстрактное,
логическое мышление, речевую функцию, письмо, счет, правое полушарие – образное, конкретное восприятие внешнего мира (распознавание сложных зрительных и слуховых сигналов, восприятие пространства, формы направления).
Мозговая ткань больших полушарий у новорожденных богата
водой. Поверхность коры сравнительно гладкая, имеются все борозды и извилины, но они мало выражены. Серое вещество почти
не отличается от белого вещества, так как не закончена миелинизация нервных волокон. Количество нейронов в коре больших полушарий такое же как у взрослых, но в морфофункциональном плане они еще не зрелые. Постепенно по мере роста и развития ребенка углубляются борозды, увеличиваются извилины (становятся крупнее
и длиннее), появляются мелкие борозды и извилины; усложняется строение нейронов и связи между ними; продолжается миелинизация нервных волокон и происходит четкое разграничение серого и белого вещества полушарий.
У новорожденных и детей дошкольного возраста головной мозг короче и шире, чем у детей школьного возраста и взрослых. К концу первого года жизни величина головного мозга удваивается, к трем
годам – утраивается. Наиболее интенсивное созревание коры происходит в первые пять лет и заканчивается к 18–20 годам. Заметно нарастает масса мозга к 7 годам.
В период от 7 до 10 лет интенсивно увеличиваются лобные и теменные доли коры больших полушарий, поэтому они преобладают над затылочной областью.
Процесс формирования корковых полей связан со становлением и развитием функций анализаторов. У ребенка, прежде всего, возникают рефлексы с вестибулярного, кожного, двигательного анализаторов, а затем – слухового и зрительного анализаторов. Рефлексы
слухового и зрительного анализаторов играют важную роль в развитии и становлении речи ребенка, что способствует совершенствованию корковых функций лобной, нижней теменной и височно-затылочной областей мозга. В период развития ребенка происходит совершенствование проводящих путей различных функциональных систем и их взаимосвязей.
В младшем школьном возрасте и в пубертатный период совершенствуются отдельные нервные клетки и развиваются новые нервные пути, происходит функциональное развитие всей нервной системы. В этот период заметно выявляется регулирующий контроль
со стороны коры больших полушарий над инстинктами и эмоциональными реакциями.




