как называется мозг мухи
Есть ли у мух и других насекомых мозг?
Мухи – насекомые, обитающие в непосредственной близости с человеком. Они проникают в жилища, селятся в хлеву и на огороде. Иногда действия насекомых выглядят обдуманными. Поэтому у многих людей возникает вопрос, есть ли у мух мозги или они действуют инстинктивно. Поговорим об этом в рамках статьи.
Анатомия насекомого
Общий план мухи такой же, как у большинства двукрылых насекомых. Они имеют:
Брюшко включает пищеварительную и половую систему. Это касается всех видов мушек. Грудь оснащена мускулатурой, которая необходима для полетов. У насекомого также имеется 3 пары ног.
Голова «оборудована» большими фасеточными глазами, хоботком и усиками. Что касается внутреннего строения, внутри черепной коробки расположен – мозг. Конечно, он не такой как у человека и млекопитающих.
Строение мозга
Думая о мозге, у многих перед глазами всплывает картинка с округлым веществом, имеющим извилины. С мухой дела обстоят иначе. Мозг двукрылого состоит из 3 отделов, а именно:
Несмотря на достаточно простое строение, мозг отвечает за функционирование всего организма. При этом, муха не способна думать. Она действует инстинктивно.
Важно: в теле расположены нервные узлы, называемые ганглиевыми, которые соединяются с «мозгом».
Протоцеребрум
Это крупнейший отдел мозга, отвечающий за координацию любого жизненного процесса насекомого. В данной части «центра управления» расположено огромное количество нейронов. Они ответственны за анализ и обработку полученных сведений.
Благодаря расположению клеток в наружном слое и идущим к ним волокнам, мозг мухи, можно сравнить с управляющим органом человека или животного.
Внутри протоцеребрума имеются дополнительные отделы. Которые делятся на:
Важно: подобные дополнительные отделы имеются у пчел и муравьев.
Дейтоцеребрум
Отдел расположен перед тритоцеребрум. Отвечает за нервные окончания, идущие к усикам. «Антенны», единственные волокна, отходящие от вторичного мозга. В большинстве случаев, они начинаются корешками:
У некоторых видов мух этих корешков не наблюдается.
Дейтоцеребрум отличается от протоцеребрум простотой. Схема строения соответствует обычному ганглию. Объяснить это можно только тем, что данный отдел является нервным центром только одного сегмента – усов.
Тритоцеребрум
Отдел принято называть третичным мозгом. Его положение ясное. Тритоцеребрум расположен между остальными отделами. При этом определенной формы у мозга нет. Единственное, с уверенностью сказать, что он разделен на;
Между двумя половинками расположена небольшая перемычка. Она проходит под кишечником.
Основной задачей тритоцеребрума является контроль рта и верхней губы. Вторая может отсутствовать у некоторых видов мух.
Важно: тритоцеребрум связан с симпатической нервной системой.
Как работает «центр управления»
На первый взгляд кажется, что мозг мухи прост, и не способен выполнять сложные операции. Даже «бывалые» ученые удивляются, его работе.
В Калифорнийском университете был проведен опыт над мухами. В результате стало ясно, что «центр управления» насекомого определяет скорость, направляющегося к вредителю тела. Благодаря этому, мушка понимает в каком направлении ей нужно двигаться, чтобы избежать опасности. Для подготовки насекомому требуется около 200 миллисекунд.
Важно: перед тем, как взлететь, муха расставляет лапки таким образом, чтобы оттолкнуться в противоположную от приближающегося объекта сторону.
Мозг успевает оценить ситуацию и принять решение, даже если насекомое:
Профессор Калифорнийского университета, проводивший опыты, считает, что «центр управления» двукрылого насекомого имеет координатную карту. Благодаря этому, мушка принимает решения так быстро.
Мухи, как и большинство насекомых способны обучаться. Все зависит от ситуаций, в которое попадал вредитель. Конечно, это не тоже самое, что происходит с человеком. Насекомое запоминает все на генетическом уровне.
Функцию мозга насекомых, и мушек в том числе, исследуют во многих университетах. Опыты позволяют понять, как выживали вредители в прошлом и на сколько они изменились.
Заключение
Мозг мухи – простой и в то же время, сложный орган. Благодаря выполняемым функциям «центра управления», вредитель в 80% случаев избегает физической опасности. Например, когда человек пытается поймать насекомое рукой. Конечно, мозг крошечного насекомого не сравнить с тем, который имеют млекопитающие. Несмотря на это и он имеет свои особенности.
Нервная система насекомых: есть ли у них мозг?
Несмотря на то, что насекомые кажутся довольно примитивными существами, у любопытных исследователей нередко появляются вопросы. Как устроена их нервная система? Каким образом отдельные виды организуют иерархию? Если они настолько организованы, означает ли это, что у них есть мозг? А если мозг есть, то отличается ли он у разных видов насекомых? В статье мы попробуем ответить на эти вопросы.
Исследование интеллекта насекомых
Насекомые представляют собой огромный класс беспозвоночных членистоногих. Ареал их обитания практически безграничный. Они встречаются в любом климате и почти на любой широте. Каждый из видов имеет свои отличительные особенности поведения и образа жизни. На протяжении многих столетий ученые пытались выяснить, каким образом связано поведение и образ жизни особей с их мозгом. Причем отношение к интеллекту этого класса сильно менялось с течением времени.
В древние времена люди боготворили насекомых, считая их умнейшими существами на планете. Так, древние египтяне полагали, что пчелиный улей представляет собой маленькое государство с пчелиным фараоном. А некоторые античные философы и учены всерьез думали, что у пчел может быть рабовладельческий строй.
Изображение пчел на древнеегипетской фреске
В средние века точка зрения на интеллект насекомых поменялась. Теперь отдельные ученые-натуралисты считали жуков своеобразными механизмами, не способным к мышлению и анализу и полагающимся только на рефлексы.
В 19 веке ученые вернулись к обсуждению вопроса о наличии интеллекта у этого класса. Теперь великие умы того времени разделились на два лагеря. Одни считали, что общественные насекомые способны мыслить, другие пытались доказать, что поведение и образ жизни – это всего лишь набор рефлексов. Лишь немногие ученые объясняли поведение пчел их способностью к обучению, большинство полагало, что это инстинкты. Такое суждение связывали с маленьким размером мозга.
Мозг букашек действительно значительно отличается от человеческого, количество нейронов в нем около 1 миллиона, в то время, как человеческий мозг состоит из 86 миллиардов нейронов. По этой причине ученые долгое время не изучали подробно мозг насекомых, считая его примитивным. Однако несколько проведенных исследований показало, что когнитивные способности букашек сопоставимы со способностями многих позвоночных! Это открытие вновь вызвало интерес со стороны научного сообщества к изучению нервной системы жучков.
В конце 20 века благодаря достижениям генетики было доказано, что у насекомых нет ни исключительно врожденных, ни исключительно приобретенных навыков. И хотя их поведение является врожденным, на него накладываются приобретенный опыт, который позволяет им приспосабливаться к определенному типу пищи или к определенной местности.
Строение мозга
Центральная нервная система этого класса состоит из ганглиевых узлов, соединенных в цепочку. Несколько пар ганглиев соединяются в мозг. Он состоит из трех отделов: первичный (протоцеребрум), вторичный (дейтоцеребрум), и третичный (тритоцеребрум). Дейтоцеребрум и тритоцеребрум являются достаточно простыми отделами, по структуре это обычные ганглии, это объясняется тем, что они посылают нервные сигналы только к тем частям организма, с которыми они связаны, то есть усиками и ротовой полости. Протоцеребрум гораздо сложнее по строению, т.к. он координирует работу всего организма.
Головной мозг насекомых
Протоцеребрум
Первичный мозг или протоцеребрум является самым большим отделом. Он отвечает за все процессы, протекающие в организме. Эта часть разделена на несколько зон, имеющих разное строение и отвечающих за разные функции. Протоцеребрум состоит из нейронов, отвечающих за обработку и анализ информации. Внешне протоцеребрум напоминает большой мозг млекопитающих. Внутри первичного отдела находятся волокнистые массы, называемые нейропилярными массами, образованные из отростков нервных клеток. С помощью нейропилей мозг делится на несколько отдельных частей.
Этот отдел, кроме координации работы организма, отвечает за зрение, а также за взаимодействие между отдельными особями. Благодаря протоцеребруму, некоторые виды способны к организации.
Ученые заметили, что у насекомых с более сложной организацией протоцеребрум развит сильнее. В помощью стебельчатых тел формируются ассоциации и происходит более подробная обработка информации, помогающая образовывать связи между особями. У коллективных насекомых количество стебельчатых тел значительно больше. Например у пчел эти тела занимают до 20 % мозга, а у мух или тараканов менее 2 %.
Дейтоцеребрум
Располагается перед тритоцеребрумом, передаем сигналы нервной системы в усики. Нервные волокна антенн – единственные волокна, связанные с этим отделом. Они очень развиты, начинаются со спинного (моторного) и брюшного (сенсорного) нервных корешков. Вторичный отдел разделен на две части, соединенные между собой комиссурой.
Тритоцеребрум
Располагается между остальными отделами мозга спереди от него и брюшной нервной цепочкой позади. Находится над кишечником и разделен на две части, соединенные между собой дугой, огибающей кишечник. Изначально тритоцеребрум отвечал за подачу сигнала нервной системы в усики, но позднее эта функция атрофировалась. Сейчас третичный отдел передает сигналы по нервным волокнам к мышцам ротовой полости и верхней губы.
Особенности мозга насекомых
Итак, мы выяснили, что у насекомых есть мозг, и кроме того, он не самый простой по строению. Именно благодаря этой сложной структуре отдельные виды, например пчелы или муравьи, способны к образованию иерархии и структуры. Именно это помогает муравьям передавать опыт более молодым поколениям, показывая им путь к добыче пищи, или выращивать тлю в определенных местах, а пчелам запоминать соцветия, где можно найти нектар.
С помощью протоцеребрума особи могут усваивать новую информацию, которую они потом могут использовать например для добычи пищи. Пчела может запомнить цвета окружающих объектов и их расположение. Это помогает найти дорогу к цветку, где она накануне собрала большое количество нектара. Кроме того, исследования, проведенные недавно, доказали, что насекомых можно целенаправленно обучать. Так, ученые обучили шмеля двигать мячик в определенное место, после чего шмель получал сладкий сироп. Несколько особей легко запомнили порядок действий и повторяли его.
Также у букашек отлично развито ориентирование в пространстве. Пчелы или шмели запоминают окружающие предметы, муравьи прокладывают дорожки к пище, а жуки-навозники могут ориентироваться даже ночью по звездному небу.
Насекомые не самые примитивные существа, как многие из нас привыкли думать. Их мозг одновременно и простой, и сложный. Многим видам такая структура нервной системы помогает избежать опасности, найти пищу и даже организовать иерархию в гнезде.
Мухи хранят информацию на «съемных дисках»
Рис. 1. Схема синаптического контакта. Для формирования долговременной памяти нужно воспринять новый стимул, обработать информацию, консолидировать ее и сохранить в легкодоступном месте. Всё это выражается в синтезе конкретных белков и формировании новых синапсов между отростками нейронов. В результате информация (импульсы от раздражителей) начинает циркулировать по новому пути. Изображение c сайта biosingularity.com
Мозг насекомых сравнительно мал, но при этом они вынуждены анализировать большой объем жизненно важной информации. Поэтому увеличение эффективности работы мозга на ограниченном числе нейронов является для насекомых важнейшей задачей. Один из путей повышения эффективности — это хранить отдельно «оперативную» и «долгосрочную» информацию. Перефразируя компьютерную терминологию в биологическую, это означает разделить локализацию кратковременной и долговременной памяти. Тайваньским ученым удалось доказать, что именно этот способ повышения эффективности работы мозга насекомые и практикуют. Ученые нашли два нейрона, которые обеспечивают консолидацию долговременной памяти, ее хранение и доступ к ней из аналитического центра (грибовидных тел) при необходимости воспользоваться воспоминаниями.
Принципы формирования долговременной памяти были выведены Эриком Канделем, который в качестве экспериментального объекта взял моллюска аплизию. В результате мало кому известная аплизия прославилась, а Кандель получил Нобелевскую премию. Базовые принципы хранения и извлечения информации оказались сходными у моллюсков и человека. Потому эксперименты на других беспозвоночных могут многое прояснить в функционировании систем хранения информации даже для таких сложных систем, как человеческий мозг. В новейших экспериментах роль подопытного обработчика информации выполнила мушка дрозофила, уже прославленная генетиками, но еще не раскрывшая всех своих секретов нейрофизиологам.
Рис. 2. Схема нервной системы в голове у мухи. Красным цветом показаны антеннальные доли, желтым — подглоточный ганглий, зеленым — зрительные доли, оранжевым — центральное тело, синим — грибовидные тела; в голубой цвет покрашены области нейропилярной массы, окружающей центральное и грибовидные тела. Изображение из обзора Мартина Хейзенберга Mushroom body memoir: from maps to models, Nature Neuroscience, 2003
Группа ученых из Национального университета Цинхуа (Тайвань) и специалисты из компании Dart Neuroscience (Сан-Диего, СЩА) задались вопросом: где локализованы процессы запоминания? Самое логичное предположение — в грибовидных телах. Ведь именно в эти участки поступает информация от обонятельных нейронов, именно там синтезируется цАМФ, там при предъявлении запахов в различных нейронах (в грибовидных телах различают три типа нейронов) происходит специфический выброс кальция. Это было выяснено группой Рональда Дэвиса с помощью визуализации кальциевых потоков в нейронах в экспериментах с обучением мух (см. статью The Long-Term Memory Trace Formed in the Drosophila α/β Mushroom Body Neurons Is Abolished in Long-Term Memory Mutants, The Journal of Neuroscience, 2011). Но вот где именно синтезируются новые белки, приводящие к построению новых синаптических контактов? В самих грибовидных телах? Или в другом месте?
Чтобы ответить на этот вопрос, были хитроумно спроектированы и изящно выполнены многотрудные эксперименты, в которых удалось манипулировать синтезом белков в отдельных нейронах. Тайваньская группа использовала в экспериментах линии мух со встроенной энхансерной ловушкой GAL4/UAS. Энхансерная ловушка — это великолепная методика, которая позволяет включать экспрессию нужного белка в крохотных (иногда — вплоть до одной клетки) клеточных группах мушиного организма. В данных экспериментах она потребовалась, чтобы включать белки Kaede и рицин. Kaede — это зеленый флуоресцентный белок, но не обычный, а фотоконвертируемый: после освещения ультрафиолетом он необратимо становится красным. Рицин же — это токсин, разрушающий рибосомы. Если он включен, то синтез белков останавливается. Данный эксперимент был спланирован так, что рицин работал температурозависимо: при 30°C он включался и нарушал синтез белка, а при 18°C вел себя совершенно невинно, и белок продолжал синтезироваться.
В результате при синтезе белков нейрон приобретает зеленый цвет, а при освещении ультрафиолетом окрашивается в красный цвет. Если повысить температуру, то синтез белка в отдельных нейронах (тех, где с помощью энхансерной ловушки включен рицин) остановится. Теперь, сравнив интенсивность красного и зеленого цвета (красный — то, что было, зеленый — свежесинтезированный), можно оценить уровень экспрессии до и после температурного шока, сравнить нормальный уровень синтеза с остановленным. Если во время обучения мух при повышенной и пониженной температуре зеленого и красного цвета в нейроне примерно поровну, то это означает, что белки, в том числе и необходимый регулятор формирования памяти CREB, синтезируются не в этом месте. Если же при повышенной температуре зеленого цвета оказалось меньше, чем при нормальной, а красного примерно поровну, то синтез происходит именно здесь.
Мух тренировали различать опасный запах, связанный с ударами током (здесь можно посмотреть видео того, как организованы тренировки). До проведения экспериментов мух облучали ультрафиолетовым светом и фиксировали уровень экспрессии белков в нейронах. После тренировок в Т-образном лабиринте по закреплению рефлексов — читай, запоминанию — насекомых немедленно фиксировали и исследовали соотношение красного и зеленого цвета в различных нейронах. Эта сложная система помогает понять, в каких местах идет активный синтез белков при формировании долговременной памяти и кратковременной. Кратковременную память, как считалось, можно зарегистрировать после серии последовательных тренировок, а долговременную — через день после тренировок.
Эксперименты были весьма и весьма кропотливыми, требовали огромной предварительной подготовки, но оно того стоило: оказалось, что запоминание запахов сопровождается экспрессией белков не в грибовидных телах. Ни один из трех типов нейронов этого участка мушиного мозга не был в обязательном порядке задействован в формировании долговременной памяти: если ингибировать рицином синтез белков в этих отделах, то мухи прекрасным образом вспоминали через день нужный запах и хорошо проходили тест в лабиринте. То есть, несмотря на ингибирование белкового синтеза в этом отделе, где-то CREB со своим каскадом всё же синтезировался, и память формировалась. Также не обязательными в этом процессе оказались и нейроны антеннальных долей и эллипсоидного тела. Зато обнаружилась интенсивная экспрессия генов в двух других симметричных нейронах протоцеребрума — так называемых DAL-нейронах (dorsal anterior lateral, спинно-передне-боковых).

Рис. 3. Мозг дрозофилы. Хорошо видны грибовидные тела на переднем плане. Розовым цветом показаны DAL-нейроны, зеленым — нейроны, с которыми DAL формируют синапсы. Изображение из статьи Josh Dubnau Ode to the Mushroom Bodies в Science
Эти нейроны выходят из грибовидных тел и возвращаются обратно, формируя синаптическую передачу с определенными нейронами грибовидных тел. Именно в DAL-нейронах, а не в других отделах мушиного мозга, синтезируется CREB и зависимые от него белки. Это удалось показать с помощью трансгенных насекомых и в фармакологических тестах. При ингибировании в этих нейронах синтеза CREB долговременных воспоминаний не остается, а только кратковременные.
Также если прервать нервную передачу от DAL к грибовидным телам, то муха будет помнить только недавние тренировки, то есть проведенные не больше трех часов назад. А вот вспомнить вчерашний опыт тренировок мухи уже не в состоянии. Это означает, что долговременная память хранится в DAL-нейронах, а при необходимости происходит обращение к этим накопителям информации.
Проведенные эксперименты помогают обрисовать следующую схему. Обонятельный сигнал поступает от чувствительных нейронов к грибовидным телам, там информация обрабатывается вместе с синхронными сигналами от других рецепторов, и в результате формируется специфическая картина обонятельного возбуждения. Сгруппированная информация — кратковременная память — передается в DAL-нейроны. Под действием новых сигналов они трансформируют имеющиеся синапсы или отращивают новые. Так «сырое» воспоминание консолидируется, преобразовывается для долговременного хранения. При необходимости вспомнить обонятельный образ происходит обращение к DAL, и информация о запахе передается обратно в грибовидные тела.
Вся эта система напоминает компьютерную технологию обработки и хранения информации: при нехватке памяти тяжелые файлы и программы следует заархивировать и сбросить на съемные накопители или в отдельные сектора. А при необходимости в этой информации можно вновь обратиться к съемным накопителям и извлечь ее. По-видимому, у насекомых имеется именно такая нехватка оперативных мощностей — нервных клеток у них сравнительно мало. Потому и приходится организовывать их работу с предусмотрительностью. В этом ключе следует рассматривать разделенную локализацию обработки зрительной информации. У стрекоз, например, анализ зрительных образов происходит не только в грибовидном теле, но и в подглоточном ганглии (см.: По строению мозга стрекозы напоминают позвоночных, «Элементы», 21.03.2005). Создается впечатление, что и в этом случае грибовидное тело часть аналитической задачи делегирует другим отделам нервной системы.
Источники:
1) Chun-Chao Chen, Jie-Kai Wu, Hsuan-Wen Lin, Tsung-Pin Pai, Tsai-Feng Fu, Chia-Lin Wu, Tim Tully, Ann-Shyn Chiang. Visualizing Long-Term Memory Formation in Two Neurons of the Drosophila Brain // Science. 10 February 2012. V. 335. № 6069. Pp. 678–685.
2) Josh Dubnau. Ode to the Mushroom Bodies // Science. 10 February 2012. V. 335. № 6069. Pp. 664–665.
3) David-Benjamin G. Akalal, Dinghui Yu, Ronald L. Davis. The Long-Term Memory Trace Formed in the Drosophila α/β Mushroom Body Neurons Is Abolished in Long-Term Memory Mutants // The Journal of Neuroscience. 13 April 2011. V. 31. Issue 15. Pp. 5643–5647.
Жизнь мухи. От рождения до смерти
Комнатная или домашняя муха — давний спутник человека.
Ее можно смело отнести к так называемым облигатным синантропным организмам. То есть к животным, чей образ жизни в настоящее время прочно связан с человеком и его жильем.
Комнатные мухи — одни из самых распространенных насекомых на планете. Встречаются практически везде, где есть человек.
Мухи путешествуют с человеком тысячи лет. И не собираются расставаться! (фото robert smith, unsplash.com )
Появились в раннем кайнозое в Центральной Азии и на сегодня, следуя за людьми, освоили всю планету.
Мух встречал каждый.
Это небольшие насекомые, размером от 6 до 9 миллиметров, серого или близкого к черному цвета, с четырьмя продольными полосами на верхней стороне груди и слегка красноватыми широко посаженными глазами.
Комнатная муха — частый гость в наших домах и квартирах.
Самки обычно чуть крупнее самцов и имеют больший размах крыльев.
Жизнь среднестатистической мухи, как и многих других насекомых, коротка.
В зависимости от температуры внешней среды мухи живут от 8 до 28 дней. Правда некоторые могут и перезимовать, «засыпая» при относительно низких температурах и просыпаясь при температурах выше +10 градусов.
Когда наблюдаешь за роящимися мухами где-нибудь в деревне, кажется, что они очень любвеобильны.
Но по факту самки комнатных мух обычно спариваются раз в жизни и сохраняют семя самцов для последующего использования.
Самка мухи обычно спаривается раз в жизни. (фото Matthew Fells, flickr.com )
Среднестатистическая муха на протяжении жизни откладывает в общей сложности около 500-700 яиц, отдельные «мухи-героини» могут отложить и до 2000 яиц!
Яйцекладок от 6-7 и более, в среднем по 100-150 яиц за кладку. Яйца небольшие, желто-белые длиной до полутора миллиметров.
Яйца у мух небольшие, от белого до желто-белого цвета
Любимый субстрат для откладывания яиц — разлагающиеся органические отходы. Пищевые отходы, фекалии, падаль, гниющие куски мяса и так далее, все это привлекает толпы мух!
По прошествии минимум восьми, максимум пятидесяти часов из яиц вылупляются личинки мухи.
Эти желтовато-белые безногие, безусые червячки, живущие во всякой гнили знакомы каждому, кто хоть раз ходил на рыбалку.
Личинки комнатных мух знакомы всем.
Опарыши — бесценная наживка, используемая многими рыболовами и неплохой корм для крупных аквариумных рыб. Поэтому их часто разводят для последующей продажи.
А еще опарышей используют в так называемой «личинкотерапии». Взрослых личинок мухи помещают в запущенные раны. Опарыши поедают мертвые ткани, постепенно очищая рану.
В благоприятных условиях через пару недель выросший опарыш отползает в чистое сухое и прохладное место, где окукливается.
Через 5-6 дней из куколки вылупляется молодая муха. По прошествии тридцати-сорока часов она достигает половой зрелости и готова в размножению.
Живущие рядом с людьми мухи редко умирают своей смертью.
Мух ловят, травят, глушат мухобойками, а еще очень часто, особенно в прохладную погоду, поражает Мушиная Энтомофтора — грозный и незаметный враг комнатной мухи, грибок, неоднократно вызывавший мушиные эпизоотии (эпидемии). Его даже длительное время использовали как инсектицид.
Мухи бывают чрезвычайно назойливы.
Комнатная муха прекрасно приспособилась к обитанию рядом с человеком, а потому часто чрезмерно размножается и сильно досаждают людям.
К тому же она являются переносчиками множества возбудителей, особенно кишечных инфекций.
Мух беспощадно уничтожают.
С другой стороны, комнатная муха — природный агент для борьбы с пищевыми и органическими отходами. Личинки мух отлично утилизируют органику, а сами могут быть использованы в качестве корма на рыбных фермах.
И никакой химии и вреда окружающей среде!
Среднестатистическая муха на протяжении жизни откладывает в общей сложности около 500-700 яиц, отдельные «мухи-героини» могут отложить и до 2000 яиц!
Яйцекладок от 6-7 и более, в среднем по 100-150 яиц за кладку. Яйца небольшие, желто-белые длиной до полутора миллиметров.
Живущие рядом с людьми мухи редко умирают своей смертью.
Мух ловят, травят, глушат мухобойками, а еще очень часто, особенно в прохладную погоду, поражает Мушиная Энтомофтора — грозный и незаметный враг комнатной мухи, грибок, неоднократно вызывавший мушиные эпизоотии (эпидемии). Его даже длительное время использовали как инсектицид.
Мухи бывают чрезвычайно назойливы.
Комнатная муха прекрасно приспособилась к обитанию рядом с человеком, а потому часто чрезмерно размножается и сильно досаждают людям.
К тому же она являются переносчиками множества возбудителей, особенно кишечных инфекций.
Мух беспощадно уничтожают.
С другой стороны, комнатная муха — природный агент для борьбы с пищевыми и органическими отходами. Личинки мух отлично утилизируют органику, а сами могут быть использованы в качестве корма на рыбных фермах.
И никакой химии и вреда окружающей среде!
Статья «Н.П Научно. Познавательно. «
— а чего ты 2 раза повторяешь?
А я в детстве с дядькой опарышей добывал в выгребной яме.
Дядька черпал говно кружкой на палке и потом промывали это и получали опарыш.
Этот натуральный опарыш был такого качества и энергетики, что рыба в водоемах радиуса 1-2 км сама ползла в сторону его наличия.
На одной фотке на обгоревшей руке трахаюца мухи. ШтА.
Больше всего бесит как они лапки потирают.
Сразу, глядя на фото, вспомнился фильм «Муха».
Мне одному кажется,что придурки тоже- чрезмерно размножается и сильно досаждают людям?
Мужчина объясняет блогерше с тиктоком головного мозга на её вопросы
Русская рекурсия
Про перепись населения
Понятно, что двери никто не открывает, данных никаких не говорят, и вообще «идите в ж..».
Узнаю Россию- процесс прошел, гос деньги отмыли, нас по-прежнему 140 млн, все довольны.И как обычно, никакого смысла.
Покупатель не Спартак, не вымрет
— А ты почему не работаешь!?
Ипотека
Почему?
Дефицит русских? Нет
Я слышал, что Яндекс планирует запретить мигрантам работать в такси, либо такие правила уже введены, да только пока ничего не изменилось. Яндекс, может как-то ситуацию уже начнете менять?










































