какая область мозга отвечает за зрение
Зрительные отделы головного мозга
Рис.1. Мозг человека, вид сзади. Красным цветом обозначена первичная зрительная кора V1 (поле Бродмана 17) ; оранжевым — поле 18; жёлтым — поле 19. [1]
Рис.2. Мозг человека, вид слева. Вверху: латеральная поверхность, внизу: медиальная поверхность. Оранжевым цветом обозначено поле Бродмана 17 (первичная, или стриарная, зрительная кора) [2]
Рис.3. Дорсальный (зелёный цвет) и вентральный (сиреневый цвет) зрительные пути, берущие начало в первичной зрительной коре. [3]
Оппонентно выделенные самые яркие сигналы видимых лучей света S,M,L — RGB (не в цвете), сфокусированных предметных точек на экстерорецепторы колбочки сетчатки глаза (рецепторный уровень), по зрительным нервам пересылаются сюда, в зрительную кору. Здесь формируется бинокулярное (стерео) цветное оптическое изображение (нейронный уровень). Впервые, субъективно мы ощущаем цвет, который является лично нашим. (При определении цвета методом колориметрии цвет оценивается данными среднестатистического наблюдателя большой группы здоровых людей)
Понятие зрительная кора включает первичную зрительную кору (также называемую стриарной корой или зрительной зоной V1) и экстрастриарную зрительную кору — зоны V2, V3, V4, и V5. (См. о зонах V2, V3, V4, и V5 в статье Зрительная кора)
В дальнейшем в статье будет говориться об особенностях зрительной коры приматов (в основном, человека). [5]
Содержание
Введение
Рис.4,Схема цветного зрения с точки зрения трёхкомпонентной теории
Зрительные отделы головного мозга — восприятие цвета и света, получение оптического изображения в коре головного мозга — второй, окончательный этап работы зрительной системы образования оптического видения в зрительных отделах головного мозга (см. рис.3,4).
Даже на начальном этапе визуального восприятия света и цвета в визуальной системе, в пределах сетчатки, проходя через начальные цветные механизмы «противника».
Рис.3a. Оптические тракты после встречи сигналов от правого и левого глаза в слои коленчатого тела
После синапсиса в ЛКТ, визуальные тракты продвигается назад к первичной зрительной коре (ПВК-V1), расположенной позади мозга в пределах затылочной доле. В пределах V1 слоя наружного коленчатого тела есть отличная полоса (бороздчатость). Это также упоминается «как полосатая кора», с другими корковыми визуальными областями, упомянутыми все вместе как «extrastriate кора». На данном этапе цветная обработка становится намного более сложной.
Первичная зрительная кора (VI)
Рис.4. Мозг человека.
Красным цветом обозначена первичная зрительная кора (зрительная зона V1)
Слой IV (внутренний зернистый слой [7] ), к которому подходит наибольшее количество афферентных волокон, идущих от латеральных коленчатых тел (ЛКТ), в свою очередь, подразделяется на четыре подслоя, обозначаемых IVA, IVB, IVCα и IVCβ. Нервные клетки подслоя IVCα, в основном, получают сигналы, идущие от нейронов магноцеллюлярных («крупноклеточных», вентральных ) слоёв ЛКТ [8] («магноцеллюлярный зрительный путь»), подслоя IVCβ — от нейронов парвоцеллюлярных («мелкоклеточных», дорсальных ) слоёв ЛКТ [8] («парвоцеллюлярный зрительный путь»).
Функция
Рис.К. Полоса 6 — первичная зрительная кора (также называемую стриарной корой или зрительной зоной V1. Схема диаграммы P-клеткок нейронв, расположенных в пределах parvocellular слоев коленчатого ядра (LGN) таламуса
Первичная зрительная кора (V1) имеет очень четкие карты пространственной информации при зрении. Например, у людей верхняя половина области calcarine («шпоры») трещины отвечает на поступающие зрительные сигналы сильно. От нижней половины поля зрения области calcarine поток идёт в верхнюю половину поля зрения. Концептуально, это (retinotopic) или это отображение визуальной информации от сетчатки, нейронов, особенно визуального потока нейронов. Так происходит картирование — трансформация визуального оптического изображения от сетчатки в зону V1.
Соответствие данного расположения в зоне V1 и в субъективном поле зрения — это соотносится очень точно: даже слепые пятна сетчатки сопоставляются с зоной данными в V1. С точки зрения эволюции, эта переалресация очень просто происходит у самых животных, которые обладают зоной V1. У животных и человека с fovea (центра макулы — жёлтого пятна) в сетчатке, большая часть зоны V1 сопоставляется с небольшой Центральной частью поля зрения. Явление, известное как корковые увеличения. Возможно, с целью точного пространственного кодирования, нейроны в V1, имеют наименьшие рецептивное поле размеров любой зрительной коры или микроскопические участки.
Настройка свойств нейронов зоны V1 (реакции нейронов) отличаются значительно с течением времени. В начале времени (40 мс и далее) время настройки отдельных нейронов V1 имеют сильные (тюнинг) характеристики воздействия небольшого набора стимулов. То есть ответы неёронов могут различаться небольшими изменениям в зрительной ориентации пространственных частот и цвета. Более того, отдельные нейроны человека и животных зоны V1 бинокулярного зрения у глазной системы, а именно : настройка одного из двух глаз. В зоне V1 и первичной сенсорной коре головного мозга в целом, нейроны с аналогичными настройки свойств имеют тенденцию объединяться в виде корковых столбцов. Дэвид Hubel и Торстен Визель предложены классические «кубики льда» — модель организации корковых столбцов для настройки двух свойств: глазных доминирований и ориентации. Однако эта модель не может вместить цвет, пространственную частоту и много других возможностей, которые настраивают нейроны [цитата]. Точная организация всех этих корковых столбцов в зоне V1 остается горячей темой настоящего исследования.
В более позднее время (после 100 ms) воздействия на нейроны зоны V1 они также чувствительны к более глобальной организациии сцены (Lamme & Roelfsema, 2000). Эти параметры ответа, вероятно, обусловлены повторяющейся обработкой (при влиянии высокого уровня областей коры головного мозга на нижний ярус областей коры головного мозга) и горизонтальными связями от пирамидных нейронов (хьюп et al. 1998). В то время как прямые соединения, в основном, в процессе работы, обратной связи, в основном — модуляторные с их последствиями (Angelucci et al., 2003; хьюп et al., 2001). Опыт показывает, что обратная связь, происходящих в более высшем уровне, в таких областях, как V4 ОН или MT, с более крупных и сложных рецептивных полей, может изменить и форму ответов зоны V1, учета контекстных или экстра-классических рецептивных полей эффекта (Guo et al., 2007; Huang et al., 2007; Sillito et al., 2006).
Визуальная информация передана зоне V1 не закодирована в терминах пространственной (или оптический) съемки, но, скорее это — локальный контраст. Например, для изображения, состоящего наполовину со стороной черного и половины стороны с белым цветом, разрыв строки между черным и белым представляет сильные местные контрасты и кодируется, и в то же время в виде нескольких нейронов кода информация о яркости (черный или белый per se). В качестве информации дальнейшей ретрансляции в последующие зрительные зоны, в ней закодированы также все нелокальные частоты, фазы сигналов. Главное, что на таких ранних этапах корковой визуальной обработки, пространственное расположение визуальной информации хорошо сохранилось на фоне локального контраста кодирования. [10]
Как все устроено: отделы мозга и за что они отвечают
Наш мозг — самый сложный, неизученный орган, который управляет всем организмом. Ученые не перестают изучать его строение, и сегодня мы рассмотрим основные функции различных мозговых структур.
Структура
Понятие конечного мозга объединяет оба полушария, при этом его также принято разделять на 4 доли — лобную, височную, теменную, затылочную.
Слаженная работа всех отделов направлена на работу высших психических функций — восприятия, внимания, памяти, мышления. Наша нервная система получает сигналы от органов чувств, а мозг обрабатывает их — слух, зрение, вкус, запах, чувство равновесия. Также он контролирует все жизненно важные процессы — дыхание, сердцебиение, метаболизм. Рассмотрим подробнее, где же происходит это волшебство.
Конечный мозг
Ниже приведены основные функции долей больших полушарий:
Задний мозг: мозжечок, мост
Этот отдел образуют мозжечок и варолиев мост, который находится над мозжечком и соединяет его со спинным мозгом. Здесь происходит регуляция нашего вестибулярного аппарата — это ощущение равновесия, а также координация движений. Он надежно защищен, поскольку повреждение этой зоны провоцирует шаткую, неустойчивую походку, ослабление мышц, даже тремор конечностей, в некоторых случаях — изменение почерка.
Средний
Этот отдел является частью двигательной системы и выполняет большое количество функций. Средний мозг контролирует наши движения и защитные реакции, например, в ответ на страх. Он отвечает за зрение, слух, поддерживает терморегуляцию, болевые ощущения, контролирует концентрацию внимания, биоритмы.
Промежуточный отдел
Этот отдел перерабатывает всю входящую информацию. Его основная функция — наша способность адаптироваться, приспосабливаться. Промежуточный мозг состоит из трех частей:
Продолговатый
Выполняет регуляцию систем: дыхательной, кровообращения, пищеварения. Благодаря ему у нас есть безусловные рефлексы, например, чихание, а также тонус мышц. Кроме того, там стимулируется выработка различных секретов — слюны, слез, ферментов ЖКТ.
Науке еще многое предстоит узнать об особенностях нашего самого главного органа. В наших же силах поддерживать его высокую работоспособность при помощи постоянных тренировок. Тренируйте высшие психические функции — внимание, память, мышление — на когнитивных тренажерах, чтобы работа всех отделов была продуктивной.
Какая область мозга отвечает за зрение
а) Зрительный нерв, зрительный путь. Зрительный нерв образован аксонами ганглиозных клеток сетчатки. Аксоны покрыты миелиновой оболочкой в месте их выхода из диска зрительного нерва.
Количество ганглиозных клеток значительно варьирует у разных людей и составляет в среднем 1 млн. Поскольку каждая ганглиозная клетка входит в зрительный нерв, количество аксонов в нем соответственно изменяется.
Ганглиозные клетки сетчатки имеют общее происхождение с чувствительными нейронами спинного мозга. Зрительный нерв гомологичен белому веществу спинного мозга и не является периферическим нервом. В главе 9 отмечено, что истинные периферические, черепные или спинномозговые нервы содержат шванновские клетки, покрыты коллагеновой оболочкой и способны к регенерации. Зрительный нерв содержит клетки нейроглии центрального типа (астроциты и олигодендроциты) и не способен к регенерации у млекопитающих. Кроме того, зрительный нерв покрыт мозговыми оболочками с расположенным между ними подпаутинным пространством. Подобное строение объясняет изменения на поверхности глазного дна при повышении внутричерепного давления (отек диска зрительного нерва).
В зрительном перекресте волокна от назальной (медиальной) половины сетчатки входят в противоположный зрительный путь, а волокна от височной (латеральной) половины сетчатки не переходят на другую сторону и попадают в зрительный путь той же стороны. Информация от сетчатки поступает к среднему мозгу (участвующему в регуляции движений глаз, размера зрачка и циркадных ритмов) и латеральному коленчатому ядру таламуса (откуда направляется к зрительной коре, отвечающей за различные аспекты зрения) от различных групп ганглиозных клеток.
Часть зрительных волокон входит в надперекрестное ядро гипоталамуса («центральные часы»), отвечающее за поддержание циркадных ритмов. Такая связь позволяет объяснить положительный эффект использования яркого искусственного освещения в течение нескольких часов в день для лечения зимней депрессии.
Схема зрительных проводящих путей.
Два зрительных поля (правого и левого глаза) представлены раздельно без наложения. На срезе мозга показаны зрительные проводящие пути, вид снизу.
Каждый зрительный путь огибает средний мозг и разделяется на медиальный и латеральный корешки:
1. Медиальный корешок зрительного тракта. Медиальный корешок содержит 10 % волокон зрительного нерва. Он входит в средний мозг с боковой стороны и включает четыре различных группы волокон.
— Часть волокон, особенно от М-клеток сетчатки, входит в верхний холмик и обеспечивает автоматический анализ информации, как, например, при чтении этой страницы.
— Часть волокон проходит через верхний холмик к подушке таламуса; они составляют фрагмент экстраколенчатого проводящего пути к зрительной коре больших полушарий.
— Часть волокон входит в предпокрышечное ядро и участвует в зрачковом световом рефлексе.
— Часть волокон достигает мелкоклеточной ретикулярной формации, где они выполняют функцию возбуждения.
2. Латеральный корешок зрительного тракта и латеральное коленчатое тело. Латеральный корешок зрительного тракта оканчивается в латеральном коленчатом теле (ЛК’Г) таламуса. ЛКТ образовано шестью клеточными пластинками, три из которых состоят из пересеченных волокон, а три — из непересеченных (слои 2, 3, 5; «U-235»). Две наиболее глубоких пластинки (одна с пересеченными, другая — с непересеченными волокнами) образованы крупными клетками, к ним подходят аксоны ганглиозных клеток М-типа, отвечающих за регистрацию движений (расположение в пространстве, скорость, и направление). К четырем другим мелкоклеточным пластинкам подходят аксоны от Р-клеток, отвечающих за детальное зрение (цвет и детализация изображения).
Нервные цепочки ЛКТ напоминают таковые в других релейных таламических ядрах и включают тормозные (γ-аминомасляная кислота, ГАМК) терминали, отходящие от вставочных нейронов и от таламического ретикулярного ядра. (Часть ретикулярного ядра, взаимодействующая с ЛКТ, носит название околоколенчатое ядро.) Корково-коленчатые волокна начинаются в первичной зрительной коре и образуют контакты с дистальными отделами дендритов релейных клеток, а также с тормозными вставочными нейронами. Количество синапсов корковых нейронов с релейными клетками в два раза превышает количество контактов ганглиозных клеток сетчатки.
Корковая стимуляция обычно усиливает реакцию релейных клеток в ответ на импульсы, полученные от сетчатки. Вероятно, но не доказано, что их функция заключается в селективном усилении различных аспектов зрительного восприятия, таких как поиск объекта известной формы или цвета. При функциональной магнитно-резонансной томографии (фМРТ) можно обнаружить области повышенной нейрональной активности головного мозга. При фМРТ было установлено, что если доброволец ожидает увидеть на экране интересующий объект, метаболическая активность в ЛКТ увеличивается до появления стимула.
Левая зрительная лучистость. ЛКТ—Латеральное коленчатое тело.
б) Коленчато-шпорный путь и первичная зрительная кора. Зрительная лучистость (коленчато-шпорный путь) имеет важное клиническое значение, поскольку поражение этой области часто происходит при тромбозе сосудов или опухолевом процессе в заднем отделе полушария головного мозга. Проводящий путь проходит от латерального коленчатого тела к первичной зрительной коре.
Строение зрительной лучистости показано на рисунках ниже. Волокна, лежащие в нижней половине первичной зрительной коры, направляются кпереди в височную долю в виде петли Мейера, а затем поворачивают кзади и сопровождают волокна от верхней половины. Путь входит в зачечевицеобраз-ную часть внутренней капсулы и располагается в белом веществе под латеральной височной корой. Он прилежит к заднему рогу бокового желудочка до поворота в медиальном направлении и прохождения в затылочную кору.
1. Ретинотопическая карта. Зрительное поле противоположной стороны проецируется в виде перевернутого изображения. Плоскость шпорной борозды расположена горизонтально. Сетчатка расположена спереди назад со значительно более широко представленной центральной ямкой в задней половине шпорной коры.
Проводящий путь от зрительного поля правого глаза к первичной зрительной коре.
Т указывает на височную (темпоральную) половину зрительного поля. N обозначает назальную (внутреннюю) половину левого зрительного поля.
В левой сетчатке и зрительном нерве (ЗН) полученное изображение представлено зеркально отраженным и перевернутым.
Правая сетчатка и зрительный нерв неактивны, так как этот глаз экранирован.
В зрительном перекресте (ЗПер) аксоны, образующие назальную половину левого зрительного нерва, пересекают среднюю линию и образуют медиальную половину правого зрительного пути (ЗП).
Волокна, расположенные в латеральной половине нерва, проходят в латеральной половине левого зрительного пути.
Каждая группа волокон образует контакты с соответствующим латеральным коленчатым телом (ЛКТ).
Зрительные лучистости (ЗЛ) имеют веерообразное строение; их аксоны, передающие информацию от центральных ямок, вначале располагаются в центре пучка.
По мере их приближения к затылочному полюсу аксоны центральной ямки (красного цвета) в обоих полушариях смещаются кзади и входят в задний отдел первичной зрительной коры (ПЗК).
Обратите внимание на тип прохождения аксонов к коре с обеих сторон (полосами).
Интервалы между ними имеют одинаковую ширину и содержат волокна, идущие к зрительной коре и образующие зрительное поле правого глаза.
ВХ—верхний холмик.
2. Поражения зрительных проводящих путей. Исследование зрительных путей имеет следующие особенности:
• Пациент может не подозревать о слепоте весьма значительной степени—в некоторых случаях даже о гемианопсии.
• Значительные зрительные нарушения можно выявить при обычном противопоставлении, как указано далее. Пациент закрывает попеременно каждый глаз и фокусирует взгляд на носу врача. Врач, сидя напротив, смотрит пациенту в глаз, внося в поле зрения одну или другую руку с различных сторон, покачивая указательным пальцем.
• В слепой зоне пациент не видит темноту—пациент вообще ничего не видит.
— Зрительные дефекты описывают с точки зрения пациента относительно зрительных полей. Для упрощения схемы представления зрительных полей, отмеченных цифрами от 1 до 9, черный цвет используют для обозначения области, в которой зрение отсутствует. На самом деле на схемах зрительных полей указывают области с сохранным зрением (в противоположность представленным графически) Слепое пятно не обозначают, но оно должно располагаться темпоральнее (латеральнее) центральной точки фиксации взгляда.]
• Возможные места повреждения зрительных проводящих путей показаны на рисунке ниже. Проявления соответствуют представленным номерам в ниже.
Примечания по приведенным выше поражениям:
1. Эксцентрические поражения зрительного нерва приводят к образованию скотом в назальном или височном поле зрения пораженного глаза. При развитии скотомы у молодых взрослых всегда следует подозревать рассеянный склероз.
2. Полное поражение зрительного нерва может возникать при черепно-мозговой травме.
3. Сдавление середины перекреста чаще всего бывает вызвано аденомой (доброкачественной опухолью) гипофиза.
4. Поражения зрительного пути встречают редко. Несмотря на то, что выпадают гомонимные (односторонние) зрительные поля, наружная, неприкрытая половина зрительного пути, поражается чаще, чем внутренняя половина, поэтому гемианопсию обозначают как несимметричную.
5. Избирательное поражение петли Мейера встречают при опухолях височной доли.
6. Поражение зрительной лучистости встречают при опухолях височной, теменной или затылочной долей. Зрительные поля обоих глаз обычно выпадают в одинаковой степени (симметрично), и желтое пятно остается интактным. Опухоли, инфильтрирующие лучистость снизу, приводят к дефекту в нижнем квадранте. Основной пучок лучистости расположен в зачечевицеобразном отделе внутренней капсулы и часто поражается при отеке, сопровождающем кровотечение из ветви средней мозговой артерии (классический инсульт).
7. Тромбоз задней мозговой артерии сопровождается гомонимной гемианопсией. Пробелы в зрительном поле № 7 указывают на сохранность желтого пятна (макулы). Сохранность макулярных половин полей зрения непостоянна и часто обусловлена двойным кровоснабжением затылочного полюса из средней и задней мозговых артерий.
8. Двусторонние центральные скотомы наиболее часто развиваются при падении на затылок с ушибом мозга в затылочном отделе.
9. Височную серповидную гомонимную гемианопсию встречают при повреждении затылочной коры с сохранением наиболее переднего ее отдела—области, к которой подходят зрительные лучистости, идущие от назального отдела сетчатки (назальная половина сетчатки «видит» височное зрительное поле).
в) Резюме. В процессе эмбриогенеза сетчатка развивается из наружного выпячивания диэнцефалона. Эмбриональный зрительный бокал состоит из наружного пигментного слоя и внутреннего оптического слоя, между которыми расположено внутрисетчаточное (интраретинальное) пространство. Оптический слой образован тремя типами радиально расположенных нейронов (фоторецепторами, биполярными клетками и ганглиозными клетками) и двумя типами тангенциально (по касательной линии) расположенных клеток (горизонтальными и амакриновыми). Во всех отделах кроме центральной ямки свет должен пройти через другие слои сетчатки, чтобы попасть на фоторецепторы.
Две трети зрительного поля — бинокулярные, наружная 1/6 с каждой стороны—монокулярная. Зрительные дефекты описывают относительно зрительных полей.
Палочковые фоторецепторы функционируют при сумеречном свете и отсутствуют в центральной ямке. Колбочки наиболее многочисленны в центральной ямке; они отвечают за распознавание формы и имеют три типа чувствительности к цвету. Ганглиозные клетки имеют концентрическую реакцию на возбуждения по типу «от центра к периферии» с цветовым противодействием. М-ганглиозные клетки—относительно крупные и отвечают за регистрацию движений, их аксоны направляются к двум крупноклеточным слоям в ЛКТ. Функция Р-ганглиозных клеток—распознавание отдельных свойств изображения и цвета, они взаимодействуют с четырьмя мелкоклеточными слоями ЛКТ.
ЛКТ — двустороннее образование, получающее информацию от противоположной назальной половины сетчатки (через зрительный перекрест), а также от ипсилатеральной височной половины сетчатки. Обе группы аксонов проходят через зрительный тракт, от которого также отходят коллатерали к среднему мозгу для образования низших зрительных рефлексов.
Зрительная лучистость (коленчато-шпорный тракт) начинается от М- и Р-клеток ЛКТ и огибает боковой желудочек, достигая первичной зрительной коры в стенках шпорной борозды.
Разнообразные дефекты зрительных полей возникают вследствие повреждения любого из пяти главных отделов зрительных проводящих путей (зрительного нерва, зрительного перекреста, зрительного тракта, зрительной лучистости и зрительной коры).
— Вернуться в оглавление раздела «Неврология.»
Редактор: Искандер Милевски. Дата публикации: 21.11.2018
Зрительный нерв
Зрительный нерв — это пучок нервных волокон, который обеспечивает передачу нервных импульсов, вызванных световым раздражением, от сетчатой оболочки глаза к зрительному центру коры затылочной доли мозга.
Строение и функции зрительного нерва
Сам по себе зрительный нерв — это сплетение множества тончайших нервных волокон, между которыми находится центральный артериальный канал сетчатки. Нервные волокна собираются в зрительный нерв у заднего полюса глаза. В месте, где они приближаются к диску зрительного нерва (ДЗН), количество волокон увеличивается, поэтому здесь образуется небольшое возвышение над сетчаткой. Далее волокна собираются в диск, изгибаются под углом 90˚ и ограничивают внутриглазной отдел зрительного нерва.
У зрительного нерва три оболочки:
Пространство между ними заполняется жидкостью со сложным составом.
Зрительный нерв делят на четыре участка: внутриглазной, внутриорбитальный, внутриканальцевый и внутричерепной.
Начинается зрительный нерв в диске зрительного нерва, а заканчивается в хиазме — своеобразном перекресте нервов. После этого часть нервных волокон проходит в соответствующие центры мозга.
Так зрительный нерв выполняет свою основную функцию — доставку первичных импульсов к отсекам головного мозга. Отсюда импульсы возвращают в зрительный центр уже готовое изображение.
Симптоматика заболеваний зрительного нерва
Даже небольшие травмы нервного ствола могут привести к значительным нарушениям зрения и к слепоте. Наиболее распространенные болезни данной части органов зрения — это атрофия зрительного нерва и различные сосудистые нарушения.
В большинстве случаев возникают следующие симптомы:
Диагностика и лечение заболеваний зрительного нерва
Для обследования нервного зрительного тракта необходимо оценить остроту зрения в целом, поля зрения и восприятие цвета и обязательно обследовать глазное дно. Для этого врачи используют методы офтальмоскопии и периметрии.
В большинстве случаев болезни зрительного нерва довольно трудно поддаются лечению. Восстановить функции уже атрофированных областей, к сожалению, уже невозможно. Но волокна, которые только начали разрушаться, поддаются восстановлению.
В первую очередь лечение должно быть направлено на устранение причин заболевания. Терапия, как правило, направлена на купирование воспаления в нервной ткани, стимулировании кровообращения и снятие отечности.
В Глазной клинике доктора Беликовой работают врачи-офтальмологи с большим опытом лечения заболеваний зрительного нерва.