какие преимущества имеет растровый способ кодирования рисунков
Информатика. 7 класс
Конспект урока
Перечень вопросов, рассматриваемых в теме:
Пиксель – это наименьший элемент изображения.
Растр – совокупность пикселей, образующих строки и столбцы.
Каждый пиксель может иметь свой цвет.
Достоинства растровой графики: точность цветопередачи – при сохранении растрового изображения, сохраняется и информация о цвете каждого пикселя; изображения можно распечатать на принтере.
Недостатки: чувствительность к уменьшению и увеличению рисунка; большой объём всего изображения.
Способ, при котором задаются цвет и яркость для каждого отдельно взятого пикселя, называется растровым.
Растровые графические редакторы: Paint, GIMP, AdobePhotoshop и другие.
Формулы, которые используются при решении типовых задач:
где N – количество цветов в палитре,i – глубина цвета, K – размер растрового изображения.
1. Босова Л. Л. Информатика: 7 класс. // Босова Л. Л., Босова А. Ю. – М.: БИНОМ, 2017. – 226 с.
Теоретический материал для самостоятельного изучения.
Сегодня существуют различные способы создания графических изображений на компьютере. Но, всё же, самым распространённым способом считается создание изображений с помощью графических редакторов. Поэтому, в зависимости от способа создания изображения на компьютере, различают растровую и векторную графику. Сегодня на уроке мы познакомимся с растровой графикой, научимся получать растровые изображения и попробуем создать такие изображения с помощью графического редактора.
Ведь, если взять в руки лупу и рассмотреть экран монитора, то можно увидеть изображение, состоящее из каких-то отдельных мелких элементов. Что же это такое? Это пиксель – наименьший элемент изображения. А всё изображение в растровой графике формируется в виде растра – совокупности пикселей, образующих строки и столбцы. Каждый пиксель может иметь свой цвет.
Растровые изображения чаще всего получают с помощью сканера или цифрового фотоаппарата.
У любых растровых изображений есть определённые особенности:
1) чувствительность к уменьшению и увеличению рисунка;
2) если в изображении большое количество пикселей и используется множество цветов в палитре, то возрастает и объём всего изображения.
Всё это является недостатками растровых изображений.
Но есть, конечно же, и достоинство– это точность цветопередачи. При сохранении растрового изображения, сохраняется и информация о цвете каждого пикселя.
Таким образом, можно сделать вывод, что, если в памяти компьютера сохраняется информация о цвете каждого входящего в него пикселя, то такой способ создания изображения называется растровым.
И, хотя растровые изображения очень редко создают вручную, получить его можно и с помощью простейшего растрового графического редактора Paint. Такой редактор позволяет получать изображения с помощью панели инструментов и палитры, также окно данного графического редактора содержит строку заголовка, строку меню, полосы прокрутки и, конечно же, рабочую область.
Больше возможностей имеет растровый графический редактор Gimp. Панель инструментов редактора содержит диалог «Параметры инструментов». Имеется панель слоёв, каналов, контуров и путей, а также панель кистей, текстур и градиентов. Инструменты редактора Gimp можно разделить на следующие группы: инструменты выделения, инструменты рисования, инструменты преобразования, инструменты цвета.
Но нельзя забывать о том, что большинство растровых редакторов предназначено для обработки изображений, а не для их создания.
Растровый рисунок размером 1366×768 пикселей сохранили в виде несжатого файла размером 2 Мб. Каково максимально возможное число цветов в палитре?
Для решения этой задачи переведем 2 Мб в биты.
В одном байте – 8 бит, в 1 Мб – 1024 Кб, а в 1 Кб– 1024 байта.
Вычислим разрешение картинки.
Делим объём памяти на количество пикселей.
Получили 65536 максимально возможных цветов в палитре.
Решение:
2 Мбайт = 2 · 1024 · 1024 · 8= 16777216 битов
1366 · 768=1049088 точек
16777216 : 1049088≈16 битов на пиксель
N= 2 16 =65536 цветов.
Ответ: 65536 цветов.
Растровый графический редактор AdobePhotoshop
Получить растровое изображение с помощью сканера, цифрового фотоаппарата или видеокамеры не составляет особого труда. Гораздо сложнее создать растровое изображение вручную. Для этого существуют специальные растровые графические редакторы. Мы с вами рассмотрим более подробно один из них: растровый графический редактор AdobePhotoshop. РедакторAdobePhotoshop способен изменить изображение, например, отретушировать фотографию; объединить изображения, создать изображение.
Панель инструментов этого редактора содержит, помимо главного меню, кнопки с пиктограммами, которые позволяют выполнять различные действия.
Рисунок 5.1. Photoshop оснащён большим числом инструментов создания контуров выделения.
Программа AdobePhotoshop позволяет работать с готовыми фотографиями с помощью набора инструментов: цветокоррекции, фильтров, слоёв масок, можно выполнять различные действия, а также можно рисовать, изменять изображения экранными фильтрами.
Но, к сожалению, программа не является свободным программным обеспечением.
Форматы растровых графических файлов имеют следующие расширения: BMP, GIF, JPEG.
Разбор решения заданий тренировочного модуля
№1. Сколько цветов(N) насчитывается в палитре, если глубина цвета(i) равна 3? Выделите цветом правильный ответ.
Задача решается с помощью формулы N=2 i
Ответ: в палитре 8 цветов, вариант ответа 3.
№2. Фотографию размером 256×128 пикселей сохранили в виде несжатого файла. А для кодирования одного пикселя используется 2 байта. Определите размер файла в Кб.
Сначала определяем размер растрового изображения:
256 · 128 = 32768 точек в изображении
Теперь определяем размер файла: т.к. для кодирования одного пикселя используется 2 байта, то 32768 · 2 = 65536 байтов. Ответ нужно выразить в килобайтах, для этого 65536 : 1024 = 64 Кб.
Верный ответ: 64 Кб.
№3. Цветной рисунок состоит из 65536 цветов и занимает 3 Кб информации. Из скольких точек состоит данный рисунок?
Теперь, 3 Кб переведём в биты, для этого 3 · 1024 · 8 = 24576 бит – это объём всего изображения.
Преимущества и недостатки векторной и растровой графики.
Плюсы векторных изображений:
— гибкая масштабируемость, можно изменять размеры изображений без потери его визуальных качеств;
— максимальная точность построенного изображения (координаты точек, между которыми могут быть проведены кривые, могут иметь точность до сотых доль микрона) ;
— файл с векторным изображением имеет гораздо меньший размер по сравнению с растровым изображением;
— рисунок имеет высокое качество при печати, особенно это хорошо заметно на хороших принтерах при качественной печати;
— возможность редактирования всех частей векторного изображения;
— простой экспорт векторного рисунка в растровый.
Минусы векторных изображений:
— отсутствие реалистичности у векторных рисунков. Реалистичность достигается путем применения различных сложных цветовых схем;
— невозможность использования эффектов, которые можно применять в растровой графике;
— практически полная невозможность экспорта растрового рисунка в векторный;
Плюсы растрового изображения:
— высокая реалистичность изображения;
— на растровом изображении может быть изображено все, что угодно: как снимок с фотокамеры, так и нарисованное на компьютере изображение;
— к растровым изображениям можно применять самые разнообразные эффекты;
— растровые форматы рисунков используются при создании вэб-страниц в Интернете;
Недостатки растровых изображений:
— растровые изображения плохо масштабируются, можно уменьшить изображение, однако увеличить его без потери качества невозможно (к потери качества относиться заметное увеличение размытия изображения после увеличения рисунка) ;
— нельзя разбить растровое изображение на части и редактировать их;
— файл с растровым изображением имеет больший размер по сравнению с векторным.
Плюсы векторных изображений:
— гибкая масштабируемость, можно изменять размеры изображений без потери его визуальных качеств;
— максимальная точность построенного изображения (координаты точек, между которыми могут быть проведены кривые, могут иметь точность до сотых доль микрона) ;
— файл с векторным изображением имеет гораздо меньший размер по сравнению с растровым изображением;
— рисунок имеет высокое качество при печати, особенно это хорошо заметно на хороших принтерах при качественной печати;
— возможность редактирования всех частей векторного изображения;
— простой экспорт векторного рисунка в растровый.
Минусы векторных изображений:
— отсутствие реалистичности у векторных рисунков. Реалистичность достигается путем применения различных сложных цветовых схем;
— невозможность использования эффектов, которые можно применять в растровой графике;
— практически полная невозможность экспорта растрового рисунка в векторный;
Плюсы растрового изображения:
— высокая реалистичность изображения;
— на растровом изображении может быть изображено все, что угодно: как снимок с фотокамеры, так и нарисованное на компьютере изображение;
— к растровым изображениям можно применять самые разнообразные эффекты;
— растровые форматы рисунков используются при создании вэб-страниц в Интернете;
Недостатки растровых изображений:
— растровые изображения плохо масштабируются, можно уменьшить изображение, однако увеличить его без потери качества невозможно (к потери качества относиться заметное увеличение размытия изображения после увеличения рисунка) ;
— нельзя разбить растровое изображение на части и редактировать их;
— файл с растровым изображением имеет больший размер по сравнению с векторным.
Урок 9
Кодирование рисунков
§ 12. Кодирование рисунков: растровый метод
§ 13. Кодирование рисунков: другие методы
Содержание урока
§ 12. Кодирование рисунков: растровый метод
Что такое растровое кодирование?
§ 13. Кодирование рисунков: другие методы
§ 12. Кодирование рисунков: растровый метод
Что такое растровое кодирование?
Ключевые слова:
• растр
• пиксель
• разрешение
• цветовая модель RGB
• цветовая модель CMYK
• цветовая модель HSB
• глубина цвета
• цветовая палитра
Рисунок состоит из линий и закрашенных областей. В идеале нам нужно закодировать все особенности этого изображения так, чтобы его можно было в точности восстановить из кода (например, распечатать на принтере).
И линия, и область состоят из бесконечного числа точек. Цвет каждой из этих точек нам нужно как-то закодировать. Так как точек бесконечно много, для этого нужно бесконечно много памяти, поэтому таким способом изображение закодировать не удастся. Однако «поточечную» идею всё-таки можно использовать.
Начнём с чёрно-белого рисунка. Представим себе, что на изображение ромба наложена сетка, которая разбивает его на квадратики. Такая сетка называется растром. Теперь каждый квадратик внутри ромба зальём чёрным цветом, а каждый квадратик вне ромба — белым. Для тех квадратиков, в которых часть оказалась закрашена чёрным цветом, а часть — белым, выберем цвет в зависимости от того, какая часть (чёрная или белая) больше (рис. 2.19).
У нас получился растровый рисунок, состоящий из квадратиков-пикселей.

Разбив рисунок на квадратики, мы выполнили его дискретизацию. Действительно, у нас был непрерывный рисунок — изображение ромба. В результате мы получили дискретный объект — набор пикселей.
Двоичный код для чёрно-белого рисунка, полученного в результате дискретизации, можно построить следующим образом:
1) кодируем белые пиксели нулями, а чёрные — единицами 1) ;
2) выписываем строки полученной таблицы одну за другой.
1) Можно сделать и наоборот, чёрные пиксели обозначить нулями, а белые — единицами.
Покажем это на простом примере (рис. 2.20).
Ширина этого рисунка — 8 пикселей, поэтому каждая строка таблицы состоит из 8 двоичных разрядов — битов. Чтобы не писать очень длинную цепочку нулей и единиц, удобно использовать шестнадцатеричную систему счисления, закодировав 4 соседних бита (тетраду) одной шестнадцатеричной цифрой. Например, для первой строки получаем код 1А16:
| 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 |
| 1 | A | ||||||
а для всего рисунка: 1A2642FF425A5A7E16.
Используя полученный шестнадцатеричный код картинки, подсчитайте её информационный объём в битах и байтах.
Очень важно понять, что мы приобрели и что потеряли в результате дискретизации. Самое главное — мы смогли закодировать изображение в двоичном коде. Однако при этом рисунок исказился — вместо ромба мы получили набор квадратиков. Причина искажения в том, что в некоторых квадратиках части исходного рисунка были закрашены разными цветами, а в закодированном изображении каждый пиксель обязательно имеет один цвет. Таким образом, часть исходной информации при кодировании была потеряна. Это проявится, например, при увеличении рисунка — квадратики увеличиваются и рисунок ещё больше искажается. Чтобы уменьшить потери информации, нужно уменьшать размер пикселя, т. е. увеличивать разрешение.

Разрешение обычно измеряется в пикселях на дюйм (используется английское обозначение ppi: — pixels per inch). Например, разрешение 254 ppi означает, что на дюйм приходится 254 пикселя.
Чем больше разрешение, тем точнее кодируется рисунок (меньше информации теряется), однако одновременно растёт и объём файла.
Одна и та же картинка была отсканирована дважды: в первый раз с разрешением 300 ppi, а второй раз — с разрешением 600 ppi. Что можно сказать о размерах полученных файлов?
Существуют два основных способа получения растровых изображений:
1) ввод с помощью какого-либо устройства, например сканера, цифрового фотоаппарата или веб-камеры; напомним, что при сканировании происходит преобразование информации в компьютерные данные (оцифровка);
2) создание рисунка с помощью какой-либо программы.
Используя дополнительные источники, найдите ответы на вопросы.
— Чему равен один дюйм в миллиметрах?
— Если отсканировать рисунок с разрешением 254 ppi, какой размер будет иметь изображение одного пикселя?
— Какие размеры в пикселях будет иметь изображение рисунка размером 10 х 15 см, если отсканировать его с разрешением 254 ppi?
Следующая страница 
Cкачать материалы урока
Кодирование растровых изображений
Тема: Дискретное (цифровое) представление текстовой, графической, звуковой информации и видеоинформации
Цель:изучить способы представления текстовой, графической, звуковой информации и видеоинформации, научиться записывать числа в различных системах счисления.
Теоретические сведения к практикуму № 3
Дискретное представление информации: кодирование цветного изображения в компьютере (растровый подход). Представление и обработка звука и видеоизображения.
Вся информация, которую обрабатывает компьютер должна быть представлена двоичным кодом с помощью двух цифр 0 и 1. Эти два символа принято называть двоичными цифрами или битами. С помощью двух цифр 0 и 1 можно закодировать любое сообщение. Это явилось причиной того, что в компьютере обязательно должно быть организованно два важных процесса: кодирование и декодирование.
Кодирование – преобразование входной информации в форму, воспринимаемую компьютером, то есть двоичный код.
Декодирование – преобразование данных из двоичного кода в форму, понятную человеку.
С точки зрения технической реализации использование двоичной системы счисления для кодирования информации оказалось намного более простым, чем применение других способов. Действительно, удобно кодировать информацию в виде последовательности нулей и единиц, если представить эти значения как два возможных устойчивых состояния электронного элемента:
0 – отсутствие электрического сигнала;
1 – наличие электрического сигнала.
Эти состояния легко различать. Недостаток двоичного кодирования – длинные коды. Но в технике легче иметь дело с большим количеством простых элементов, чем с небольшим числом сложных.
Способы кодирования и декодирования информации в компьютере, в первую очередь, зависят от вида информации, а именно, что должно кодироваться: числа, текст, графические изображения или звук.
Аналоговый и дискретный способ кодирования
Человек способен воспринимать и хранить информацию в форме образов (зрительных, звуковых, осязательных, вкусовых и обонятельных). Зрительные образы могут быть сохранены в виде изображений (рисунков, фотографий и так далее), а звуковые — зафиксированы на пластинках, магнитных лентах, лазерных дисках и так далее.
Информация, в том числе графическая и звуковая, может быть представлена в аналоговой или дискретной форме. При аналоговом представлении физическая величина принимает бесконечное множество значений, причем ее значения изменяются непрерывно. При дискретном представлении физическая величина принимает конечное множество значений, причем ее величина изменяется скачкообразно.
Примером аналогового представления графической информации может служить, например, живописное полотно, цвет которого изменяется непрерывно, а дискретного– изображение, напечатанное с помощью струйного принтера и состоящее из отдельных точек разного цвета. Примером аналогового хранения звуковой информации является виниловая пластинка (звуковая дорожка изменяет свою форму непрерывно), а дискретного – аудиокомпакт — диск (звуковая дорожка которого содержит участки с различной отражающей способностью).
Преобразование графической и звуковой информации из аналоговой формы в дискретную производится путем дискретизации, то есть разбиения непрерывного графического изображения и непрерывного (аналогового) звукового сигнала на отдельные элементы. В процессе дискретизации производится кодирование, то есть присвоение каждому элементу конкретного значения в форме кода.
Дискретизация– это преобразование непрерывных изображений и звука в набор дискретных значений в форме кодов.
Создавать и хранить графические объекты в компьютере можно двумя способами – как растровое или как векторное изображение. Для каждого типа изображений используется свой способ кодирования.
Кодирование растровых изображений
Растровое изображение представляет собой совокупность точек (пикселей) разных цветов. Пиксель– минимальный участок изображения, цвет которого можно задать независимым образом.
В процессе кодирования изображения производится его пространственная дискретизация. Пространственную дискретизацию изображения можно сравнить с построением изображения из мозаики (большого количества маленьких разноцветных стекол). Изображение разбивается на отдельные маленькие фрагменты (точки), причем каждому фрагменту присваивается значение его цвета, то есть код цвета (красный, зеленый, синий и так далее).
Для черно-белого изображения информационный объем одной точки равен одному биту (либо черная, либо белая – либо 1, либо 0).
Для четырех цветного – 2 бита.
Для 8 цветов необходимо – 3 бита.
Для 16 цветов – 4 бита.
Для 256 цветов – 8 бит (1 байт).
Число цветов, воспроизводимых на экране дисплея (К), и число битов, отводимых в видеопамяти под каждый пиксель (N) связаны формулой K=2N
Качество изображения зависит от количества точек (чем меньше размер точки и, соответственно, больше их количество, тем лучше качество) и количества используемых цветов (чем больше цветов, тем качественнее кодируется изображение).
Для представления цвета в виде числового кода используются две обратных друг другу цветовые модели: RGB или CMYK. Модель RGB используется в телевизорах, мониторах, проекторах, сканерах, цифровых фотоаппаратах… Основные цвета в этой модели: красный (Red), зеленый (Green), синий (Blue). Цветовая модель CMYK используется в полиграфии при формировании изображений, предназначенных для печати на бумаге.
Цветные изображения могут иметь различную глубину цвета, которая задается количеством битов, используемых для кодирования цвета точки.
Если кодировать цвет одной точки изображения тремя битами (по одному биту на каждый цвет RGB), то мы получим все восемь различных цветов.
| R | G | B | Цвет |
| Белый | |||
| Желтый | |||
| Пурпурный | |||
| Красный | |||
| Голубой | |||
| Зеленый | |||
| Синий | |||
| Черный |
На практике же, для сохранения информации о цвете каждой точки цветного изображения в модели RGB обычно отводится 3 байта (то есть 24 бита) — по 1 байту (то есть по 8 бит) под значение цвета каждой составляющей. Таким образом, каждая RGB-составляющая может принимать значение в диапазоне от 0 до 255 (всего 28=256 значений), а каждая точка изображения, при такой системе кодирования может быть окрашена в один из 16 777 216 цветов. Такой набор цветов принято называть True Color (правдивые цвета), потому что человеческий глаз все равно не в состоянии различить большего разнообразия.
Для того чтобы на экране монитора формировалось изображение, информация о каждой точке (код цвета точки) должна храниться в видеопамяти компьютера. Рассчитаем необходимый объем
видеопамяти для одного из графических режимов. В современных компьютерах разрешение экрана обычно составляет 1280х1024 точек. Т.е. всего 1280 * 1024 = 1310720 точек. При глубине цвета 32 бита на точку необходимый объем видеопамяти: 32 * 1310720 = 41943040 бит = 5242880 байт = 5120 Кб = 5 Мб.
Растровые изображения очень чувствительны к масштабированию (увеличению или уменьшению). При уменьшении растрового изображения несколько соседних точек преобразуются в одну, поэтому теряется различимость мелких деталей изображения. При увеличении изображения увеличивается размер каждой точки и появляется ступенчатый эффект, который можно увидеть невооруженным глазом.
Статьи к прочтению:
ЗАДАНИЕ 9. ЕГЭ по Информатике 2017. Кодирование графической информации. ДЕМО
Похожие статьи:
Пиксел является неделимой точкой в графическом изображении растровой графики на экране монитора. Проблема растровых файлов в том, что они большие, даже…
1.В файле растрового изображения запоминается информация о цвете каждого видеопикселя в виде комбинации битов. Бит- наименьший элемент памяти компьютера,…





