какое наименьшее количество двоичных знаков потребуется для кодирования слова грамм

Какое наименьшее количество двоичных знаков потребуется для кодирования слова грамм

По каналу связи передаются сообщения, содержащие только семь букв: А, Б, Г, И, М, Р, Я. Для передачи используется двоичный код, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны: А — 010, Б — 011, И — 10. Какое наименьшее количество двоичных знаков потребуется для кодирования слова ГРАММ?

Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.

Для трёх букв кодовые слова уже известны, осталось подобрать для оставшихся четырёх букв такие кодовые слова, которые обеспечат наименьшее количество двоичных знаков для кодирования слова ГРАММ.

Закодируем букву М кодовым словом 00, поскольку буква М повторяется в слове ГРАММ два раза. Для буквы Г возьмём кодовое слово 110. Кодовое слово 111 взять не можем, поскольку для остальных букв не останется кодовых слов, удовлетворяющих условию Фано. Оставшиеся две буквы закодируем кодовыми словами длины 4.

Таким образом, наименьшее количество двоичных знаков, которые потребуются для кодирования слова ГРАММ, равно 3 + 4 + 3 + 2 + 2 = 14.

Заметим, что после кодирования всех букв, входящих в слово ГРАММ, должен остаться хотя бы один свободный код для кодирования буквы Я, которая не входит в данное слово, но может передаваться по каналу связи. Проверить наличие свободного кода можно, построив дерево кодов, как показано в задаче 18553.

Источник

Какое наименьшее количество двоичных знаков потребуется для кодирования слова грамм

По каналу связи передаются сообщения, содержащие только семь букв: А, Б, Г, И, М, Р, Я. Для передачи используется двоичный код, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны: А — 010, Б — 011, И — 10. Какое наименьшее количество двоичных знаков потребуется для кодирования слова ГРАММ?

Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.

Для трёх букв кодовые слова уже известны, осталось подобрать для оставшихся четырёх букв такие кодовые слова, которые обеспечат наименьшее количество двоичных знаков для кодирования слова ГРАММ.

Закодируем букву М кодовым словом 00, поскольку буква М повторяется в слове ГРАММ два раза. Для буквы Г возьмём кодовое слово 110. Кодовое слово 111 взять не можем, поскольку для остальных букв не останется кодовых слов, удовлетворяющих условию Фано. Оставшиеся две буквы закодируем кодовыми словами длины 4.

Таким образом, наименьшее количество двоичных знаков, которые потребуются для кодирования слова ГРАММ, равно 3 + 4 + 3 + 2 + 2 = 14.

Заметим, что после кодирования всех букв, входящих в слово ГРАММ, должен остаться хотя бы один свободный код для кодирования буквы Я, которая не входит в данное слово, но может передаваться по каналу связи. Проверить наличие свободного кода можно, построив дерево кодов, как показано в задаче 18553.

Источник

Какое наименьшее количество двоичных знаков потребуется для кодирования слова грамм

По каналу связи передаются сообщения, содержащие только семь букв: А, Б, Г, И, М, Р, Я. Для передачи используется двоичный код, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны: А — 010, Б — 011, Г — 100. Какое наименьшее количество двоичных знаков потребуется для кодирования слова МАГИЯ?

Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.

Следующая буква должна кодироваться как 11, поскольку 10 мы взять не можем. 100 взять не можем из-за Г, значит, следующая буква должна быть закодирована кодом 101. Следующая буква должна кодироваться как 000, поскольку 00 взять не можем, иначе не останется кодовых слов для оставшейся буквы, которые удовлетворяют условию Фано. Значит, последняя буква будет кодироваться как 001. Тогда наименьшее количество двоичных знаков, которые потребуются для кодирования слова МАГИЯ равно 2 + 3 + 3 + 3 + 3 = 14.

Заметим, что после кодирования всех букв, входящих в слово МАГИЯ, должен остаться хотя бы один свободный код для кодирования буквы Р, которая не входит в данное слово, но может передаваться по каналу связи. Проверить наличие свободного кода можно, построив дерево кодов, как показано в задаче 18553.

При такой кодировке невозможно подобрать кодовое слово для буквы «Р», удовлетворяющее условию Фано.

По каналу связи передаются сообщения, содержащие только семь букв: А, Б, Г, И, М, Р, Я. Для передачи используется двоичный код, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны: А — 010, Б — 00, Г — 101. Какое наименьшее количество двоичных знаков потребуется для кодирования слова МАГИЯ?

Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.

Следующая буква должна кодироваться как 011, поскольку 01 мы взять не можем, иначе код для буквы А не будет удовлетворять условию Фано. 10 из-за Г взять не можем, тогда следующая буква будет кодироваться как 100. Следующая буква должна кодироваться как 110, поскольку 11 взять не можем, иначе не останется кодовых слов для оставшейся буквы, которые удовлетворяют условию Фано. Значит, последняя буква будет кодироваться как 111. Тогда наименьшее количество двоичных знаков, которые потребуются для кодирования слова МАГИЯ равно

Заметим, что после кодирования всех букв, входящих в слово МАГИЯ, должен остаться хотя бы один свободный код для кодирования буквы Р, которая не входит в данное слово, но может передаваться по каналу связи. Проверить наличие свободного кода можно, построив дерево кодов, как показано в задаче 18553.

По каналу связи передаются сообщения, содержащие только семь букв: А, Б, Г, И, М, Р, Я. Для передачи используется двоичный код, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны: А — 010, Б — 011, И — 10. Какое наименьшее количество двоичных знаков потребуется для кодирования слова ГРАММ?

Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.

Для трёх букв кодовые слова уже известны, осталось подобрать для оставшихся четырёх букв такие кодовые слова, которые обеспечат наименьшее количество двоичных знаков для кодирования слова ГРАММ.

Закодируем букву М кодовым словом 00, поскольку буква М повторяется в слове ГРАММ два раза. Для буквы Г возьмём кодовое слово 110. Кодовое слово 111 взять не можем, поскольку для остальных букв не останется кодовых слов, удовлетворяющих условию Фано. Оставшиеся две буквы закодируем кодовыми словами длины 4.

Таким образом, наименьшее количество двоичных знаков, которые потребуются для кодирования слова ГРАММ, равно 3 + 4 + 3 + 2 + 2 = 14.

Заметим, что после кодирования всех букв, входящих в слово ГРАММ, должен остаться хотя бы один свободный код для кодирования буквы Я, которая не входит в данное слово, но может передаваться по каналу связи. Проверить наличие свободного кода можно, построив дерево кодов, как показано в задаче 18553.

Источник

Какое наименьшее количество двоичных знаков потребуется для кодирования слова грамм

По каналу связи передаются сообщения, содержащие только семь букв: А, Б, Г, И, М, Р, Я. Для передачи используется двоичный код, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны: А — 010, Б — 011, И — 10. Какое наименьшее количество двоичных знаков потребуется для кодирования слова ГРАММ?

Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.

Для трёх букв кодовые слова уже известны, осталось подобрать для оставшихся четырёх букв такие кодовые слова, которые обеспечат наименьшее количество двоичных знаков для кодирования слова ГРАММ.

Закодируем букву М кодовым словом 00, поскольку буква М повторяется в слове ГРАММ два раза. Для буквы Г возьмём кодовое слово 110. Кодовое слово 111 взять не можем, поскольку для остальных букв не останется кодовых слов, удовлетворяющих условию Фано. Оставшиеся две буквы закодируем кодовыми словами длины 4.

Таким образом, наименьшее количество двоичных знаков, которые потребуются для кодирования слова ГРАММ, равно 3 + 4 + 3 + 2 + 2 = 14.

Заметим, что после кодирования всех букв, входящих в слово ГРАММ, должен остаться хотя бы один свободный код для кодирования буквы Я, которая не входит в данное слово, но может передаваться по каналу связи. Проверить наличие свободного кода можно, построив дерево кодов, как показано в задаче 18553.

Источник

Какое наименьшее количество двоичных знаков потребуется для кодирования слова грамм

По каналу связи передаются сообщения, содержащие только семь букв: А, Б, Г, И, М, Р, Я. Для передачи используется двоичный код, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны: А — 010, Б — 011, Г — 100. Какое наименьшее количество двоичных знаков потребуется для кодирования слова МАГИЯ?

Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.

Следующая буква должна кодироваться как 11, поскольку 10 мы взять не можем. 100 взять не можем из-за Г, значит, следующая буква должна быть закодирована кодом 101. Следующая буква должна кодироваться как 000, поскольку 00 взять не можем, иначе не останется кодовых слов для оставшейся буквы, которые удовлетворяют условию Фано. Значит, последняя буква будет кодироваться как 001. Тогда наименьшее количество двоичных знаков, которые потребуются для кодирования слова МАГИЯ равно 2 + 3 + 3 + 3 + 3 = 14.

Заметим, что после кодирования всех букв, входящих в слово МАГИЯ, должен остаться хотя бы один свободный код для кодирования буквы Р, которая не входит в данное слово, но может передаваться по каналу связи. Проверить наличие свободного кода можно, построив дерево кодов, как показано в задаче 18553.

При такой кодировке невозможно подобрать кодовое слово для буквы «Р», удовлетворяющее условию Фано.

По каналу связи передаются сообщения, содержащие только семь букв: А, Б, Г, И, М, Р, Я. Для передачи используется двоичный код, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны: А — 010, Б — 00, Г — 101. Какое наименьшее количество двоичных знаков потребуется для кодирования слова МАГИЯ?

Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.

Следующая буква должна кодироваться как 011, поскольку 01 мы взять не можем, иначе код для буквы А не будет удовлетворять условию Фано. 10 из-за Г взять не можем, тогда следующая буква будет кодироваться как 100. Следующая буква должна кодироваться как 110, поскольку 11 взять не можем, иначе не останется кодовых слов для оставшейся буквы, которые удовлетворяют условию Фано. Значит, последняя буква будет кодироваться как 111. Тогда наименьшее количество двоичных знаков, которые потребуются для кодирования слова МАГИЯ равно

Заметим, что после кодирования всех букв, входящих в слово МАГИЯ, должен остаться хотя бы один свободный код для кодирования буквы Р, которая не входит в данное слово, но может передаваться по каналу связи. Проверить наличие свободного кода можно, построив дерево кодов, как показано в задаче 18553.

По каналу связи передаются сообщения, содержащие только семь букв: А, Б, Г, И, М, Р, Я. Для передачи используется двоичный код, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны: А — 010, Б — 011, И — 10. Какое наименьшее количество двоичных знаков потребуется для кодирования слова ГРАММ?

Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.

Для трёх букв кодовые слова уже известны, осталось подобрать для оставшихся четырёх букв такие кодовые слова, которые обеспечат наименьшее количество двоичных знаков для кодирования слова ГРАММ.

Закодируем букву М кодовым словом 00, поскольку буква М повторяется в слове ГРАММ два раза. Для буквы Г возьмём кодовое слово 110. Кодовое слово 111 взять не можем, поскольку для остальных букв не останется кодовых слов, удовлетворяющих условию Фано. Оставшиеся две буквы закодируем кодовыми словами длины 4.

Таким образом, наименьшее количество двоичных знаков, которые потребуются для кодирования слова ГРАММ, равно 3 + 4 + 3 + 2 + 2 = 14.

Заметим, что после кодирования всех букв, входящих в слово ГРАММ, должен остаться хотя бы один свободный код для кодирования буквы Я, которая не входит в данное слово, но может передаваться по каналу связи. Проверить наличие свободного кода можно, построив дерево кодов, как показано в задаче 18553.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *