какова средняя скорость нервных импульсов в головном мозге то есть скорость мысли

Какова скорость мысли?

А на самом ли деле, скорость мысль – наибольшая, какую только можно себе вообразить?

Когда-то очень давно это было бесспорно, но сегодня мы знаем, что мысль – это импульс, проходящий по нервным волокнам в нашем теле. И что самое важное – теперь мы с большой точность можем измерить его скорость. Знаете, что выяснилось?

Мысль, оказывается…

Мысль, оказывается, не такой уж и быстрый процесс! Скорость, с которой движется нервный импульс, составляет всего 250 км/ч. А это значит, что информация вне нашего тела может быть быстрее передана, чем внутри него, от одного органа к другому!

Такие средства массовой информации как телевидение, телефон и радио информацию передают быстрее нашей нервной системы.

Вот, к примеру, если мысль передать по нервам от Одессы до Москвы, то прибудет она на несколько часов позже, чем та же мысль, если ее передать по телефону или радио.

А вот еще пример. Представьте себе великана, голова которого находится на Аляске, а ноги — где-то в Южной Африке. Так вот, если его в понедельник утром за палец на ноге укусит акула, то мозг его узнает об этом не раньше, чем в среду вечером.

Но на разные виды сигналов мы реагируем с разной скоростью. К примеру, мы будем быстрее реагировать на яркий свет, чем на тусклый; на звук, чем на свет; на что-то неприятное, чем на что-либо более приятное.

Интересно, что скорость мысли у разных людей различная. Именно поэтому на одни и те же сигналы одни люди будет реагировать гораздо быстрее других.

Источник

Скорость мысли

Правда ли то, что мысль имеет самую большую скорость, какую только можно представить? Когда-то, в давние времена, это считалось бесспорным, что и объясняет такие выражения, как «быстрее мысли».

Сегодня нам известно, что мысль представляет собой импульс, который проходит по нервным волокнам нашего тела и что скорость этого импульса можно измерить довольно точно. Выясняется удивительная вещь: оказывается, мысль — это очень медленный процесс.

Нервный импульс движется со скоростью, которая составляет около 250 км/час! Это означает, что какая-либо информация может быть передана быстрее вне нашего тела, чем внутри него, от одного органа к другому! Телевидение, радио, телефон — все эти средства передают информацию гораздо быстрее, чем наша нервная система. Мысль, переданная по нервам с Кишинёва до Флорешт прибудет до места назначения позже, чем та же самая мысль, переданная по радио или телефону.

Когда что-то случается с пальцем у нас на ноге, то, пока импульс с информацией об этом дойдет до мозга, пройдет некоторое время. Представьте, что вы великан, голова которого на Аляске, а ноги в Южной Африке. Если в понедельник утром вас укусит акула за палец на ноге, то ваш мозг ничего об этом не узнает до вечера в среду. А если вы решите вытащить палец из воды, то остаток недели уйдет на то, чтобы передать команду об этом в ноги!

Различные виды сигналов заставляют нас реагировать с различной скоростью. Мы быстрее реагируем на звук, чем на свет, на яркий свет быстрее, чем на тусклый, на красный цвет быстрее, чем на белый, а на что-то неприятное быстрее, чем на что-то приятное.

какова средняя скорость нервных импульсов в головном мозге то есть скорость мысли. Смотреть фото какова средняя скорость нервных импульсов в головном мозге то есть скорость мысли. Смотреть картинку какова средняя скорость нервных импульсов в головном мозге то есть скорость мысли. Картинка про какова средняя скорость нервных импульсов в головном мозге то есть скорость мысли. Фото какова средняя скорость нервных импульсов в головном мозге то есть скорость мысли

На рисунке мы видим три основных части клетки. Аксон у нейрона обычно один, и он передает информацию другим нейронам на далекие расстояния. Дендритов у нейрона много, они значительно короче аксонов, и они принимают информацию от других нейронов. Синапсы — соединения между разными нейронами. На деле все сложнее, конечно, ну да ладно.

Аксон зачастую покрыт миелиновой оболочкой (что-то вроде изоляции), которая ускоряет движение импульса. Это нужно при передаче в мозг сенсорной информации с переферии тела, например из большого пальца ноги, на который только что упал молоток. Так вот, в миелинированых аксонах скорость распространения нервного импульса примерно равна 6*D метров в секунду. D это диаметр аксона в микрометрах, и обычно у него значения до 20 мкм. То есть скорость распространения нервного импульса в миелинированых нервах — максимум где-то 120 метров в секунду, или 430 километров в час. А обычно куда медленней, в районе 30-50 метров в секунду, или около 100-200 километров в час. Скорость обычной машины. Не так уж быстро, не так ли?

А теперь обратим внимание вот на что: на дендритах миелина никогда нет. Да и аксоны в мозгу часто немиелинированы. В этом случае нервные импульсы распространяются медленнее, где-то примерно со скоростью √D метров в секунду. Диаметры дендритов (и некоторых немилиенированых аксонов) в мозгу в среднем равны примерно 0.5-1 мкм. Стало быть скорость распространения нервных импульсов получается в районе 1 метра в секунду. Медленней пешехода!

А еще не забываем о синапсах — ведь нервному импульсу нужно время для преодоления оного. Обычно это занимает от одной до пяти микросекунд.

В общем человеческая мысль это довольно-таки тормозная вещь, на деле…

Liceul teoretic Anton Cehov, or. Floresti, str. Porumbescu 12

Источник

Какова скорость мысли?

Какова скорость мысли?

Правда ли то, что мысль имеет самую большую скорость, какую только можно представать? Когда-то, в давние времена, это считалось бесспорным, что и объясняет такие выражения, как «быстрее мысли». Сегодня нам известно, что мысль представляет собой импульс, который проходит по нервным волокнам нашего тела и что скорость этого импульса можно измерить довольно точно. Выясняется удивительная вещь: оказывается, мысль — это очень медленный процесс.

Нервный импульс движется со скоростью, которая составляет всего 155 миль/час (около 250 км/час)! Это означает, что какая-либо информация может быть передана быстрее вне нашего тела, чем внутри него, от одного органа к другому! Телевидение, радио, телефон — все эти средства передают информацию гораздо быстрее, чем наша нервная система. Мысль, переданная по нервам от Нью-Йорка до Чикаго прибудет до места назначения на несколько часов позже, чем та же самая мысль, переданная по радио, телефону или телеграфу. Когда что-то случается с пальцем у нас на ноге, то, пока импульс с информацией об этом дойдет до мозга, пройдет некоторое время.

Представьте, что вы великан, голова которого на Аляске, а ноги в Южной Африке. Если в понедельник утром вас укусит акула за палец на ноге, то ваш мозг ничего об этом не узнает до вечера в среду. А если вы решите вытащить палец из воды, то остаток недели уйдет на то, чтобы передать команду об этом в ноги! Различные виды сигналов заставляют нас реагировать с различной скоростью. Мы быстрее реагируем на звук, чем на свет, на яркий свет быстрее, чем на тусклый, на красный цвет быстрее, чем на белый, а на что-то неприятное быстрее, чем на что-то приятное. Скорость прохождения мысленных импульсов у каждого человека немного разная. Поэтому некоторые люди гораздо быстрее других реагируютна какие-то сигналы.

Читайте также

Какова скорость звука?

Какова скорость звука? Если мы слышим какой-либо звук, значит, поблизости должен находиться вибрирующий предмет, который колеблется. Звуки исходят от вибрирующих предметов.Но звук должен где-то распространяться. Что-то должно его переносить от источника к приемнику. Это

Какова прочность алмаза?

Какова прочность алмаза? Если у тебя есть немного замазки, что ты делаешь, чтобы она сделалась плотнее и тверже? Ты ее разминаешь, сжимаешь, и чем больше ты ее разминаешь, тем плотнее она становится.Алмазы также создавались в природе. Сотни миллионов лет назад поверхность

Какова её тема?

Какова её тема? Темой мы подробно займемся в разделе 11. Если говорить коротко, «тема» — это смысл, кроющийся за действием пьесы, то, что автор «хотел сказать». Например, если предметом повести есть распад семьи, вызванный изменой, то тема может звучать так: «любовь сильнее,

Какова высота Эйфелевой башни?

Какова высота Эйфелевой башни? Эйфелева башня, главная достопримечательность Парижа, достигает в высоту 324 метров. Этот известный проект французского инженера Гюстава Эйфеля первоначально задумывался как временное сооружение – оно должно было служить всего лишь

Какова сила притяжения?

Какова сила притяжения? Притяжение всех земных предметов Землей кажется нам естественным и обычным явлением. Но когда нам говорят, что предметы притягивают также и друг друга, мы не склонны этому верить, потому что в обыденной жизни ничего подобного не замечаем.Почему, в

Какова структура Вселенной?

Какова структура Вселенной? Изучение скоплений и сверх-скоплений галактик позволяет создать модель Вселенной в большом масштабе, то есть определить, как распределяется материя внутри очень большого пространства. В этом смысле самый значительный результат, полученный

Какова роль мочек ушей?

Какова роль мочек ушей? Мочки ушей не имеют особого значения для человеческого организма. У разных людей они различаются, что обусловлено генами. Определенная форма мочек ушей, по статистическим данным, связана с повышенным риском сердечно-сосудистых заболеваний, однако

Где находится селезенка и какова ее функция?

Где находится селезенка и какова ее функция? (Спрашивает Ивонна Чамберс, Хакни, Южная Австралия)Селезенка – очень важный компонент иммунной системы. Она вырабатывает лимфоциты (разновидность лейкоцитов), фильтрует кровь, обнаруживает чужеродные тела, хранит клетки

Какова функция тонкой кишки?

Какова функция тонкой кишки? (Спрашивает Крис Бернард, Вентуортвил, Новый Южный Уэльс, Австралия)Тонкая кишка – это часть кишечника между желудком и толстой кишкой. Сокращясь, ее мышечные стенки проталкивают пищу дальше по пищеварительному тракту. Это похоже на

Какова температура тел у животных?

Какова температура тел у животных? Передвигаясь с места на место, мы можем ощущать, как изменяется температура вокруг нас, но мы не думаем, что может измениться температура нашего тела. Она и не изменяется. Мы относимся к «гомеотермическим», и наш вид включает всех

Какова наиболее экономически выгодная скорость автомобиля?

Какова наиболее экономически выгодная скорость автомобиля? Годами автопроизводители твердили всем, кто водит машину, что оптимальная скорость езды с точки зрения эффективности использования топлива – около 88,5 км/ч. Но в действительности эта цифра гораздо ниже.В 2008 г.

Внутри транспортного средства, едущего со скоростью 300 км/ч, летает муха; какова в этот момент скорость полёта мухи?

Внутри транспортного средства, едущего со скоростью 300 км/ч, летает муха; какова в этот момент скорость полёта мухи? ВЛАДИМИР ОВЧИНКИНКандидат технических наук, профессор МФТИСкорость всегда рассчитывается относительно чего-либо. Относительно машины муха будет

Какова ваша формула плавания?

Какова ваша формула плавания? Чтобы определиться с вашей индивидуальной формулой плавания, нужно выяснить скорость вашего гребка и сколько гребков вы совершаете.Поскольку невозможно одновременно плыть и следить за секундомером, придется попросить кого-то замерить

Женщина в произведении. Какова ее роль?

Женщина в произведении. Какова ее роль? Почти все самые заметные произведения построены на любви или на интригах с участием женщин. Но если раньше женщины махали белым платочком вослед отъезжающему герою, а потом сидели у окошка и ждали, когда вернется со щитом и увезет,

Какова структура Вселенной?

Какова структура Вселенной? Изучение скоплений и сверхскоплений галактик позволяет создать модель Вселенной в большом масштабе, то есть определить, как распределяется материя внутри очень большого пространства. В этом смысле самый значительный результат, полученный

Источник

Скорость нервного импульса

Скорость распространения нервных импульсов

В 1830 г. один из крупнейших физиологов XIX века Иоганн Мюллер заявил, что скорость распространения ПД измерить невозможно. По его мнению, поскольку ПД – это электрический импульс, он должен проводиться со скоростью, примерно равной скорости света (3–1010 см/с); учитывая небольшие размеры биологических объектов, даже с помощью лучших инструментов того времени измерить такую скорость было невозможно.

Спустя 15 лет один из студентов Мюллера Герман фон Гельмгольц с помощью простого и изящного эксперимента, который легко воспроизвести на студенческом лабораторном практикуме (рис. 6–8), измерил скорость распространения импульсов в нерве лягушки. В своих опытах Гельмгольц раздражал нерв в двух участках, отстоящих друг от друга на 3 см, и измерял время от момента подачи стимула до максимума мышечного сокращения. Предположим, что при раздражении дистального (расположенного ближе к мышцам) участка это время уменьшается на 1 мс. Тогда скорость распространения импульсов V равна

Рис. 6.8. Экспериментальная установка, аналогичная той, с помощью которой Гельмгольц измерил скорость распространения импульсов в нерве лягушки. Стимулирующие электроды сначала подводились к точке Ст1, а затем к точке Ст2. К мышце был подсоединен рычаг, заостренный конец которого вычерчивал кривую на закопченном листе бумаги, быстро передвигаемом в продольном направлении.

Эта величина оказалась на семь порядков меньше, чем скорость распространения электрического тока в медном проводнике или в растворе электролита. Отсюда Гельмгольц сделал совершенно правильный вывод, что проведение нервного импульса –это более сложный процесс, чем простое продольное распространение тока в нервном волокне.

Скорость распространения импульсов в различных аксонах варьирует от 120 м/с (в некоторых крупных волокнах) до нескольких сантиметров в секунду (в очень тонких аксонах). Эти различия между скоростью проведения в разных волокнах иллюстрируют табл. 6–1 и рис. 6–9.

Скорость распространения импульса в значительной степени зависит от того, как быстро участок мембраны, расположенный на определенном расстоянии от места подачи стимула, деполяризуется местными токами до порогового уровня. Чем выше постоянная длины волокна, тем дальше могут распространяться эти токи, тем быстрее происходит деполяризация мембраны впереди от места возбуждения и, следовательно, тем выше скорость распространения импульса. Влияние постоянной длины на эту скорость можно продемонстрировать, если поместить аксон в масло или в воздух. При этом на поверхности аксона остается лишь тонкая пленка солевого раствора, и постоянная длины уменьшается из–за увеличения наружного продольного сопротивления [в уравнении (6–2) –r0]. В этих условиях скорость проведения возбуждения будет ниже чем при погружении аксона в солевой раствор.

Таблица 6–1. Классификация нервных волокон лягушки по их диаметру и скорости проведения возбуждения (Erlanger, Gasser, 1937)

Группа волоконДиаметр, мкмСкорость, м/с
A α18,5
β14,0
γ11,0
B4,2
C2,50,4 –0,5
Рис. 6.9. Скорость распространения возбуждения в различных группах волокон нерва лягушки. А. Экспериментальная установка для стимуляции пучка нервных волокон и регистрации возникающих при этом потенциалов. Б. Составной потенциал действия, записанный с помощью внеклеточных электродов и представляющий собой сумму потенциалов во всех возбужденных волокнах пучка. Волокна группы α имеют наибольший диаметр и характеризуются самой высокой скоростью проведения. Напротив, у волокон группы γ как диаметр, так и скорость проведения наиболее низки (см табл. 6–1). Стимуляция осуществлялась до момента начала регистрации.

В процессе эволюции живые организмы выработали два способа увеличения постоянной длины аксона и тем самым–скорости распространения импульса. Один из них (типичным примером могут быть гигантские аксоны кальмаров, членистоногих кольчатых червей, костистых рыб) – это увеличение диаметра аксона, т. е. уменьшение внутреннего продольного сопротивления [в уравнении (6–2) – ri] Подробнее этот вопрос рассмотрен в дополнении 6–2. Гигантские аксоны развились в процессе эволюции у некоторых видов животных для того, чтобы обеспечивать быструю синхронную активацию двигательных рефлексов, например движений мантии у кальмара и рефлекса отдергивания либо избегания у некоторых членистоногих (раков, тараканов) и кольчатых червей (например, земляных).

Сальтаторное проведение

Второй способ увеличить скорость проведения нервных импульсов, реализовавшийся только у позвоночных животных, состоит в изоляции участков аксона с помощью миелиновой оболочки. При этом постоянная длины соответствующих участков значительно увеличивается, и тем самым существенно облегчается проведение тока в продольном направлении. По мере развития животного миелин откладывается вокруг периферических и центральных аксонов глиальными клетками, расположенными вблизи этих аксонов. В результате вокруг волокон образуется плотная многослойная оболочка из клеточных мембран.

К клеткам, синтезирующим миелин, относятся шванновские клетки (в области периферических нервов) и олигодендроциты (рис. 6–10) (в ЦНС). На поперечных срезах миелиновой оболочки видны периодически повторяющиеся промежутки в 12 нм, образующиеся в результате наслоения мембран глиальных клеток. С образованием каждого нового слоя поперечное сопротивление оболочки увеличивается. Поскольку слоев в этой оболочке много, ее емкость гораздо ниже, чем у одиночной мембраны. Многослойная миелиновая оболочка периодически прерывается (так называемые перехваты Ранвье>, и на этих небольших участках возбудимая мембрана аксона контактирует с внеклеточной средой. Между перехватами Ранвье миелиновая оболочка тесно прилегает к мембране аксона, практически вытесняя внеклеточную среду. Кроме того, участки мембраны аксона между перехватами Ранвье, по–видимому, не содержат натриевых каналов.

Рис. 6.10. Перехват Ранвье. Показан короткий «голый» участок аксона, расположенный между двумя миелинизированными участками. Именно этот участок возбуждается при сальтаторном проведении. На рис. 4–12 приведена электронная микрофотография, на которой видна многослойная миелиновая оболочка, образуемая мембранами глиальных клеток. (Bunge et al., 1961.)

Благодаря изолирующим свойствам миелиновой оболочки постоянная длины аксона резко возрастает: наличие этой оболочки оказывает такой же эффект, как и увеличение rм [уравнение (6–2)]. Из–за высокого сопротивления миелиновой оболочки местные токи, текущие впереди от волны возбуждения, выходят из аксона почти исключительно в области перехватов Ранвье. Кроме того, поскольку емкость толстой миелиновой оболочки мала, на перезарядку этой емкости в участках между перехватами расходуется лишь очень небольшой ток.

Благодаря этим особенностям ПД, возникающий в каком–либо перехвате, электротонически деполяризует лишь мембрану, расположенную в области следующего перехвата, и поэтому импульсы в таких аксонах не распространяются по всей их длине, как в немиелинизированных нервных волокнах (например, в аксоне кальмара). Они возникают лишь в небольших участках мембраны –перехватах Ранвье. Все это обусловливает сальтаторное (скачкообразное) проведение, при котором импульсы распространяются прерывисто от перехвата к перехвату (рис. 6–11). Скорость распространения. ПД при этом резко увеличивается, поскольку электротоническое проведение местных токов между перехватами осуществляется очень быстро. Таким образом, у позвоночных животных Природа решила проблему быстрого распространения нервных импульсов, не прибегая к созданию таких громоздких структур, как гигантские аксоны.

Скорость передачи нервного импульса

Не́рвный и́мпульс, распространение по нервным волокнам возбуждения (биоэлектрического импульса) в ответ на раздражение нейронов.

Во второй половине 19 века в работах Г. Гельмгольца и Э. Геринга на нерве лягушки было показано, что биоэлектрический сигнал (ток, или потенциал действия), в отличие от электрического тока в обычном проводнике, распространяется по нервному волокну с конечной скоростью (3-120 м/сек).

Возможность распространения нервных импульсов по нервным волокнам определяется их строением, напоминающим строение электрического кабеля, где роль проводника играют аксоны, а роль изолятора — миелиновая оболочка аксона, представляющая собой мембрану шванновской клетки, намотанную на аксон в несколько слоев.

Основной компонент миелиновой оболочки — липопротеид миелин, обладающий свойствами диэлектрика. Скорость распространения нервных импульсов зависит как от диаметра нервных волокон (чем толще волокно, тем выше скорость), так и от степени их электрической изоляции, так как покрытые миелином волокна при прочих равных условиях быстрее проводят нервные импульсы. Миелиновая оболочка покрывает волокно не непрерывно по всей его длине, а образует подобие изолирующих керамических «муфт», плотно нанизанных на аксон, как на стержень электрического кабеля.

Между соседними «муфтами» из миелина остаются лишь небольшие электрически неизолированные участки, через которые ионный ток может легко вытекать из аксона в наружную среду и обратно, раздражая мембрану и вызывая генерацию потенциала действия исключительно в неизолированных участках аксона, получивших название перехватов Ранвье. Нервный импульс распространяется по миелинизированному нервному волокну скачками — от одного перехвата Ранвье до следующего, что значительно повышает скорость распространения возбуждения от клетки к клетке.

Скорость распространения нервного импульса по толстым миелинизированным волокнам (диаметром 10-20 микрон) у человека достигает 70-120 м/сек, а по самым тонким немиелинизированным нервным волокнам — на два порядка ниже (менее 2 м/сек).

Способность вырабатывать нервные импульсы — одно из основополагающих свойств нейронов.

Нервные импульсы обеспечивают быстрое проведение однотипных сигналов (потенциалов действия) по аксонам на большие расстояния и поэтому являются важнейшим средством обмена информацией как между нервными клетками, так и между нервными и другими типами клеток. Информация о силе раздражения нервной клетки кодируется и передается другим клеткам путем изменения частоты следования нервных импульсов.

Частота следования может варьировать от единиц до сотни нервных импульсов в секунду. Частотный код предполагает сложную периодику следования нервных импульсов, в том числе группирование их в «пачки» с разным числом и характером следования сигналов. Сложная пространственная и временная суммация нервных импульсов составляет основу ритмической электрической активности мозга, регистрируемой с помощью электроэнцефалограммы.

Скорость распространения нервных импульсов может быть различной: меньше 1 метра в секунду в очень тонких аксонах и около 100 метров в секунду в толстых аксонах <например, в аксонах, иннервирующих мышцы).

Распространяющийся по аксону электрический импульс, доходя до окончаний аксона на другой нервной клетке, внезапно исчезает. Чарлз Шеррингтон, заложивший основы так называемой синаптологии, назвал точки контакта окончаний аксона с другой нервной клеткой «синапсами».

Для того чтобы «перейти» через синапс, нервный импульс должен быть заново генерирован по другую сторону синапса. Еще 15 лет назад некоторые физиологи считали, что передача импульса через синапс — явление в основном (если не полностью) электрического порядка. Теперь, однако, имеются многочисленные доказательства того, что при такой передаче происходит выделение особых веществ, вызывающих регенерацию импульса. Первое убедительное доказательство того, что в синапсе действует вещество-передатчик, было получено более 40 лет назад Г. Дейлом и О. Лёви.

Как известно, центральная нервная система человека (включая, конечно, не только головной мозг, но и спинной) состоит примерно из 10 миллиардов (1010) нервных клеток. Почти все нервные клетки, за редким исключением, получают информацию непосредственно в форме импульсов (смотрите рисунок ниже) сразу от нескольких нервных клеток (нередко от сотен их) и передают ее столь же большому числу клеток.

Возбуждение и торможение нервной клетки

какова средняя скорость нервных импульсов в головном мозге то есть скорость мысли. Смотреть фото какова средняя скорость нервных импульсов в головном мозге то есть скорость мысли. Смотреть картинку какова средняя скорость нервных импульсов в головном мозге то есть скорость мысли. Картинка про какова средняя скорость нервных импульсов в головном мозге то есть скорость мысли. Фото какова средняя скорость нервных импульсов в головном мозге то есть скорость мысли

Возбуждение и торможение нервной клетки осуществляют нервные волокна, образующие синапсы на ее поверхности.

Вверху (1) двигательный нейрон в состоянии покоя. Импульсы, приходящие по одному возбуждающему волокну (2), еще не в состоянии вызвать разряд двигательного нейрона. Разряд возникает только тогда, когда импульсы приходят и по второму возбуждающему волокну (3) (пороговое состояние нейрона). Если нейрон получает еще и импульсы по тормозному волокну, то он возвращается в подпороговое состояние (4).

Внизу (б) — импульсы приходят только по тормозному волокну. Электрические импульсы, распространяющиеся по возбуждающим и тормозным нервным волокнам, не отличаются друг от друга. Их противоположное действие объясняется выделением в синаптических окончаниях разных химических передатчиков.

В данной нервной клетке в зависимости от ее порога возбуждения может возникнуть разряд импульсов при раздражении всего лишь нескольких приходящих к ней волокон; в других же случаях разряд импульсов не возникает даже при раздражении многих таких волокон.

Давно известно, что различные факторы способны повышать или понижать порог возбуждения нервной клетки.

Более того, примерно 60 лет назад было высказано предположение, что некоторые волокна должны тормозить разряд импульсов в клетке, к которой они подходят, а не возбуждать ее. Предположение это впоследствии подтвердилось, и в настоящее время механизм торможения выяснен. Двум равноценным процессам — торможению и его антиподу — возбуждению нервной клетки — и посвящена данная статья.

Распространение нервного импульса по нервному волокну

Особенность нервного импульса (потенциала действия) является его самораспространение по нервному или мышечному волокну, в результате которого обеспечивается передача информации от периферических рецепторных окончаний к нервным центрам, а от них к эффекторам.

В мышечных клетках нервный импульс оказывает пусковое влияние на процессы, активизирующие сократительный аппарат. Распространение неровного импульса начинается с момента, когда внутренняя часть нервного волокна заряжается положительно, и разность потенциалов между внутренней средой нерва и наружной может достигать 40-50 мВ.

Проведение нервного импульса можно сравнить с распространением пламени по бикфордовому шнуру: импульс возникает при пороговом запале, идет с определенной скоростью без затухания, передаваясь от возбужденного участка к соседнему – невозбужденному.

В основе объяснения этого механизма лежит теория немецкого физика Л. Германа (1879) и затем А.

Ходжкина (1937). Согласно этой теории возникший в точке раздражения потенциал действия является источником раздражения соседнего невозбужденного участка волокна. Это происходит вследствие возникновения круговых, или местных токов между возбужденным (т.е. отрицательно заряженным) и соседним (положительно заряженным) участками мембраны.

В результате местного электро-химического сдвига ионной проницаемости мембраны возникает ее деполяризация и достигается критический пороговый потенциал действия. В зоне первоначально возбужденной в это время восстанавливается потенциал покоя. Затем потенциал действия возникает на следующем участке волокна и т.д. Поэтому волна возбуждения проходит вдоль волокна, не затухая и не поворачивая назад, ибо на соседнем пройденном участке находится рефрактерная зона.

Важное свойство возбудимых тканей рефрактерность. Она определяет прерывистости импульсов. В естественных условиях по нервам непрерывно бегут нервные импульсы. Частота этих ритмических зарядов зависит от силы раздражения. Двигательные нейроны могут проводить около 500 импульсов в секунду, промежуточные – 1000.

Таким образом, распространение (проведение) возбуждения заключается в последовательном возникновении и исчезновении потенциала действия на протяжении нервного или мышечного волокна.

Непрерывное проведение импульсов характерно для мышечного волокна и безмякотных, безмиелиновых нервных волокон, имеющих только шванновскую оболочку.

Таких волокон в нервной системе меньшинство. В мякотных нервных волокнах, имеющих миелиновую оболочку (она является хорошим изолятором) круговые токи могут возникать лишь между двумя соседними (возбужденными и невозбужденными) перехватами Ранвье, где миелин отсутствует. Следовательно, возбуждение в миелинизированных нервных волокнах распространяется скачкообразно, сальтаторно (la salto – скачу, прыгаю).

Скорость проведения импульса в нервных волокнах определяется их гистостроением и диаметром. В миелинизированных нервных волокнах она составляет 30-120 м/сек (6 км/мин, 360 км/ч), в безмякотных — 0,5-3 м/сек, в скелетных 5 м/сек. (рис **)

Особенности проведении нервного импульса:

— возбуждение проводится в обе стороны по нервному волокну от места раздражения;

— проведение возбуждения возможно лишь при целостности волокна;

— более толстые волокна обладают наиболее низким порогом возбуждения;

— волокна, входящие в состав одиночных или смешанных нервов проводят возбуждение изолированно, т.е.

не переходя на другие волокна и адресуются лишь своим клеткам;

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *