какой отдел мозга регулирует координацию движений
Голова – предмет тёмный, но исследованию подлежит. Что за что отвечает в головном мозге?
Способность дышать и двигаться, чувствовать боль и любить, создавать гениальные творения и совершать зло, подчас не поддающееся объяснению. Благодаря чему всё это возможно? Где скрывается наше «я»?
Как устроен головной мозг человека, как соотносятся его строение и функции, и каковы их особенности?
Попробуем разобраться в некоторых из них.
Существует положение, что чем более проста некая функция, тем точнее место ее локализации в головном мозге. С другой стороны, наиболее сложные функции обеспечиваются слаженной работой всего мозга, в связи с чем понятие «коркового центра» (определённой области коры головного мозга) большей частью относительное и условное.
Внезапно залаяла собака во дворе? Ориентировочный рефлекс в ответ на резкий звук возможен благодаря среднему мозгу. Кроме того, через этот отдел проходят пути, обеспечивающие зрение, слух, способность к движению и бдительности, контроль температуры и ряд других, которыми занимаются другие отделы мозга.
КОРА БОЛЬШИХ ПОЛУШАРИЙ ИМЕЕТ СЛОЖНОЕ
СТРОЕНИЕ И СОДЕРЖИТ 12-18 МЛРД НЕРВНЫХ
КЛЕТОК И БОРОЗДАМИ ДЕЛИТСЯ НА НЕСКОЛЬКО ДОЛЕЙ
А теперь закройте глаза и коснитесь пальцами кончика носа. Получилось без особого труда, не так ли? Это при том, что в этом плавном действии было задействовано много разных мышц. За координацию, равновесие, нормальные движения спасибо мозжечку.
Сложнее, сложнее
Эмоции, такие эмоции. Без них наша жизнь была бы не такой счастливой (несчастной?). Внутренняя борьба, иногда заставляющая нас сделать то, о чем мы потом пожалеем. Знакомо? Благодарим лимбическую систему. Интересно что это такое? Чуть подробнее о ней (и ее частях).
Беспокоитесь, грустите? А может вам страшно? Это возможно благодаря миндалевидному телу (миндалине). Любопытный факт: с левой миндалиной бывает связано и чувство счастья, а вот у правой «настроение» плохое всегда.
Читайте материал по теме: Билл Гейтс и его синдром Аспергера
И наконец.
Итак, какова ее роль?
Читайте материал по теме: Что происходит с мозгом аутистов?
С лобной долей связана также наша способность к движению (благодаря моторной коре), чёткому и разборчивому письму, артикуляции.
Ассоциативные функции обеспечиваются теменной долей коры. Здесь располагаются области, отвечающие за осязание, чёткие, комбинированные целенаправленные движения, чтение, познавание предметов, явлений, их смысла и символического значения.
Бросается в глаза, что.
Наиболее сложные функции памяти и мышления не имеют чёткого расположения, в их реализации принимают участие различные области мозга.
Почему важно знать, как связаны функция и структура головного мозга?
Диагностика. Представьте: у человека сильно разболелась голова. Спустя несколько минут он уже не смог поднять правую руку, а его речь стала невнятной. У пациента ухудшилось зрение с одной стороны, тогда как офтальмолог патологию со стороны глаз не обнаружил. Или, например, человек перестал понимать обращённую к нему речь.
Читайте материал по теме: Как предотвратить инсульт?
Зная о том, какие отделы в головном мозге отвечают за ту или иную способность, можно предполагать место расположения патологического процесса.
Лечение и реабилитация. Предположим, что в результате повреждения участка головного мозга после инсульта у человека «выпала» какая-то функция. Значит ли это, что теперь она не вернётся? Нет, далеко не всегда.
Благодаря такому свойству мозга, как пластичность, возможно эту функцию восстановить. Говоря простыми словами, под пластичностью можно понимать способность других областей мозга брать на себя функцию повреждённой его части. Однако этим процессом нужно целенаправленно заниматься. Поэтому после инсульта больному бывает необходим курс нейрореабилитации, в процессе которого он заново учится говорить, ходить, обслуживать себя.
Нет. Приведённые выше описания взаимоотношений структуры и функции далеко не исчерпывающие: на деле всё гораздо сложнее и выходит далеко за рамки объёма небольшой статьи.
Физиологические основы поддержания равновесия
Причиной головокружения в большинстве случаев служит нарушение согласованной деятельности различных сенсорных систем – вестибулярной, зрительной, проприоцептивной (информация о положении тела в пространстве, получаемая от рецепторов, расположенных главным образом в мышцах и сухожилиях). Кроме того, важной, а иногда и доминирующей причиной возникновения головокружения является дисфункция центральных структур, участвующих в поддержании равновесия тела, главным образом, ядер мозжечка.
Вестибулярная система
Вестибулярная система состоит из:
Правильная работа вестибулярной системы позволяет человеку четко ориентироваться в трехмерном пространстве, а именно:
Лабиринт располагается в каменистой части височной кости и включает:
Строение лабиринта
В каждой камере отолитового аппарата и в каждом полукружном канале имеется скопление рецепторных клеток – макула, которая покрыта желатинообразной массой – купулой. В отолитовом аппарате купула покрывает волосковые клетки наподобие подушки и содержит отложения кристаллов кальцита (отолиты), которые придают купуле дополнительный вес.
Отолитовый аппарат
В полукружных каналах желатинообразная масса не содержит отолитов и полностью перекрывает просвет канала.
Рецепторы вестибулярной системы представлены волосковыми клетками, которые несут на апикальной поверхности от 60 до 80 тонких выростов цитоплазмы (стереоцилий) и одну ресничку (киноцилию).
Восприятие положения тела относительно силы гравитации
При вертикальном положении головы макула утрикулуса располагается горизонтально. Когда голова наклоняется в сторону, утяжеленная отолитами желатинообразная мембрана под действием силы тяжести соскальзывает в сторону наклона. Это скольжение приводит к изгибанию стереоцилей волосковых клеток. Наклон стереоцилей сопровождается (в зависимости от направления) повышением или снижением частоты нервных импульсов в чувствительных нейронах вестибулярного ганглия. Макула саккулуса располагается вертикально и действует таким же образом.
Восприятие положения тела относительно силы гравитации
Восприятие линейных ускорений
При резком линейном ускорении тела купула саккулуса или утрикулуса за счет сил инерции смещается в направлении, противоположном направлению движения, что также приводит к изменению электрической активности рецепторов.
Восприятие углового ускорения
Три полукружных канала расположены в трех разных плоскостях. Каждый из трех каналов действует как замкнутая трубка, заполненная лимфой. В расширенной части канала его внутренняя стенка выстлана волосковыми клетками, а расположенная над ними купула полностью перекрывает просвет канала. При повороте головы полукружные каналы поворачиваются вместе с ней, а эндолимфа в силу своей инерции в первый момент остается на месте. В результате этого возникает разность давлений по обе сторону купулы, и она прогибается в направлении, противоположном движению. Это вызывает деформацию стереоцилий и последующее изменение активности нейронов.
Восприятие углового ускорения
При вращении головы только в горизонтальной, сагитальной или фронтальной плоскости активируются рецепторы одного из соответствующих каналов. При сложном вращении головы активируются рецепторы всех трех каналов. Информация от них поступает в головной мозг и на основе ее конвергенции и анализа модулируется истинная картина перемещения головы.
Центральный отдел вестибулярной системы
Аксоны чувствительных нейронов, тела которых располагаются в вестибулярном ганглии, следуют в продолговатый мозг и оканчиваются в четырех парных вестибулярных ядрах. Приходящие в эти ядра импульсы от рецепторов дают точную информацию о положении в пространстве исключительно головы (но не всего тела!), поскольку она может быть наклонена или повернута относительно туловища. Для восприятия положения тела в пространстве необходим также учет угла наклона и поворота головы относительно туловища, поэтому вестибулярные ядра получают дополнительные стимулы от проприорецепторов мышц шеи.
Ядра вестибулярного нерва и их связи
Далее от вестибулярных ядер афферентная импульсация направляется к нейронам специфических ядер таламуса, а отростки последних достигают постцентральной извилины коры больших полушарий головного мозга
Проприоцептивная система
Благодаря проприоцепции, мы ощущаем положение конечностей, движение и степень мышечного напряжения в них. Это дает человеку чувство “опоры”, т.е. осознание, что стопы опираются на какую-либо поверхность, удерживая вес тела. Рецепторный аппарат проприоцептивной чувствительности, расположен в мышцах, сухожилиях, фасциях, капсулах суставов, а также в коже.
Необходимо отметить, что важную роль в поддержании равновесия тела играют рецепторы глубокой чувствительности, расположенные не только в конечностях, но и в структурах шеи, главным образом, в глубоких мышцах. Информация, получаемая головным мозгом от этих рецепторов, необходима для пространственной ориентации человека, поддержании его позы, а также координинации движения головы и туловища.
Зрительная система
Эффективное поддержание равновесия требует четкого контроля со стороны зрительной системы (в соответствие с принципом обратной связи). При этом контроль над движениями мышц глазного яблока является чрезвычайно сложным процессом. Существует 3 основных системы контроля взора:
В пределах головного мозга эти системы контролируются определенными анатомическими зонами, которые являются в значительной степени изолированными, и обеспечивают две главные функции:
Система саккадических движений глазных яблок
Когда объект интереса появляется в периферии визуальной области, происходит быстрый поворот глазных яблок в его сторону, так, что изображение объекта проецируется на сетчатку в области желтого пятна. Тот же самый двигательный ответ глазных яблок может быть вызван внезапным звуком или болезненным стимулом. Такое быстрое движение глаз называется саккадическим, от французского слова, означающего резкое движение парусника при ветре или дергание головы лошади от потягивания узды. В целом, система саккадических движений глазных яблок обеспечивает обнаружение зрительной цели и выведение ее на наиболее чувствительную часть сетчатой оболочки. Саккады возникают, например, в процессе чтения, при этом глаза человека обычно совершают несколько саккадических движений на каждой строке. Кроме того, они появляются, когда человек рассматривает какой-либо объект (картину, скульптуру и пр.), но в этом случае саккады совершаются в разных направлениях (вверх, вниз, в стороны и под углом) последовательно от одной точки объекта к другой.
Классическое изображение, описывающее саккадические движение глазных яблок
при рассматривании объекта
Система плавных (следящих) движений глазных яблок
Когда объект рассматривания перемещается, саккадическая система может первоначально зафиксировать его, но скоро теряет, поскольку изображение ускользает из области желтого пятна (сетчатое скольжение). Плавные (следящие) движения глаз необходимы для длительной фиксации движущегося объекта и слежения за ним. После того как визуальная цель выбрана, система работает вне волевого контроля.
Схематическое изображение функционирования системы
плавных (следящих) движений глаз
Вестибуло-окулярная система
В то время как система следящих движений глазных яблок фиксирует изображение перемещающегося объекта рассматривания на желтом пятне, существует другая система, которая позволяет стабилизировать изображение неподвижного объекта рассматривания на сетчатке во время движения головы. Это основная функция вестибуло-окулярной системы. Благодаря ее наличию у человека во время движения на транспорте по неровной дороге или ходьбе не возникает проблем с четким рассматриванием отдаленного объекта. В том случае, когда по какой-либо причине вестибуло-окулярная система не работает возникает феномен, называющийся “осциллопсия” – “дергание” визуальной картинки при движении.
Мозжечок
Основная функция мозжечка заключается в получении информации о положении тела в пространстве от всех органов чувств и регуляции на ее основе мышечного тонуса и движений для поддержания равновесия и выполнения точных действий.
Для больных с повреждением мозжечка характерна астазия-абазия – нарушение способности к сохранению равновесия тела при стоянии и ходьбе. Больные ходят, широко расставив ноги – так называемая туловищная атаксия (“пьяная походка”).
Ходьба на пятках и носках невозможна. Атаксия в данном случае развивается вследствие неспособности головного мозга координировать деятельность мышц в процессе преодоления силы тяжести. Также выявляются глазодвигательные расстройства. Они проявляются нарушением фиксации взора на неподвижных или двигающихся объектах, в результате чего возникают рывковые движения глаз при слежении. Также характерен вертикальный нистагм, бьющий вверх или вниз.
Вертикальный нистагм при повреждении мозжечка.
Нарушения равновесия и координации движений
Нарушение координации движения медицинским термином называется «атаксия». Это состояние является признаком процесса, который был спровоцирован проблемами функционирования и распределения нервных импульсов, направляемых из головного мозга.
Чтобы проводить результативное лечение, необходимо провести комплексную диагностику и устранить факторы, первоначально повлиявшие на процесс деятельности мозга человека. Самолечение в такой ситуации невозможно и недопустимо. Это обусловлено тем, что возможны серьезные последствия, такие как инвалидность или летальный исход.
Опорно-двигательный аппарат подвержен контролю нервной системы. Нейроны, располагающиеся в спинном и головному мозге, взаимосвязаны. Благодаря их слаженной работе, передается сигнал в главный орган человека. Оттуда исходит ответный импульс, провоцирующий действие.
При правильной работе нейронов из разных областей, сигнал получается четким и молниеносным. Если в какой-то части существуют проблемы, то импульс подается замедленно или отсутствует вовсе. Нарушения называются потерей координации движения.
Чаще всего заболевание возникает у пожилых людей, переступивших 60-летний порог, независимо от того, мужчина это или женщина. Причиной возникновения, в первую очередь, выступает старение организма и невозможность четко и в полной мере выполнять поставленные задачи. Болезнь может развиваться не только у взрослых, но и у детей.
Виды и типы
Выделяют статическое и динамическое нарушение. В первом случае проблемы с координацией возникают только при вертикальном расположении человека, когда больной стоит. Во второй ситуации дискоординация появляется при любом движении.
Диагностируются следующие типы атаксии:
Чтобы правильно диагностировать тип заболевания, сначала выявляются факторы его возникновения. На основании этих данных пациенту назначается терапия. Чтобы устранить проблему, нужно точно знать причины нарушения координации движения при ходьбе.
Причины возникновения заболевания
Проблема движения является опасной и серьезной для пациента с отклонениями. Находясь в таком состоянии, человек не имеет возможности скоординировать собственные действия.
На развитие заболевания влияет много факторов. Выделяют следующие причины:
Выявить болезнь не составляет труда, симптомы заметны невооруженным глазом. Но чтобы точно знать, какие они бывают, необходимо ознакомиться с клинической картиной.
Симптомы проявления
Люди с развивающейся болезнью плохо передвигаются, с неуверенностью, у них отсутствует равновесие, просматривается рассеянность, артикуляция нарушена. При попытке начертить в воздухе фигуру, например, круг, у больного получается зигзаг или ломаная линия.
Один из методов проверки на координацию является тест, где больного просят дотронуться до носа. В случае развития заболевания человек не может нормально выполнить поставленную задачу. Пациент попадает то в рот, то в глаз. По почерку также видны негативные изменения: буквы написаны неравномерно, наползают друг на друга, прыгают по строке. Эти признаки свидетельствуют о неврологических проблемах.
При нарушении координации проявляются следующие симптомы:
Независимо от того, какой присутствует симптом, следует срочно обратиться к врачу. Доктор оценивает состояние пациента и точно устанавливает диагноз, на основании которого назначается терапевтическое воздействие. Раннее выявление нарушений в координации движений приводит к уменьшению симптоматики и непродолжительной терапии.
Лечение атаксии
Чтобы точно выявить заболевание, которым страдает пациент, доктор записывает жалобы, проводит внешний осмотр и тестирование. Для точности постановки диагноза необходимо пройти определенное обследование:
В зависимости от жалоб пациента диагностика подвергается корректировке, расширяется спектр необходимых анализов. Доктор на основе полученных результатов рассказывает, как и почему нужно лечиться.
Чтобы лечить нарушение координации движения, применяется комплексный подход, в который входит медикаментозная терапия, а так же при исключении противопоказаний- реабилитация.. Для терапии используют следующие медикаменты:
Все лекарственные средства назначаются доктором для больного в индивидуальном порядке.
Разработан ряд упражнений, призванных восстановить равновесие, а так же с целью профилактики их возникновений:
Благодаря ежедневным занятиям все системы постепенно приводятся в норму. Терапия лекарствами дополнительно воздействует на внутренние органы и приводит в норму кровообращение. Это позволяет быстро лечить приобретенную болезнь.
Таким образом, нарушение координации движения – патологический процесс, происходящий из-за сбоев в работе нервной системы. Симптоматика заболевания очевидна, поэтому не стоит затягивать с лечением. Правильно и ежедневно выполняемые упражнения, а также прием рекомендуемых препаратов позволяют быстро восстановить состояние пациента.
Головной мозг
Головной мозг защищен от внешних механических воздействий черепной коробкой. Наиболее важные отделы располагаются на дне черепа. В сером веществе мозга находится 25 миллиардов нейронов, что почти в 4 раза больше населения земного шара (6,5 млрд.). Головной мозг человека покрыт тремя оболочками:
В области головного мозга располагается пять желудочков — емкостей, соединенных между собой каналами. Внутри полостей содержится ликвор — биологическая жидкость, которая циркулирует как в цистернах головного мозга, так и в спинномозговом канале.
Функции отделов головного мозга
Головной мозг составляют пять отделов:
Поражения головного мозга
При повреждении головного мозга определяются две группы клинических признаков: общемозговые и очаговые симптомы.
К общемозговым изменениям (головная боль, головокружение, повышенная температура тела) относят признаки, характерные для следующих заболеваний:
Очаговые симптомы зависят от места поражения и характеризуются изменением определенных функций.
По механизму поражения различают органические и функциональные расстройства. При органических расстройствах наблюдается поражение тканей определенных участков головного мозга. К ним относят:
К функциональным расстройствам относят:
В нашем лечебно-диагностическом центре на Вернадского обследование МРТ указывает на очаги поражения при органических заболеваниях с точностью до десятых долей миллиметра.
Научная электронная библиотека
3.1. Физиологические механизмы координации движений
Координационные способности – это совокупность психологических, морфологических, физиологических компонентов организма человека, единство которых в границах функциональной системы обеспечивает продуктивную двигательную деятельность, то есть умение целесообразно строить движение, управлять им и в случае необходимости быстро перестраивать его.
Они зависят от уровня двигательной подготовки и врожденных качеств спортсмена. Н.А. Бернштейн (1966) указывает, что координация – это преодоление избыточных степеней свободы органов движения, превращение их в управляемые системы. На основании информации от органов чувств, интегрирующейся в ЦНС, в движения вносятся непрерывные поправки, то есть происходит их сенсорная коррекция. Таким образом, автор представляет ее как кольцо афферентно-эфферентных импульсов, которые приводят к формированию определенных двигательных актов, исходя из изменяющихся условий. При этом внешняя структура движений не меняется, благодаря использованию различных мышечных волокон, обеспечивающих поддержание позы, равновесия и т.д.
Координационная сложность выполняемых двигательных актов зависит от способности нервной системы и ее высших отделов к согласованной и оперативной переработке информации.
Структуры, обеспечивающие двигательную активность человека, расположены в различных отделах центральной нервной системы – от спинного мозга до коры больших полушарий. Повышение спортивной результативности во многом обусловлено совершенствованием координационной деятельности между нервными центрами.
Координированность работы нервных центров, регулирующих определенные двигательные акты, обусловлена постоянным импульсным воздействием на них проприоцептивных анализаторов. При выработке устойчивых навыков движения формируется функциональная система управления движением и взаимосвязанные центры коры больших полушарий образуют единую структуру. С ростом квалификации спортсмена отдельные функциональные зоны объединяются в плеяду, которые, как правило, локализуются в левом полушарии и функционально изолируются от других корковых зон. На электроэнцефалограмме это выглядит как классический механизм формирования доминантных очагов. Такая синхронизация структур коры по электроактивности происходит по частоте, которая соответствует темпу выполняемого (или воображаемого) движения.
Таким образом, систематические занятия приводят к специфическим приспособительным реакциям на уровне центральной нервной системы, способствующим проявлению высокой координированности движений и совершенствованию функций нервно-мышечного аппарата.
Необходимый для адекватного ответа центральной нервной системы поток информации о длине мышц, степени их растяжения, расположения в пространстве звеньев тела и углах в суставах поступает от рецепторов сухожилий мышц, связок (проприорецепторов); об особенностях взаимодействия организма с внешней средой – от рецепторов кожи, вестибулярного аппарата и сенсорных систем.
Достижение высоких результатов в спорте возможно лишь при условии развития способностей точно оценивать и регулировать динамические, пространственные и временные параметры движения. Поэтому степень развития координационных способностей спортсмена зависит от его способности к переработке информации от различных сенсорных систем и обеспечения адекватного двигательного действия, то есть определяется уровнем его сенсомоторной координации.
Сенсомоторная координация (от лат. sensus – чувство, ощущение, motor – двигатель, со – вместе, ordinatio – расположение в порядке) – согласование во времени и пространстве двигательных действий. Еще И.П. Павлов, исследуя физиологические механизмы произвольных движений, обратил внимание на ассоциирование нейронов двигательного анализатора с многочисленными нейронами коры больших полушарий, при передаче импульсов от внешних и внутренних рецепторов.
Американские ученые также полагают, что сенсомоторная координация – это развитие, управление и коррекция движений с помощью сенсорных систем (органов чувств): зрительной, двигательной, вестибулярной, слуховой и др. При этом коррекция осуществляется корковыми структурами на двигательные единицы (Дж.Х. Уилмор, Д.Л. Костилл, 2001).
Физиологическим механизмом сенсомоторной координации является система обратной афферентации и она представляет собой сложный навык. На начальных этапах обучения выполняемые действия в составе сенсомоторной координации, могут состоять из отдельных реакций, затем они объединяются в пластичную систему. Уровень сложности проявлений сенсомоторной координации является отличительным признаком новичка от мастера.
С точки зрения физиологии, Дж.Х. Уилмор, Д.Л. Костилл (2001) описывают явление сенсомоторной координации следующей последовательностью событий:
– чувствительные рецепторы принимают сенсорные стимулы;
– импульс передается в центральную нервную систему (ЦНС). Участок, где заканчивается передача импульсов называется интеграционный центр;
– интеграционный центр ЦНС перерабатывает поступившую информацию и определяет наиболее подходящую ответную реакцию;
– принятое решение передается двигательным нейронам;
– импульс от двигательных нейронов пересылается мышцам и осуществляется ответная реакция.
Система управления движениями достаточно сложная, она включает в себя структуры спинного мозга (интеграционный центр простого двигательного рефлекса); продолговатого мозга (вызывают подсознательные двигательные реакции, например, постуральный контроль); среднего мозга (проводящие пути); промежуточного мозга (формирование новых навыков), интеграционные центры таламуса начинают различать ощущения и двигательные действия достигают сознания; лимбической системы (обеспечивает эмоциональность двигательных действий), мозжечка (сенсомоторная координация позы и двигательного акта). Основная же координация деятельности различных звеньев тела и мышечных групп в пространстве и времени осуществляется корой больших полушарий (теменная доля, зона постцентральной извилины). Таким образом, координация двигательной деятельности осуществляется всеми структурами центральной нервной системы.
С позиции психофизиологии, деятельность в спорте, заключается, прежде всего, в пространственно-временной организации психомоторных реакций двигательных актов, которые являются специфичными для каждого вида спортивной деятельности. Важнейшими элементами такой организации являются:
– сенсорный процесс обнаружения и восприятия внешнего стимула, целью действий на который является двигательная реакция;
– центральные процессы переработки воспринятого стимула с его различением и оценкой;
– моторный процесс, определяющий начало движения.
По сложности протекания центрального процесса различают реакции простые и сложные. Простая сенсомоторная реакция – это ответ на внезапно появляющийся, но при этом заранее известный сигнал простым одиночным движением, также заранее известным. Скорость реакции оценивается либо по времени реакции с момента подачи сигнала до ответного действия, либо по общему времени реагирования. Продолжительность латентного периода простой реакции зависит, в основном, от скорости передачи нервных импульсов по всей рефлекторной дуге от рецепторов до двигательных единиц. Скорость двигательной реакции определяется интенсивностью предъявляемого стимула, интервала времени между стимулами, способностью к предвидению (антиципацией), видом сигнала (звуковой зрительный, и т.д.), текущим функциональным состоянием спортсмена.
Сложная сенсомоторная реакция зависит от центральных процессов переработки воспринятого стимула и может быть:
– реакцией выбора, если необходимо выбрать двигательный ответ из ряда возможных;
– реакцией различения, если вид выполняемого движения зависит от типа сигнала, при этом на другие сигналы не надо делать никакого движения;
– реакцией переключения, если при изменении смысловой связи подаваемых стимулов необходимо выбирать возможные двигательные акты;
– реакция задержки, которая заключается в том, что двигательное действие должно быть не столько быстрым, сколько своевременным (когда ответная реакция должна быть отделена от стимула определенным интервалом времени.
Сенсомоторная координация является проявлением индивидуальных свойств личности и субъективными условиями успешного осуществления двигательной активности, обнаруживается в быстроте и прочности овладения приемами двигательных действий. То есть, является основным условием проявления координационных способностей.
В ходе анализа научно-исследовательской литературы не было выявлено единого мнения относительно сенситивных периодов развития координационных способностей. Это можно связать с многообразием проявления координационных способностей, каждые из которых имеют свои физиологические механизмы, а так же тем, что в онтогенезе можно выявить несколько сенситивных периодов развития каждого из видов координационных способностей. Так В.К. Бальсевич (1985) и Г.В. Доля (1973) утверждают, что координационные способности интенсивнее всего развиваются в дошкольном возрасте параллельно с освоением основных локомоций. Н.А. Фомин, Ю.А. Вавилов (1991) выделяют возраст от 8 до 12 лет, поскольку для этого возрастного периода характерна
пластичность ЦНС, интенсивное совершенствование проприоцептивного анализатора, выражающееся в частности, в улучшении пространственно-временных характеристиках движения. Л.В. Волков (1981) и В.А. Ярмалюк (1989) высказывают мнение, что наиболее интенсивное развитие координационных способностей наблюдается в 11–12 лет и последующие годы идет уже их стабилизация. D.-D. Blume (1978) в своих работах указывает, что сенситивными периодами в дифференциации мышечных усилий – 6–10 лет, ритмичность движений 9–11 лет, ориентировка в пространстве 11–15 лет, равновесие 10–12 лет.