кодирование и реализация наследственной информации

Генетический код. Кодирование и реализация наследственной информации в клетке. Кодовая система ДНК и белка.

кодирование и реализация наследственной информации. Смотреть фото кодирование и реализация наследственной информации. Смотреть картинку кодирование и реализация наследственной информации. Картинка про кодирование и реализация наследственной информации. Фото кодирование и реализация наследственной информации кодирование и реализация наследственной информации. Смотреть фото кодирование и реализация наследственной информации. Смотреть картинку кодирование и реализация наследственной информации. Картинка про кодирование и реализация наследственной информации. Фото кодирование и реализация наследственной информации кодирование и реализация наследственной информации. Смотреть фото кодирование и реализация наследственной информации. Смотреть картинку кодирование и реализация наследственной информации. Картинка про кодирование и реализация наследственной информации. Фото кодирование и реализация наследственной информации кодирование и реализация наследственной информации. Смотреть фото кодирование и реализация наследственной информации. Смотреть картинку кодирование и реализация наследственной информации. Картинка про кодирование и реализация наследственной информации. Фото кодирование и реализация наследственной информации

кодирование и реализация наследственной информации. Смотреть фото кодирование и реализация наследственной информации. Смотреть картинку кодирование и реализация наследственной информации. Картинка про кодирование и реализация наследственной информации. Фото кодирование и реализация наследственной информации

кодирование и реализация наследственной информации. Смотреть фото кодирование и реализация наследственной информации. Смотреть картинку кодирование и реализация наследственной информации. Картинка про кодирование и реализация наследственной информации. Фото кодирование и реализация наследственной информации

Первично все многообразие жизни обусловливается разнообразием белковых молекул, выполняющих в клетках различные биологические функции. Структура белков определяется набором и порядком расположения аминокислот в их пептидных цепях. Именно эта последовательность аминокислот в пептидных цепях зашифрована в молекулах ДНК с помощью биологического (генетического) кода. Для шифровки 20 различных аминокислот достаточное количество сочетаний нуклеотидов может обеспечить лишь триплетный код, в котором каждая аминокислота шифруется тремя стоящими рядом нуклеотидами.

Генетический код – это система записи информации о последовательности расположения аминокислот в белках с помощью последовательного расположения нуклеотидов в и-РНК.

1) Код триплетен. Это означает, что каждая из 20 аминокислот зашифрована последовательностью 3 нуклеотидов, называется триплетом или кодоном.

2) Код вырожден. Это означает, что каждая аминокислота шифруется более чем одним кодоном (исключение метиотин и триптофан)

3) Код однозначен – каждый кодон шифрует только 1 аминоксилоту

4) Между генами имеются «знаки препинания» (УАА,УАГ,УГА) каждый из которых означает прекращение синтеза и стоит в конце каждого гена.

5) Внутри гена нет знаков препинания.

6) Код универсален. Генетический код един для всех живых на земле существ.

Транскрипция – это процесс считывания информации РНК, осуществляемой и-РНК полимеразой. ДНК – носитель всей генетической информации в клетке, непосредственного участия в синтезе белков не принимает. К рибосомам – местам сборки белков – высылается из ядра несущий информационный посредник, способный пройти поры ядерной мембраны. Им является и-РНК. По принципу комплементарности она считывает с ДНК при участии фермента называемого РНК – полимеразой. В процессе транскрипции можно выделить 4 стадии:

1) Связывание РНК-полимеразы с промотором,

2) инициация – начало синтеза. Оно заключается в образовании первой фосфодиэфирной связи между АТФ и ГТФ и два нуклеотидом синтезирующей молекулы и-РНК,

3) элонгация – рост цепи РНК, т.е. последовательное присоединение нуклеотидов друг к другу в том порядке, в котором стоят комплементарные нуклеотиды в транскрибируемой ните ДНК,

4) Терминация – завершения синтеза и-РНК. Промотр – площадка для РНК-полимеразы. Оперон – часть одного гена ДНК.

Источник

Кодирование и реализация биологической информации в клетке. Генетический код. Кодовая система ДНК и белка

Биосинтез белка – это цепь реакций, в которых используется энергия АТФ. Во всех реакциях синтеза белка участвуют ферменты. Биосинтез белка – это матричный синтез.

1. Триплетность Каждая аминокислота кодируется последовательностью из 3-х нуклеотидов.

2. Вырожденность. Все аминокислоты, за исключением метионина и триптофана, кодируются более чем одним триплетом. Всего 61 триплет кодирует 20 аминокислот.

3. Однозначность. Каждый триплет кодирует лишь одну аминокислоту или является терминатором трансляции.

4. Компактность, или отсутствие внутригенных знаков препинания. Внутри гена каждый нуклеотид входит в состав значащего кодона.

23.Принцип кодирования и реализации генетической информации в клетке, свойства генетического кода их биологический смысл. Этапы реализации информации, их характеристика. Понятие о прямой и обратной транскрипции.

Генетический код– система записи наследственной информации, за которой последовательность нуклеотидив в ДНК (у некоторых вирусов РНК) определяет последовательность аминокислот в молекулах белков. Поскольку в процессе реализации генетическая информация переписывается с ДНК на иРНК, генетический код читается за иРНК и записывается с помощью четырех азотистых основ РНК (А, В, Г, Ц).

Кодон – последовательность трех соседних нуклеотидив (триплет) иРНК, которая кодирует определенную аминокислоту или начало и конец трансляции.

Генетический код: его свойства и понятие. Первично все многообразие жизни обусловливается разнообразием белковых молекул, выполняющих в клетках различные биологические функции. Структура белков определяется набором и порядком расположения аминокислот в их пептидных цепях. Именно эта последовательность аминокислот в пептидах зашифрована в молекулах ДНК с помощью генетического кода. В многообразии белков, существующих в природе, было обнаружено около 20 различных аминокислот.

Свойства генетического кода:

· «вырожденность», или избыточность генетического кода, т.е. одну и ту же аминокислоту может кодировать несколько триплетов, так как известно 20 аминокислот и 64 кодона

· неперекрываемость, т.е. между триплетами в молекуле ДНК не существует разделительных знаков, они расположены в линейном порядке, следуя один за другимтри рядом расположенных нуклеотида образуют один триплет;

· универсальность, т.е. для всех организмов, начиная с прокариот и заканчивая человеком, 20 аминокислот кодируются одними и теми же триплетами, что является одним из доказательств единства происхождения всего живого на Земле

Этапы реализации генетической информации I.

Транскрипция— синтез всех видов РНК на матрице ДНК.

Транскрипция, или переписывание, происходит не на всей молекуле ДНК, а на участке, отвечающем за определенный белок (ген). Условия, необходимые для транскрипции:

а) разкручивание участка ДНК с помощью расплетающих белков- ферментов

б) наличие строительного материала.

г) энергия в виде АТФ.

Транскрипция происходит по принципу комплементарности. При этом с помощью специальных белков-ферментов участок двойной спирали ДНК раскручивается, является матрицей для синтеза иРНК. Затем вдоль цепи ДНК движется фермент РНК-полимераза, соединяя между собой нуклеотиды по принципу комплементарности в растущую цепь РНК. Затем одноцепочечная РНК отделяется от ДНК и через поры в мембране ядра покидает клеточное ядро II.

Обратная транскрипция — это процесс образования двуцепочечной ДНК на основании информации в одноцепочечной РНК. Данный процесс называется обратной транскрипцией, так как передача генетической информации при этом происходит в «обратном», относительно транскрипции, направлении.

Источник

Биология. 10 класс

Генетическая информация в клетке

Хранение, передача и реализация наследственной информации в клетке. Ген. Геном. Реакции матричного синтеза

Необходимо запомнить

На Земле живёт около 7 млрд людей. Если не считать 25–30 млн пар однояйцовых близнецов, то генетически все люди разные: каждый уникален, обладает неповторимыми наследственными особенностями, свойствами характера, способностями, темпераментом.

Такие различия объясняются различиями в генотипах – наборах генов организма; у каждого он уникален. Генетические признаки конкретного организма воплощаются в белках – следовательно, и строение белка одного человека отличается, хотя и совсем немного, от белка другого человека.

Это не означает, что у людей не встречается совершенно одинаковых белков. Белки, выполняющие одни и те же функции, могут быть одинаковыми или совсем незначительно отличаться одной-двумя аминокислотами друг от друга. Но не существует на Земле людей (за исключением однояйцовых близнецов), у которых все белки были бы одинаковы.

Информация о первичной структуре белка закодирована в виде последовательности нуклеотидов в участке молекулы ДНК – гене – единице наследственной информации организма. Каждая молекула ДНК содержит множество генов. Совокупность всех генов организма составляет его генотип.

Кодирование наследственной информации происходит с помощью генетического кода, который универсален для всех организмов. Каждая аминокислота кодируется тремя нуклеотидами (триплетом) ДНК, комбинирующихся в разной последовательности (ААТ, ГЦА, АЦГ, ТГЦ и т.д. Аминокислот, входящих в состав белков – 20, а возможностей для комбинаций четырёх нуклеотидов в группы по три – 64, поэтому одна аминокислота может кодироваться несколькими триплетами. Часть триплетов вовсе не кодирует аминокислоты, а запускает или останавливает биосинтез белка.

ДНК непосредственно не принимает участия в биосинтезе белка. Информация с ДНК сначала копируется на иРНК (транскрипция), а затем на рибосомах переводится в последовательность аминокислот в молекулах синтезируемого белка (процесс трансляции).

В состав и-РНК входят нуклеотиды АЦГУ, триплеты которых называются кодонами: кодоны иРНК комплементарны триплетам ДНК: триплет на ДНК ЦГТ на и-РНК станет триплетом ГЦА, а триплет ДНК ААГ станет триплетом УУЦ.

Таким образом, генетический код – единая система записи наследственной информации в молекулах нуклеиновых кислот в виде последовательности нуклеотидов. Генетический код основан на использовании алфавита, состоящего всего из четырёх букв-нуклеотидов, отличающихся азотистыми основаниями: А, Т (У), Г, Ц.

Основные свойства генетического кода:

1. Генетический код триплетён. Триплет (кодон) – последовательность трёх нуклеотидов, кодирующая одну аминокислоту. Поскольку в состав белков входит 20 аминокислот, то очевидно, что каждая из них не может кодироваться одним нуклеотидом. Двух нуклеотидов для кодирования аминокислот также не хватает, поскольку в этом случае могут быть закодированы только 16 аминокислот. Значит, наименьшее число нуклеотидов, кодирующих одну аминокислоту, оказывается равным трём. (В этом случае число возможных триплетов нуклеотидов составляет 43 = 64).

2. Избыточность (вырожденность) кода является следствием его триплетности и означает то, что одна аминокислота может кодироваться несколькими триплетами (поскольку аминокислот 20, а триплетов – 64), за исключением метионина и триптофана, которые кодируются только одним триплетом. Кроме того, некоторые триплеты выполняют специфические функции: в молекуле иРНК триплеты УАА, УАГ, УГА – являются терминирующими кодонами, т. е. стоп-сигналами, прекращающими синтез полипептидной цепи. Триплет, соответствующий метионину (АУГ), стоящий в начале цепи ДНК, не кодирует аминокислоту, а выполняет функцию инициирования (начала) синтеза.

3. Одновременно с избыточностью коду присуще свойство однозначности: каждому кодону соответствует только одна определённая аминокислота.

4. Код коллинеарен, т. е. последовательность нуклеотидов в гене точно соответствует последовательности аминокислот в белке.

5. Генетический код неперекрываем. Это значит, что процесс считывания не допускает возможности перекрывания кодонов (триплетов).

6. Генетический код универсален, т. е. одинаковые для всех живых организмов вне зависимости от уровня организации и систематического положения этих организмов.

7. Генетический код содержит «знаки препинания» – стоп-кодоны. Начавшись на определённом кодоне, считывание идёт непрерывно триплет за триплетом вплоть до стоп-сигналов (терминирующих кодонов).

Источник

Кодирование и реализация наследственной информации

Раздел ЕГЭ: 2.6. Генетическая информация в клетке. Гены, генетический код и его свойства. Матричный характер реакций биосинтеза. Биосинтез белка и нуклеиновых кислот

На Земле живет уже более 6 млрд людей. Если не считать 25-30 млн пар однояйцевых близнецов, то генетически все люди разные. Это означает, что каждый из них уникален, обладает неповторимыми наследственными особенностями, свойствами характера, способностями, темпераментом и многими другими качествами. Чем же определяются такие различия между людьми? Конечно различиями в их генотипах, т.е. наборах генов данного организма. У каждого человека он уникален, так же как уникален генотип отдельного животного или растения. Но генетические признаки данного человека воплощаются в белках, синтезированных в его организме. Следовательно, и строение белка одного человека отличается, хотя и совсем немного, от белка другого человека. Вот почему возникает проблема пересадки органов, вот почему возникают аллергические реакции на продукты, укусы насекомых, пыльцу растений и т.д. Сказанное не означает, что у людей не встречается совершенно одинаковых белков. Белки, выполняющие одни и те же функции, могут быть одинаковыми или совсем незначительно отличаться одной-двумя аминокислотами друг от друга. Но не существует на Земле людей (за исключением однояйцевых близнецов), у которых все белки были бы одинаковы.

кодирование и реализация наследственной информации. Смотреть фото кодирование и реализация наследственной информации. Смотреть картинку кодирование и реализация наследственной информации. Картинка про кодирование и реализация наследственной информации. Фото кодирование и реализация наследственной информации

Информация о первичной структуре белка закодирована в виде последовательности нуклеотидов в участке молекулы ДНК — гене. Ген — это единица наследственной информации организма. Каждая молекула ДНК содержит множество генов. Совокупность всех генов организма составляет его генотип.

Кодирование наследственной информации происходит с помощью генетического кода. Код подобен всем известной азбуке Морзе, которая точками и тире кодирует информацию. Азбука Морзе универсальна для всех радистов, и различия состоят только в переводе сигналов на разные языки. Генетический код также универсален для всех организмов и отличается лишь чередованием нуклеотидов, образующих гены и кодирующих белки конкретных организмов.

Свойства генетического кода: триплетность, специфичность, универсальность, избыточность и неперекрываемость.

Итак, что же собой представляет генетический код? Изначально он состоит из троек (триплетов) нуклеотидов ДНК, комбинирующихся в разной последовательности. Например, ААТ, ГЦА, АЦГ, ТГЦ и т.д. Каждый триплет нуклеотидов кодирует определенную аминокислоту, которая будет встроена в полипептидную цепь. Так, например, триплет ЦГТ кодирует аминокислоту аланин, а триплет ААГ — аминокислоту фенилаланин. Аминокислот 20, а возможностей для комбинаций четырех нуклеотидов в группы по три — 64. Следовательно, четырех нуклеотидов вполне достаточно, чтобы кодировать 20 аминокислот. Вот почему одна аминокислота может кодироваться несколькими триплетами. Часть триплетов вовсе не кодирует аминокислоты, а запускает или останавливает биосинтез белка.

кодирование и реализация наследственной информации. Смотреть фото кодирование и реализация наследственной информации. Смотреть картинку кодирование и реализация наследственной информации. Картинка про кодирование и реализация наследственной информации. Фото кодирование и реализация наследственной информации

Собственно генетическим кодом считается последовательность нуклеотидов в молекуле иРНК, ибо она снимает информацию с ДНК (процесс транскрипции) и переводит ее в последовательность аминокислот в молекулах синтезируемых белков (процесс трансляции). В состав иРНК входят нуклеотиды АЦГУ. Триплеты нуклеотидов иРНК называются кодонами. Уже приведенные примеры триплетов ДНК на иРНК будут выглядеть следующим образом — триплет ЦГТ на иРНК станет триплетом ГЦА, а триплет ДНК — ААГ — станет триплетом УУЦ. Именно кодонами иРНК отражается генетический код в записи. Итак, генетический код триплетен, универсален для всех организмов на земле, вырожден (каждая аминокислота шифруется более чем одним кодоном). Между генами имеются знаки препинания — это триплеты, которые называются стоп-кодонами. Они сигнализируют об окончании синтеза одной полипептидной цепи. Существуют таблицы генетического кода, которыми нужно уметь пользоваться, для расшифровки кодонов иРНК и построения цепочек белковых молекул (в скобках — комплементарные ДНК).

Источник

Кодирование и реализация генетической информации в клетке. Генетический код и его характеристика

Генетическая информация закодирована в ДНК. Генетический код был выяснен М. Ниренбергом и Х.Г. Корана, за что они были удостоены Нобелевской премии в 1968 году.

Основные постулаты кода:

1) Генетический код триплетен. Триплет и-РНК получил название кодона. Кодон шифрует одну аминокислоту.

2) Генетический код является вырожденным. Одна аминокислота шифруется, более чем один кодоном (от 2 до 6). Исключения составляют метиониновый и триптофановый (АУГ, ГУГ). В кодонах для одной аминокислоты первые два нуклеотида чаще всего одинаковы, а третий варьирует.

3) Кодоны не перекрываются. Нуклеотидная последовательность считывается в одном направлении подряд, триплет за триплетом.

4) Код однозначен. Кодон шифрует определенную аминокислоту.

5) АУГ является стартовым кодоном.

7) Генетический код универсален, он един для всех организмов и вирусов.

Раскрытие структура ДНК, материального носителя наследственности способствовало решению многих вопросов: воспроизведение генов, природы мутаций, биосинтез белка и т.д.

Механизм передачи генетического кода способствовал развитию молекулярной биологии, а так же генной инженерии, генной терапии.

У некоторых организмов, кроме ДНК, носителем наследственной информации может быть РНК, например, у вирусов табачной мозаики, полиомиелита, СПИДа.

Мономерами нуклеиновых кислот являются нуклеотиды. Установлено, что в хромосомах эукариот гигантская двуспиральная молекула ДНК образована 4 типами нуклеотидов: адениловый, гуаниловый, тимидиловый, цитозиловый. Каждый нуклеотид состоит из азотистого основания (пуринового Г+А или пиримидинового Ц+Т), дезоксирибозы и остатка фосфорной кислоты.

а) количество аденина равно количеству тимина (А=Т);

б) количество гуанина равно количеству цитозина (Г=Ц);

в) количество пуринов равно количеству пиримидинов (Г+А = Ц+Т);

г) количество оснований с 6-аминогруппами равно количеству оснований с 6-кетогруппами (А+Ц = Г+Т).

В 1953 году биологом Дж.Уотсоном и физиком Ф.Криком была предложена пространственная молекулярная модель ДНК.

Основные постулаты модели заключаются в следующем:

2. Каждый нуклеозид (пентоза + азотистое основание) расположен в плоскости, перпендикулярной оси спирали.

3. Две полинуклеотидные цепи скреплены водородными связями, образующимися между азотистыми основаниями.

4. Спаривание азотистых оснований строго специфично, пуриновые основания соединяются только с пиримидиновыми: А-Т, Г-Ц.

5. Последовательность оснований одной цепи может значительно варьировать, но азотистые основания другой цепи должны быть строго комплементарны им.

Различают три основных вида репликации ДНК: консервативный, полуконсервативный, дисперсный.

Для эукариот характерна избыточность ДНК: кол-во ее ДНК, участвующее в кодировании, составляет только 2%. Часть избыточной ДНК представлена одинаковыми наборами нуклеотидов, повторяющимися много раз (повторы). Различают многократно и умеренно повторяющиеся последовательности. Они образуют конститутивный гетерохроматин (структурный). Он встроен между уникальными последовательностями. Избыточные гены имеют 10 4 копий.

Расположение центромеры определяет основные формы хромосом:

Хромосомы подразделяются на аутосомы (соматических клеток) и гетерохромосомы (половых клеток).

Согласно Парижской классификации хромосомы разделены на группы по их размерам и форме, а также линейной дифференцировке.

Хромосомы обладают следующими свойствами (правила хромосом):

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *