количество нейронов в головном мозге человека
Нейроны и нейромедиаторы
Химические цепочки
Все чувства и эмоции, которые испытывают люди, возникают путем химических изменений в головном мозге. Прилив радости, который человек ощущает после получения положительной оценки, выигрыша в лотерею или при встрече с любимым, происходит вследствие сложных химических процессов в головном мозге. Мы можем испытывать огромное количество эмоций, например таких, как печаль, горе, тревога, страх, изумление, отвращение, экстаз, умиление. Если мозг дает телу команду на осуществление какого-либо действия, например, сесть, повернуться или бежать, это также обусловлено химическими процессами. «Химический язык» нашей нервной системы состоит из отдельных «слов», роль которых исполняют нейромедиаторы (их еще называют нейротрансмиттерами).
Любой нейрон может получать большое количество химических сообщений, как положительных, так и отрицательных («работай» или «стоп»), от других нейронов, которые его окружают. Эти сообщения могут конкурировать или «сотрудничать», между собой, заставляя нейрон отвечать специфическим образом. Поскольку все эти события происходят в течение очень короткого времени (считаные доли секунды), очевидно, что медиатор должен быть удален из синаптического пространства очень быстро, чтобы те же самые рецепторы могли работать снова и снова. И это удаление может происходить тремя способами. Молекулы нейромедиатора могут быть захвачены назад в то нервное окончание, из которого они были выделены, и этот процесс получил название «обратный захват» («reuptake»); нейромедиатор может быть разрушен специфическими ферментами, находящимися в готовности недалеко от рецепторов на поверхности нейрона; или активное вещество может просто рассеяться в окружающую область мозга, и быть разрушено там.
Изменение нейротрансмиссии с помощью лекарств
Рассмотрим, что происходит при изменении уровней нейромедиаторов мозга на примере трех из них (серотонин, дофамин и гамма-аминомасляная кислота (ГАМК).
Серотонин
Многие исследования показывают, что низкий уровень серотонина в головном мозге приводит к депрессии, импульсивным и агрессивным формам поведения, насилию, и даже самоубийствам. Лекарственные вещества под названием антидепрессанты создают блок на пути обратного захвата серотонина, тем самым несколько увеличивая время его нахождения в пространстве синапса. Как итог, в целом увеличивается количество серотонина, участвующего в передаче сигналов с нейрона на нейрон, и депрессия со временем проходит.
В последние годы ведутся бурные дискуссии вокруг психического расстройства, носящего название «синдром дефицита внимания с гиперактивностью» (СДВГ, ADHD). Это расстройство, как правило, диагностируется в детском возрасте. Таким детям очень сложно сохранять концентрацию внимания в течение длительного времени, они совершенно не могут сидеть, не двигаясь; они постоянно находятся в движении, импульсивны и чрезмерно активны. К сожалению, СДВГ диагностируют у все большего числа детей, и многие из них получают лекарства, увеличивающие деятельность медиатора дофамина. Это помогает ребенку быть готовым к работе, более внимательным и сосредоточенным, и поэтому более способным последовательно выполнять задания.
Наркотическое вещество, известное как «экстази» или МДМА, также изменяет уровень серотонина в мозге, но намного более радикально. Он заставляет выделяющие серотонин нейроны выплескивать все содержимое сразу, затапливая этим химикатом весь мозг, что, конечно, вызывает ощущение чрезвычайного счастья и гиперактивность (чрезмерную двигательную активность). Однако, за это приходится расплачиваться позже. После того как экстази израсходовал весь мозговой запас серотонина, включаются компенсаторные механизмы, быстро разрушающие избыток нейромедиатора в мозге. После того, как спустя несколько часов действие наркотика заканчивается, человек, вероятно, будет чувствовать себя подавленным. Этот период «депрессии» продлится до тех пор, пока мозг не сможет восполнить запасы и обеспечить нормальный уровень медиатора. Повторное использование на этом фоне экстази может привести к глубокой депрессии или другим проблемам, которые будут тянуться в течение долгого времени.
Дофамин
Ученые обнаружили, что люди с расстройством психики, известным как шизофрения, фактически чрезмерно чувствительны к дофамину в мозге. Как следствие, при лечении шизофрении используются лекарства, которые блокируют дофаминовые в головном мозге, таким образом, ограничивая воздействие этого нейромедиатора.
С другой стороны, вещества, известные как амфетамины, увеличивают уровень дофамина, заставляя нейроны его высвобождать, и препятствуя его обратному захвату. В некоторых странах врачи используют разумные дозы этих препаратов при лечении некоторых заболеваний, например, синдрома гиперактивности с дефицитом внимания. Тем не менее, иногда люди абсолютно необдуманно неправильно используют эти вещества, пытаясь обеспечить себе повышенный уровень бодрствования и способность решать любые задачи.
Гамма-аминомасляная кислота
Гамма-аминомасляная кислота, или ГАМК, является главным медиатором, чья роль заключается в передаче нейронам команды «стоп». Исследователи полагают, что определенные типы эпилепсии, которые характеризуются повторными припадками, затрагивающими сознание человека и его двигательную сферу, могут являться результатом снижения содержания ГАМК в головном мозге. Передающая система мозга, не имея адекватного «тормоза», входит в состояние перегрузки, когда десятки тысяч нейронов начинают сильно и одновременно посылать свои сигналы, что приводит к эпилептическому приступу. Ученые полагают, что за разрушение слишком большого количества ГАМК могут быть ответственны мозговые ферменты, в связи с чем появились лекарства, которые помогают остановить этот процесс. Время показало их эффективность в лечении не только эпилепсии, но и некоторых других нарушений работы мозга.
Гормоны
Химическое взаимодействие
Что особенного в мозге человека?
Что особенного в мозге человека?
Морфологическая реконструкция нейрона коры мозга человека. Внизу показаны подпороговые осцилляции трансмембранного потенциала нейрона в биофизической модели. На фоне показаны человеческие нейроны 2/3 слоя коры, окрашенные с помощью антител.
Автор
Редакторы
Нейроны человека и других млекопитающих очень похожи, если смотреть «издалека». Тем не менее есть и важные различия. Недавно ученые из Института Аллена (среди которых и автор этой статьи) опубликовали работу в журнале Neuron, где показали, что возбудимости нейронов мозга человека и мыши заметно различаются. Оказалось, что нейроны коры мозга человека имеют гораздо большее количество HCN-каналов, которые особым образом влияют на возбудимость нейронов. Что это значит с точки зрения эволюции и какой эффект оказывает на поведение отдельных нейронов?
Довольно долго считалось, что базовые элементы нервной системы — нейроны — всех млекопитающих похожи друг на друга. Такую мысль высказывал, например, Сантьяго Рамон-и-Кахаль [1]. Нейрон получает входные сигналы от других нейронов за счет синапсов, которые расположены на дендритах и соме [2]. В результате меняется величина трансмембранного потенциала [3], и если она превышает порог, то нейрон генерирует потенциал действия, или спайк (от англ. spike — шип). После этого спайк распространяется по аксону и активирует другие нейроны, с которыми он связан с помощью синапсов. Несмотря на схожие свойства нейронов животных, ученые получают всё большее количество данных о том, что отдельные детали значительно различаются.
Мозги человека и других млекопитающих очень похожи. Именно это позволяет нам, изучая мозг других животных, узнать что-то о своем собственном. В частности, структура коры мозга, появившейся позже всего в течение эволюции, очень схожа у всех млекопитающих. Именно она отвечает за множество высших психических функций (восприятие, память, речь), которыми мы обладаем.
Но если кора у нас и мышек устроена одинаково, почему же мышки не играют на скрипке и не делают научные открытия, а люди на это способны хотя бы изредка? Иными словами, что делает нас особенными по сравнению с другими млекопитающими?
Довольно давно стало понятно, что это очень сложный вопрос, на который существует много разных ответов. Один из них наша научная группа пытается дать в Институте Аллена (Allen institute for brain science), изучая и сравнивая нейроны человека и мыши. Наша работа была недавно опубликована в международном журнале Neuron [4].
Известно, что объем мозга человека и площадь коры увеличивались в ходе эволюции очень быстро. За последние 75 миллионов лет площадь коры мозга человека стала больше примерно в 1000 раз по сравнению с общим предком мыши и человека. Поэтому нейроны человеческого мозга должны были адаптироваться к эволюционно быстрым изменениям его свойств.
Кора млекопитающих обладает удивительно сложной анатомической организацией. Она состоит из шести слоев клеток, которые связаны между собой. В каждом слое есть возбуждающие и тормозные нейроны разных типов. Типы нейронов отличаются между собой по форме дендритного дерева, по возбудимости мембраны и специальным белкам, которые позволяют «увидеть» эти нейроны с помощью иммуногистохимических методов [5]. Зачастую в коре нейроны определенных типов связаны между собой строго специфическим образом, поэтому, анализируя активность нейронов, важно знать, к какому типу они относятся.
Чтобы не сравнивать яблоки с апельсинами, мы рассмотрели свойства самых часто встречающихся нейронов коры — пирамидальных нейронов 2/3 слоя. Поскольку границу между вторым и третьим слоем анатомически сложно провести, нейроны этих слоев объединяют вместе как нейроны 2/3 слоя. Именно этот слой самый толстый в коре человека по сравнению с корой мыши. Нейроны именно этого слоя коры наиболее сильно изменились у человека по сравнению с другими млекопитающими. Ширина 2/3 слоя около одного миллиметра, и он толще других слоев примерно в 2–3 раза.
Изучая ответы отдельных нейронов в этом слое коры, мы обнаружили, что нейроны человека и мыши по-разному отвечают на электрические стимулы (рис. 1). Оказалось, что нейроны одного и того же 2/3 слоя коры у мыши и человека обладают различными резонансными частотами (рис. 1 в и г). Иными словами, при предъявлении стимула (ток, подаваемый в нейрон), нейроны человека и мыши по-разному на него отвечают. Нейроны человека обладают резонансами более высокой частоты, при этом частота этих резонансов зависит от глубины расположения нейронов в коре. Чем глубже эти нейроны в слое 2/3 у человека, тем выше их частота (рис. 1 в и г). При этом частота резонансов у мыши гораздо ниже и увеличивается медленнее при продвижении в глубину в слоя 2/3.
Рисунок 1. Нейроны человека и мыши обладают различными резонансными свойствами. а — Подпороговый ответ нейронов мыши 2/3 слоя коры в ответ на синусоидальный стимул с увеличивающейся амплитудой. Сверху показан ответ нейронов верхней части 2/3 слоя коры, снизу — ответ более глубоких нейронов того же слоя. Справа показан спектр частоты колебаний и электрический импеданс трансмембранного потенциала в ответ на синусоидальный стимул наверху и внизу слоя 2/3. б — То же самое для нейронов человека. в — Слева показана резонансная частота нейронов мыши 2/3 слоя в зависимости от глубины внутри этого слоя (резонансная частот соответствует пику в спектре на панели а справа). Справа показано отсечение спектра после трех децибел. г — тоже самое для нейронов человека. Результаты, относящиеся к нейронам мыши, показаны черным; к нейронам человека — красным.
Для того чтобы объяснить эти физиологические свойства нейронов человека, мы проанализировали биофизические свойства нейронов коры человека и мыши. Дело в том, что в генерации спайков, а также в поддержании трансмембранного потенциала участвует большое количество различных белков (преимущественно ионных каналов). Основными являются натриевые и калиевые каналы, но также существует большое количество других белков, которые изменяют свойства потенциала действия и синапсов. Так, одна из наших прежних работ посвящена изучению связи эпилепсии с гомеостазом ионов хлора в нейронах мозга [6].
Одними из таких каналов, тонко настраивающих сигнализацию нейронов, являются HCN-каналы, пропускающие ионы калия при гиперполяризации мембраны. Это явление необычно тем, что «обычные» потенциал-чувствительные каналы открываются при деполяризации (потенциал идет «вверх»), а этот тип каналов — напротив, при гиперполяризации (потенциал идет «вниз») трансмембранного потенциала. Поэтому данный ток получил специальное обозначение — h-ток, напоминающее о его hyper-активации (hyperpolarization activated в названии канала — (англ.) активирующийся благодаря гиперполяризации).
Когда нейрон получает отрицательный синаптический вход от тормозных нейронов, это приводит к активации h-тока. Но после того как стимуляция исчезает, возникает кратковременная деполяризация мембраны нейрона, что часто приводит к генерации спайков. Иными словами, действие h-тока похоже на пружину, которую сначала сжимают (отрицательный вход), а потом резко отпускают (отсутствие стимуляции), после чего она распрямляется еще больше, чем в изначальном состоянии. Эти каналы есть не только в нейронах мозга: их также можно обнаружить в кардиомиоцитах сердца [7], где они помогают синхронизировать активность клеток во время сердечных сокращений.
Мы обнаружили, что в мембране человеческих нейронов 2/3 слоя есть особенно большое количество h-тока, анализируя ответы нейронов в ответ на электрические стимулы (рис. 1). Анализ мРНК из тех же нейронов подтвердил эти результаты и показал, что в клетках 2/3 слоя коры человека имеется гораздо большее количество фрагментов, кодирующих HCN1-каналы (подтип HCN-каналов). В нейронах коры мыши тоже имеется большое количество HCN1-каналов, но их не так много, как в нейронах человека (рис. 2). Более того, оказалось, что HCN1-каналов больше в каждом слое коры человека, а не только в слое 2/3. Чтобы понять, что значат эти данные в отношении отдельных клеток, мы совместно использовали электрофизиологию и математическое моделирование.
Рисунок 2. Оценка уровня экспрессии генов, кодирующих HCN-каналы, в нейронах человека (а) и мыши (б). Все данные получены на основании анализа мРНК, извлеченной из ядер отдельных нейронов разных слоев коры (L1–6 и тормозных нейронов всех слоев Inh). Результаты приведены в единицах RPKM (англ. Reads Per Kilobase Million — количество прочтений (гена HCN1) на один миллион пар оснований).
Некоторые подробности нейронного моделирования приведены в статье «От живого мозга к искусственному интеллекту» [8].
Рисунок 3. Биофизическая модель нейрона человека. а — Стимуляция биологического нейрона и математической модели стимулом с увеличивающейся частотой с помощью электрического тока. б — Спектр колебаний трансмембранного потенциала в ответ на стимуляцию с панели а. Черным показан стимул, зеленым — ответ биологического нейрона 2/3 нейрона коры, красным — ответ модели со включенными h-каналами (Ih(+)), синим — ответ модели с выключенными h-каналами (Ih(−)).
Рисунок 3. Биофизическая модель нейрона человека. в — Трехмерная реконструкция нейрона коры слоя 2/3. Красными кругами показано положение глутаматных синапсов [9]. г — Задержка между активностью синапса на дендритном дереве и ответом на соме нейрона в зависимости от расстояния от синапса до сомы. Красным показан ответ модели в присутствии h-тока (Ih(+)), синим — когда h-ток отсутствует (Ih(−)). д — Спектр колебаний трансмембранного потенциала на соме в модели с h-током и без h-тока в ответ на стимуляцию с помощью 1000 синапсов. Черные линии наверху соответствуют различным диапазонам частот, средние величины которых достоверно отличаются, в частности в тета-диапазоне.
Используя эту модель, мы воспроизвели поведение нейрона, когда он находится в нейронной сети коры. Для этого мы стимулировали модель нейрона с помощью 1000 глутаматных синапсов [9], каждый из которых активировался случайно со средней частотой около 4 Гц (рис. 3д). Поскольку разряды нейронов в большой сети генерируются случайно или хаотически [10], их можно описывать с помощью случайных процессов.
В ответ на синаптическую стимуляцию происходят колебания мембранного потенциала нейрона. Чтобы понять свойства этих колебаний, мы проанализировали их частоту в модели с h-током и без него (рис. 3). Оказалось, что h-ток позволяет нейрону лучше проводить колебания в тета-диапазоне (4–10 Гц) от дендритов к соме. При этом сами колебания мембранного потенциала генерируются синапсами, расположенными на дендритном дереве (рис. 3). Также мы обнаружили, что скорость проведения сигнала от дендритов к соме увеличивается при наличии h-тока (рис. 3д). Это происходит за счет способности HCN-каналов делать мембрану нейронов чуть более возбудимой, что приводит к более быстрому проведению изменений потенциала от дендритов к соме.
Дело в том, что человеческие нейроны гораздо больше нейронов мыши. Объем мозга и размер нейронов быстро увеличивались в ходе эволюции млекопитающих. С одной стороны, большой нейрон может связаться с бóльшим числом других нейронов, что позволяет более эффективно проводить информацию в сети; с другой стороны, скорость обработки информации в больших нейронах меньше, чем в маленьких. Вероятно, большое количество h-тока было одной из эволюционных адаптаций, которые позволили поддерживать прежнюю скорость проведения потенциалов действия, несмотря на бóльший размер нейронов. Этот механизм может быть особенно важен для более глубоких слоев коры (рис. 1), поскольку нейроны 2/3 слоя должны получать информацию от нейронов первого слоя коры с такой же задержкой, как и нейроны верхнего слоя 2/3.
Сравнивая нейроны человека и других животных, мы надеемся постепенно понять, что именно делает мозг человека особенным. Возможно, разница между мозгом человека и мыши такая же, как между игровой приставкой и суперкомпьютером. Оба они построены на микропроцессорах, но суперкомпьютер обладает гораздо большей производительностью за счет более быстрых элементов и большего их количества. В ближайшем будущем мы планируем изучить свойства нейронов коры человека и мыши во всех слоях коры и в разных ее областях. Это поможет нам понять, что делает мозг человека особенным по сравнению с мозгом других млекопитающих [11]. С практической точки зрения это позволит разрабатывать более эффективные лекарства, которые будут лучше работать для нейронов человека за счет особенных свойств наших с вами ионных каналов.
Количество нейронов в головном мозге человека
В теле человека бессчетное количество клеток, каждая из которых имеет собственную функцию. Среди них самые загадочные – нейроны, отвечающие за любое совершаемое нами действие. Попробуем разобраться как работают нейроны и в чем их предназначение.
Что такое нейрон (нейронные связи)
Нейроны работают при помощи электрических сигналов и способствуют обработке мозгом поступающей информации для дальнейшей координации производимых телом действий.
Эти клетки являются составляющей частью нервной системы человека, предназначение которой состоит в том, чтобы собрать все сигналы, поступающие из вне или от собственного организма и принять решение о необходимости того или иного действия. Именно нейроны помогают справиться с такой задачей.
Каждый из нейронов имеет связь с огромным количеством таких же клеток, создаётся своеобразная «паутина», которая называется нейронной сетью. Посредством данной связи в организме передаются электрические и химические импульсы, приводящие всю нервную систему в состояние покоя либо, наоборот, возбуждения.
К примеру, человек столкнулся с неким значимым событием. Возникает электрохимический толчок (импульс) нейронов, приводящий к возбуждению неровной системы. У человека начинает чаще биться сердце, потеют руки или возникают другие физиологические реакции.
Мы рождаемся с заданным количеством нейронов, но связи между ними еще не сформированы. Нейронная сеть строится постепенно в результате поступающих из вне импульсов. Новые толчки формируют новые нейронные пути, именно по ним в течение жизни побежит аналогичная информация. Мозг воспринимает индивидуальный опыт каждого человека и реагирует на него. К примеру, ребенок, схватился за горячий утюг и отдернул руку. Так у него появилась новая нейронная связь.
Стабильная нейронная сеть выстраивается у ребенка уже к двум годам. Удивительно, но уже с этого возраста те клетки, которые не используются, начинают ослабевать. Но это никак не мешает развитию интеллекта. Наоборот, ребенок познает мир через уже устоявшиеся нейронные связи, а не анализирует бесцельно все вокруг.
Познание нового опыта на протяжении всей жизни приводит к отмиранию ненужных нейронных связей и формированию новых и полезных. Этот процесс оптимизирует головной мозг наиболее эффективным для нас образом. Например, люди, проживающие в жарких странах, учатся жить в определенном климате, а северянам нужен совсем другой опыт для выживания.
Сколько нейронов в мозге
Нервные клетки в составе головного мозга занимают порядка 10 процентов, остальные 90 процентов это астроциты и глиальные клетки, но их задача заключается лишь в обслуживании нейронов.
Подсчитать «вручную» численность клеток в головном мозге также сложно, как узнать количество звезд на небе.
Тем не менее ученые придумали сразу несколько способов для определения количества нейронов у человека:
Строение нейрона
На рисунке приведено строение нейрона. Он состоит из основного тела и ядра. От клеточного тела идет ответвление многочисленных волокон, которые именуются дендритами.
Мощные и длинные дендриты называются аксонами, которые в действительности намного длиннее, чем на картинке. Их протяженность варьируется от нескольких миллиметров до более метра.
Аксоны играют ведущую роль в передаче информации между нейронами и обеспечивают работу всей нервной системы.
Место соединения дендрита (аксона) с другим нейроном называется синапсом. Дендриты при наличии раздражителей могут разрастись настолько сильно, что станут улавливать импульсы от других клеток, что приводит к образованию новых синаптических связей.
Синаптические связи играют существенную роль в формировании личности человека. Так, личность с устоявшимся позитивным опытом будет смотреть на жизнь с любовью и надеждой, человек, у которого нейронные связи с негативным зарядом, станет со временем пессимистом.
Виды нейронов и нейронных связей
Нейроны можно обнаружить в различных органах человека, а не исключительно в головном мозге. Большое их количество расположено в рецепторах (глаза, уши, язык, пальцы рук – органы чувств). Совокупность нервных клеток, которые пронизывают наш организм составляет основу периферической нервной системы. Выделим основные виды нейронов.
Слаженная работа нейронов трех типов выглядит так: человек «слышит» запах шашлыка, нейрон передает информацию в соответствующий раздел мозга, мозг передает сигнал желудку, который выделяет желудочный сок, человек принимает решение «хочу есть» и бежит покупать шашлык. Упрощенно так это действует.
Самыми загадочными являются промежуточные нейроны. С одной стороны, их работа обуславливает наличие рефлекса: дотронулся до электричества – отдернул руку, полетела пыль –зажмурился. Однако, пока не объяснимо как обмен между волокнами рождает идеи, образы, мысли?
Единственное, что установили ученые, это тот факт, что любой вид мыслительной деятельности (чтение книг, рисование, решение математических задач) сопровождается особой активностью (вспышкой) нервных клеток определенного участка головного мозга.
Есть особая разновидность нейронов, которые именуются зеркальными. Их особенность заключается в том, что они не только приходят в возбуждение от внешних сигналов, но и начинают «шевелиться», наблюдая за действиями своих собратьев – других нейронов.
Функции нейронов
Без нейронов невозможна работа организма человека. Мы увидели, что эти наноклетки отвечают буквально за каждое наше движение, любой поступок. Выполняемые ими функции до настоящего времени в полной мере не изучены и не определены.
Существует несколько классификаций функций нейронов. Мы остановимся на общепринятой в научном мире.
Функция распространения информации
Данная функция:
Суть ее в том, что нейронами обрабатываются и переносятся в головной мозг все импульсы, которые поступают из окружающего мира или собственного тела. Далее происходит их обработка, подобно тому, как работает поисковик в браузере.
По результатам сканирования сведений из вне, головной мозг в форме обратной связи передает обработанную информацию к органам чувств или мышцам.
Мы не подозреваем, что в нашем теле происходит ежесекундная доставка и переработка информации, не только в голове и на уровне периферической нервной системы.
До настоящего времени создать искусственный интеллект, который бы приблизился к работе нейронных сетей человека, не удалось. У каждого из 85 миллиардов нейронов имеется, как минимум, 10 тысяч обусловленных опытом связей, и все они работают на передачу и обработку информации.
Функция аккумуляции знаний (сохранения опыта)
Человек обладает памятью, возможностью понимать суть вещей, явлений и действий, которые он единожды или многократно повторял. За формирование памяти отвечают именно нейронные клетки, точнее нейротрансмиттеры, связующие звенья между соседними нейронами.
Таким образом, за память отвечает не какая-то отдельная часть мозга, а маленькие белковые мостики между клетками. Человек может потерять память, когда произошло крушение этих нервных связей.
Функция интеграции
Данная функция позволяет взаимодействовать между собой отдельным долям головного мозга. Как мы уже сказали, сигналы от разных органов чувств поступают в разные отделы мозга.
Нейроны посредством «вспышек» активности передают и принимают импульсы в разных частях мозга. Так происходит процесс появления мыслей, эмоций и чувств. Чем больше таких разноплановых связей, тем эффективнее человек мыслит. Если человек способен к размышлениям и аналитике в определенном направлении, то он будет хорошо соображать и в другом вопросе.
Функция производства белков
Нейроны – настолько полезные клетки, что не ограничиваются только передаточными функциями. Нервные клетки вырабатывают необходимые для жизни человека белки. Опять же ключевую роль в производстве белков имеют нейротрансмиттеры, которые отвечают за память.
Всего в невронах индуцируется порядка 80 белков, вот основные из них, влияющие на самочувствие человека:
Прекращение выработки белков или их выпуск в недостаточном количестве способны привести к тяжелым заболеваниям.
Восстанавливаются ли нервные клетки
При нормальном состоянии организма нейроны могут жить и функционировать очень долго. К сожалению, случается так, что они начинают массово погибать. Причин разрушения нервных волокон может быть много, но до конца механизм их деструкции не изучен.
Установлено, что нервные клетки погибают из-за гипоксии (кислородное голодание). Нейронные сети рушатся при отдельных травмах головного мозга, человек теряет память или утрачивает способность к хранению информации. В этом случае сами нейроны сохранены, но теряется их передаточная функция.
Отсутствие допамина ведет к развитию болезни Паркинсона, а его переизбыток является причиной шизофрении. Почему прекращается выработка белка не известно, спусковой механизм не выявлен.
Гибель нервных клеток происходит при алкоголизации личности. Алкоголик со временем может совершенно деградировать и утратить вкус к жизни.
Формирование нервных клеток происходит при рождении. Долгое время ученые полагали, что со временем нейроны отмирают. Поэтому с возрастом человек утрачивает способность накапливать информацию, хуже соображает. Нарушение функции по выработке допамина и серотонина связывается с наличием практически у всех пожилых людей депрессивных состояний.
Гибель нейронов, действительно неизбежна, в год исчезает примерно 1 процент от их количества. Но есть и хорошие новости. Последние исследования показали, что в коре головного мозга есть особенный участок, именуемый гипокаммом. Именно в нем генерируются новые чистые нейроны. Подсчитано примерное количество генерируемых ежедневно нервных клеток – 1400.
В науке обозначилось новое понятие «нейропластичность», обозначающее возможность мозга регенерироваться и перестраиваться. Но есть одна тонкость: новые нейроны еще не имеют никакого опыта и наработанных связей. Поэтому с возрастом или после заболевания мозг нужно тренировать, как и все иные мышцы тела: получать новые знания, анализировать происходящие события и явления.
Подобно тому, как мы усиливаем бицепс при помощи гантели, активизировать процесс включения новых нервных клеток можно следующими способами:
Механизм возрождения прост. У нас имеются совершенно не задействованные новые клетки, которые нужно заставить работать, а сделать это можно лишь путем постановки новых задач и изучения неизвестных предметных сфер.