красный костный мозг содержится в
Красный костный мозг содержится в
Структура костной ткани и кровообращение
Кость представляет собой сложную материю, это сложный анизотропный неравномерный жизненный материал, обладающий упругими и вязкими свойствами, а также хорошей адаптивной функцией. Все превосходные свойства костей составляют неразрывное единство с их функциями.
Форма и структура костей являются различными в зависимости от выполняемых ими функций. Разные части одной и той же кости вследствие своих функциональных различий имеют разную форму и структуру, например, диафиз бедренной кости и головка бедренной кости. Поэтому полное описание свойств, структуры и функций костного материала является важной и сложной задачей.
Структура костной ткани
«Ткань» представляет собой комбинированное образование, состоящее из особых однородных клеток и выполняющих определенную функцию. В костных тканях содержатся три компонента: клетки, волокна и костный матрикс. Ниже представлены характеристики каждого из них:
Клетки: В костных тканях существуют три вида клеток, это остеоциты, остеобласт и остеокласт. Эти три вида клеток взаимно превращаются и взаимно сочетаются друг с другом, поглощая старые кости и порождая новые кости.
Костные клетки находятся внутри костного матрикса, это основные клетки костей в нормальном состоянии, они имеют форму сплющенного эллипсоида. В костных тканях они обеспечивают обмен веществ для поддержания нормального состояния костей, а в особых условиях они могут превращаться в два других вида клеток.
Остеобласт имеет форму куба или карликового столбика, они представляют собой маленькие клеточные выступы, расположенные в довольно правильном порядке и имеют большое и круглое клеточное ядро. Они расположены в одном конце тела клетки, протоплазма имеет щелочные свойства, они могут образовывать межклеточное вещество из волокон и мукополисахаридных белков, а также из щелочной цитоплазмы. Это приводит к осаждению солей кальция в идее игловидных кристаллов, расположенных среди межклеточного вещества, которое затем окружается клетками остеобласта и постепенно превращается в остеобласт.
Остеокласт представляет собой многоядерные гигантские клетки, диаметр может достигать 30 – 100 µm, они чаще всего расположены на поверхности абсорбируемой костной ткани. Их цитоплазма имеет кислотный характер, внутри ее содержится кислотная фосфотаза, способная растворять костные неорганические соли и органические вещества, перенося или выбрасывая их в другие места, тем самым ослабляя или убирая костные ткани в данном месте.
Костные волокна в основном состоит из коллагенового волокна, поэтому оно называется костным коллагеновым волокном, пучки которого расположены послойно правильными рядами. Это волокно плотно соединено с неорганическими составными частями кости, образуя доскообразную структуру, поэтому оно называется костной пластинкой или ламеллярной костью. В одной и той же костной пластинке большая часть волокон расположена параллельно друг другу, а слои волокон в двух соседних пластинках переплетаются в одном направлении, и костные клетки зажаты между пластинками. Вследствие того, что костные пластинки расположены в разных направлениях, то костное вещество обладает довольно высокой прочностью и пластичностью, оно способно рационально воспринимать сжатие со всех направлений.
Морфология кости
С точки зрения морфологии, размеры костей неодинаковы, их можно подразделить на длинные, короткие, плоские кости и кости неправильной формы. Длинные кости имеют форму трубки, средняя часть которых представляет собой диафиз, а оба конца – эпифиз. Эпифиз сравнительно толстый, имеет суставную поверхность, образованную вместе с соседними костями. Длинные кости главным образом располагаются на конечностях. Короткие кости имеют почти кубическую форму, чаще всего находятся в частях тела, испытывающих довольно значительное давление, и в то же время они должны быть подвижными, например, это кости запястья рук и кости предплюсны ног. Плоские кости имеют форму пластинок, они образуют стенки костных полостей и выполняют защитную роль для органов, находящихся внутри этих полостей, например, как кости черепа.
Кость состоит из костного вещества, костного мозга и надкостницы, а также имеет разветвленную сеть кровеносных сосудов и нервов, как показано на рисунке. Длинная бедренная кость состоит из диафиза и двух выпуклых эпифизарных концов. Поверхность каждого эпифизарного конца покрыта хрящом и образует гладкую суставную поверхность. Коэффициент трения в пространстве между хрящами в месте соединения сустава очень мал, он может быть ниже 0.0026. Это самый низкий известный показатель силы трения между твердыми телами, что позволяет хрящу и соседним костным тканям создать высокоэффективный сустав. Эпифизарная пластинка образована из кальцинированного хряща, соединенного с хрящом. Диафиз представляет собой полую кость, стенки которой образованы из плотной кости, которая является довольно толстой по всей ее длине и постепенно утончающейся к краям.
Костный мозг заполняет костномозговую полость и губчатую кость. У плода и у детей в костномозговой полости находится красный костный мозг, это важный орган кроветворения в человеческом организме. В зрелом возрасте мозг в костномозговой полости постепенно замещается жирами и образуется желтый костный мозг, который утрачивает способность к кроветворению, но в костном мозге по-прежнему имеется красный костный мозг, выполняющий эту функцию.
Надкостница представляет собой уплотненную соединительную ткань, тесно прилегающую к поверхности кости. Она содержит кровеносные сосуды и нервы, выполняющие питательную функцию. Внутри надкостницы находится большое количество остеобласта, обладающего высокой активностью, который в период роста и развития человека способен создавать кость и постепенно делать ее толще. Когда кость повреждается, остеобласт, находящийся в состоянии покоя внутри надкостницы, начинает активизироваться и превращается в костные клетки, что имеет важное значение для регенерации и восстановления кости.
Микроструктура кости
Костное вещество в диафизе большей частью представляет собой плотную кость, и лишь возле костномозговой полости имеется небольшое количество губчатой кости. В зависимости от расположения костных пластинок, плотная кость делится на три зоны, как показано на рисунке: кольцевидные пластинки, гаверсовы (Haversion) костные пластинки и межкостные пластинки.
Кольцевидные пластинки представляют собой пластинки, расположенные по окружности на внутренней и внешней стороне диафиза, и они подразделяются на внешние и внутренние кольцевидные пластинки. Внешние кольцевидные пластинки имеют от нескольких до более десятка слоев, они располагаются стройными рядами на внешней стороне диафиза, их поверхность покрыта надкостницей. Мелкие кровеносные сосуды в надкостнице пронизывают внешние кольцевидные пластинки и проникают вглубь костного вещества. Каналы для кровеносных сосудов, проходящие через внешние кольцевидные пластинки, называются фолькмановскими каналами (Volkmann’s Canal). Внутренние кольцевидные пластинки располагаются на поверхности костномозговой полости диафиза, они имеют небольшое количество слоев. Внутренние кольцевидные пластинки покрыты внутренней надкостницей, и через эти пластинки также проходят фолькмановские каналы, соединяющие мелкие кровеносные сосуды с сосудами костного мозга. Костные пластинки, концентрично расположенные между внутренними и внешними кольцевидными пластинками, называются гаверсовыми пластинками. Они имеют от нескольких до более десятка слоев, расположенных параллельно оси кости. В гаверсовых пластинках имеется один продольный маленький канал, называемый гаверсовым каналом, в котором находятся кровеносные сосуды, а также нервы и небольшое количество рыхлой соединительной ткани. Гаверсовы пластинки и гаверсовы каналы образуют гаверсову систему. Вследствие того, что в диафизе имеется большое число гаверсовых систем, эти системы называются остеонами (Osteon). Остеоны имеют цилиндрическую форму, их поверхность покрыта слоем цементина, в котором содержится большое количество неорганических составных частей кости, костного коллагенового волокна и крайне незначительное количество костного матрикса.
Межкостные пластинки представляют собой пластинки неправильной формы, расположенные между остеонами, в них нет гаверсовых каналов и кровеносных сосудов, они состоят из остаточных гаверсовых пластинок.
Внутрикостное кровообращение
В кости имеется система кровообращения, например, на рисунке показа модель кровообращения в плотной длинной кости. В диафизе есть главная питающая артерия и вены. В надкостнице нижней части кости имеется маленькое отверстие, через которое внутрь кости проходит питающая артерия. В костном мозге эта артерия разделяется на верхнюю и нижнюю ветви, каждая из которых в дальнейшем расходится на множество ответвлений, образующих на конечном участке капилляры, питающие ткани мозга и снабжающие питательными веществами плотную кость.
Кровеносные сосуды в конечной части эпифиза соединяются с питающей артерией, входящей в костномозговую полость эпифиза. Кровь в сосудах надкостницы поступает из нее наружу, средняя часть эпифиза в основном снабжается кровью из питающей артерии и лишь небольшое количество крови поступает в эпифиз из сосудов надкостницы. Если питающая артерия повреждается или перерезается при операции, то, возможно, что снабжение кровью эпифиза будет заменяться на питание из надкостницы, поскольку эти кровеносные сосуды взаимно связываются друг с другом при развитии плода.
Кровеносные сосуды в эпифизе проходят в него из боковых частей эпифизарной пластинки, развиваясь, превращаются в эпифизарные артерии, снабжающие кровью мозг эпифиза. Есть также большое количество ответвлений, снабжающих кровью хрящи вокруг эпифиза и его боковые части.
Верхняя часть кости представляет собой суставный хрящ, под которым находится эпифизарная артерия, а еще ниже ростовой хрящ, после чего имеются три вида кости: внутрихрящевая кость, костные пластинки и надкостница. Направление кровотока в этих трех видах кости неодинаково: во внутрихрящевой кости движение крови происходит вверх и наружу, в средней части диафиза сосуды имеют поперечное направление, а в нижней части диафиза сосуды направлены вниз и наружу. Поэтому кровеносные сосуды во всей плотной кости расположены в форме зонтика и расходятся лучеобразно.
Поскольку кровеносные сосуды в кости очень тонкие, и их невозможно наблюдать непосредственно, поэтому изучение динамики кровотока в них довольно затруднительно. В настоящее время с помощью радиоизотопов, внедряемых в кровеносные сосуды кости, судя по количеству их остатков и количеству выделяемого ими тепла в сопоставлении с пропорцией кровотока, можно измерить распределение температур в кости, чтобы определить состояние кровообращения.
В процессе лечения дегенеративно-дистрофических заболеваний суставов безоперационным методом в головке бедренной кости создается внутренняя электрохимическая среда, которая способствует восстановлению нарушенной микроциркуляции и активному удалению продуктов обмена разрушенных заболеванием тканей, стимулирует деление и дифференциацию костных клеток, постепенно замещающих дефект кости.
Красный костный мозг содержится в
Цель исследования: оценка особенностей миелограммы из костного мозга трубчатых костей
Результаты исследования: Было исследовано 15 образцов костного мозга трубчатых костей, полученного при ампутации конечности. Высохшие на воздухе мазки фиксировались с использованием фиксатора Майн-Грюнвальда, далее фиксированные мазки окрашивались азур-эозином по Романовскому. Окрашенные препараты микроскопировали с иммерсией при увеличении х 1000 используя микроскоп Olympus CX 41 (окуляр на 10, объектив на 100). Следует отметить, что состояние костного мозга во всех случаях разное. Консистенция костного мозга варьирует от жидкого, как вода до густого типа желе, но это состояние не связано с клеточным составом и не влияет на результаты миелограмм. Также характерен цвет костного мозга трубчатых костей, чаще он желтоватый из-за жирового компонента, который является необходимым составляющим компонентом для жизнеобеспечения костного мозга. Утверждение, что костный мозг трубчатых костей перерождается в жировую ткань, является сомнительным, так как в процессе исследования костного мозга пациентов различного возраста, выявлено, что даже у 25-летнего больного, которому произведена ампутация конечности в связи с отморожением стопы, костный мозг имеет такой же процент жировой ткани, как и пожилые пациенты старше 70 лет. При исследовании костного мозга определяется неоднородность по наличию «островков кроветворения». В одних случаях их нет вообще, у других присутствуют единичные. Костный мозг трубчатых костей крайне редко бывает красноватого цвета, что позволяет предположить низкий уровень кроветворной функции. При подсчете миелограммы желтого костного мозга следует отметить следующее: недифференцированные бласты, миелобласты и промиелоциты в пределах от 0,1% до 1,4%. Содержание миелоцитов возрастает от 8,0% до 31,4%. Количество метамиелоцитов, палочкоядерных и сегментоядерных нейтрофилов в пределах нормы. В целом клетки нейтрофильного ряда количественно составляют от 64,0% до 78,6%. Крайне низкое число клеток эозинофильного ряда от 0,1% до 3,0%. Содержание клеток эритроидного ряда незначительно снижено от 7,0% до 18,0%. Лейко-эритробластное соотношение имеет свои особенности и равно от 5:1 до 10:1. Индекс созревания эритробластов равен 1,0. Отмечается полное отсутствие тромбоцитов и мегакариоцитов. Во всех исследованных образцах (10) отмечалась нормальная клеточность костномозгового материала и в 2 случаях клеточность была снижена. Состав костного мозга полиморфный. Тип эритропоэза нормобластический. Гранулоцитарный росток в норме или расширен. Созревание нейтрофилов не нарушено. Эритроидный росток во всех случаях угнетен. Белый росток гиперплазирован.
Заключение: Полученные данные следует считать нормой для желтого костного мозга. Исследование особенностей желтого костного мозга, взятого из бедренной кости (в случае ампутации конечности) может быть использовано для более полного понимания процессов иммуногенеза, происходящих в организме. В последнее десятилетие резко повысился интерес к изучению стволовых клеток, что невозможно без тонкого изучения костного мозга, как красного, так и желтого в целом. Понимание процессов происходящих в микроокружении стволовых клеток, находящихся в костном мозге, даст нам возможность влиять на функциональное состояние этих клеток и управлять ими.
Данная работа выполнена при поддержке Красноярского краевого фонда поддержки научной и научно-технической деятельности.
Рецензенты:
Сухоруков А.М., д.м.н., проф. ФГБНУ «НИИ МПС» г. Красноярск;
Черданцев Д.В., д.м.н., проф., заведующий кафедрой и клиникой хирургических болезней им. проф. А.М. Дыхно с курсом эндоскопии и эндохирургии КрасГМУ, г. Красноярск.
Стволовые клетки костного мозга
Историческая справка
В 1908 году на съезде гематологов в Берлине петербургский ученый Александр Максимов ввел понятие «стволовые клетки», таким образом, он создал теорию, согласно которой все клетки крови происходят из одной «стволовой» клетки. Стволовые клетки костного мозга являются предшественниками тканей человека.
Позже, в конце 60-х годов советский ученый, профессор А.Я. Фриденштейн обнаружил отличные от других стволовые клетки (мезенхимальные), которые в настоящее время активно изучаются и находят широкое применение в востановительной медицине. Он первым начал изучать их свойства в своей лаборатории. Эти клетки до сих пор вызывают интерес среди ученых всего мира.
Основные типы стволовых клеток
Клиническое применение эмбриональных СК сопровождается большим риском их онкогенной трансформации. При применении фетальных СК возможен риск вирусного и бактериального загрязнения.
Такие риски отсутствуют при применении «взрослых» стволовых клеток.
В развитых странах эмбриональные и фетальные стволовые клетки запрещены к использованию в клинической практике.
Основные источники «взрослых» стволовых клеток
Стволовые клетки костного мозга человека
В костном мозге существует два типа СК: гемопоэтические, дающие начало всем клеткам крови, и мезенхимальные (МСК), являющиеся клетками предшественниками тканей человека, развивающихся из мезодермы. Эти клетки (МСК) находятся во всех органах и системе человека в небольшом количестве, но наибольшая концентрация этих клеток находится в костном мозге. В культуре они могут воспроизводить сами себя, не превращаясь в клетки других тканей, так как остаются «изначальными».
Как они работают
С возрастом количество МСК в костном мозге снижается, активность этих стволовых клеток заметно уменьшается, соответственно, наступает процесс старения организма. Возникает необходимость активизировать собственные ресурсы организма, и поэтому требуется введение собствтенных или донорских МСК. Они находят пораженные места в организме и начинают активно восстанавливать пораженные ткани и органы. Внутривенное введение МСК в больших дозах (250 — 400 млн) оказывает мощное лечебное воздействие на весь организм, при этом эффект сохраняется длительное время.
У всех пациентов с различной патологией, которым была произведена высокодозная терапия МСК, были получены только положительные результаты.
Применение именно взрослых МСК для лечения заболеваний человека поддерживают Московская Патриархия и Ватикан.
Приоритетные направления нашей деятельности
О технологии
Медицинская технология получения высококачественных мезенхимальных стволовых клеток (МСК) основана на размножении в культуре при строго определенных условиях чистой популяции МСК в большом количестве (100 — 500 млн) из малого исходного количества костного мозга (0,5 — 1,0 мл), получаемого при пункции грудины или подвздошной кости, у пациентов любого возраста. Получаемое количество МСК достаточно для проведения эффективной терапии (локальной, внутривенной).
Медицинская технология предназначена для использования МСК в фундоментальных и научно-прикладных исследованиях (в том числе восстановительная медицина). Преимущество данной технологии перед другими заключается в том, что костный мозг человека является универсальным источником получения МСК, которые, в отличии от стволовых клеток, получаемых из других источников (эмбриональные, фетальные), являются безопасными при их применении в медицинской практике.
Безопасность и эффективность высокодозной внутривенной трансплантации МСК костного мозга человека проверена в эксперименте в клинике.
Области применения МСК
Наиболее перспективными направлениями клинического применения МСК и клеточных продуктов являются:
Ревитализация: омоложение человеческими стволовыми клетками
Достижения в области клеточной медицины вызвал настоящий бум в области геронтологии. Ревитализация (восстановление организма)- новое направление, способствующее замедлению старения и предупреждению развития хронических заболеваний, характерных для пожилого возраста и приводящих к преждевременному изнашиванию организма. После 40 лет начинается прогрессирующее снижение метаболизма и развития атрофических процессов в органах и тканях. Запускается процесс старения. Снижается эффективность физиологической регенерации органов и тканей, накапливается все больше поломок. Эти процессы чаще наблюдаются в артериях и тканях опорно-двигательного аппарата.
Новый принцип ревитализации это введение стволовых клеток, приводящих к обновлению всех органов и тканей к предупреждению развития многих заболеваний, в том числе и онкологических, улучшению общего самочувствия и сохранению хорошего внешнего вида.
У людей с заболеванием сердца и сосудов в крови снижено количество циркулирующих стволовых клеток по сравнению со здоровыми людьми. Ученые полагают, что эти люди «израсходовали» данные клетки или же имеют недостаточное их производство из-за генетических факторов.
Снижение количества собственных стволовых клеток может корректироваться путем их дополнительного введения. Поэтому одним их приоритетных направлений медицинской науки стало использование стволовых клеток для реставрации тканей, разрушенных разными заболеваниями.
Введение стволовых клеток оказывает выраженный омолаживающий и оздоравливающий эффект. Биологический возраст человека снижается. Сначала регулируется работа эндокринной системы, печени, почек и других важных органов, происходит восстановление их функций.
В дальнейшем нормальная работа внутренних органов обеспечивает красивую внешность, здоровую кожу, хорошее настроение, повышение сексуальной активности. Надо отметить, что у лиц старше 70 лет, своих стволовых клеток не очень много и они приобретают признаки клеточного старения и генетического изменения. Использование донорских молодых стволовых клеток, заряженных энергией жизни, целесообразнее использовать лицам пожилого возраста. При этом, обновляются стареющие биологические структуры и реально продлевается жизнь.
Эффект от введения стволовых клеток по данным специалистов:
Банк мезенхимальных стволовых клеток
В структуре лаборатории имеется банк стволовых клеток костного мозга человека.
У пациента или донора производится забор малого количества (0,5-1 мл) костного мозга из грудины или подвздошной кости, что представляет собой обычную процедуру, проводимую во многих медицинских учреждениях в диагностических целях. Из полученного пунктата выделяют стволовые клетки и культивируют до количества (400-500 млн чистой популяции МСК), достаточного и для проведения эффективной терапии, и для последующего замораживания, и хранения.
Банк МСК из костного мозга человека позволяет использовать аутологичные клетки для последующих трансплантаций без повторной пункции костного мозга.
Красный костный мозг содержится в
Цель исследования
Оценка особенностей миелограммы костного мозга трубчатых костей.
Материалы и методы
Препараты для подсчета миелограммы делались из разных участков костного мозга трубчатых костей, чаще всего использовались ткани, прилежащие к эндосту. В ходе микроскопического исследования производили дифференцированный подсчет клеток желтого костного мозга в предварительно окрашенных и зафиксированных мазках. Красный костный мозг у взрослого человека располагается в ячейках губчатого вещества плоских и коротких костей, эпифизов длинных костей, желтый костный мозг заполняет костномозговые полости диафизов длинных (трубчатых) костей. У взрослого человека красный костный мозг содержится только в ячейках губчатого вещества плоских костей (грудине, крыльях подвздошных костей), в губчатых костях и эпифизах трубчатых костей. В диафизах, т. е. в костномозговых полостях, находится желтый костный мозг. В обычной медицинской практике необходимость в миелограмме появляется, как правило, в случае диагностики заболеваний крови и при лучевой терапии по разным показаниям. Клеточный состав костного мозга оценивается по результатам исследования пунктата грудины или подвздошной кости [2], полученного с помощью иглы И.А. Кассирского. Для диагностики гипопластических состояний, выявления лейкозных инфильтратов и раковых метастазов, а также миелодиспластического синдрома и некоторых видов костной патологии используют трепанобиопсию подвздошной кости, которую проводят с помощью специального троакара [4]. Потребности в получении костного мозга из трубчатых костей нет, тем более что пункция трубчатых костей невозможна из-за высокой прочности кортикального слоя. В процессе хирургической практики создаются ситуации, когда костный мозг трубчатых костей доступен без каких-либо специальных манипуляций (например, при ампутации нижних конечностей при критических ишемиях, травматических повреждениях, сопровождающихся необходимостью ампутации конечности). При оперативном вмешательстве на трубчатой кости во время ампутации забор костного мозга из конечности, которая подлежит удалению, становится процедурой доступной и легкой. Костный мозг, полученный из трубчатой кости, во время операции может быть использован для подсчета миелограмм.
Результаты исследования
Заключение
Рецензенты:
Селедцов В.И., д.м.н., профессор, директор центра медицинских биотехнологий Балтийского федерального университета им. И. Канта, г. Калининград;
Булычева Т.И., д.м.н., профессор, ФГБУ ГНЦ МЗ РФ, г. Москва.
Красный костный мозг содержится в
К системе реактивности организма человека принадлежат органы, осуществляющие восприятие всех внешних и внутренних сигналов, их анализ и адекватную конкретной обстановке регуляцию жизнедеятельности, а также интеграцию функций органов и систем организма. Систему реактивности представляют органы иммунной защиты, эндокринные железы, нервная система с ее периферическим сенсорным аппаратом. Эти три части организма объединяются в единую нейро-эндокринно-иммунную систему, поскольку их деятельность взаимно согласована и зависима. Так, нейропептиды, синтезируемые эндокринными нейронами, влияют на активность иммунокомпетентных клеток, а биологические активные вещества иммунокомпетентных клеток оказывают влияние на клетки и ткани, сходные с таковыми для гормонов эндокриноцитов и пептидов нейронов.
Иммунный комплекс органов
Иммунный комплекс органов включает вилочковую железу (тимус), лимфатические узлы, селезенку, лимфоидные образования в стенке пищеварительного тракта и в других органах и красный костный мозг, где развиваются все клетки крови, в том числе осуществляющие иммунный надзор.
Несмотря на топографическую разобщенность, эти органы вместе с кровью и лимфой образуют единую в функциональном отношении систему, обеспечивающую поддержание процессов кроветворения и иммунной защиты. Органы кроветворения представляют собой открытую систему с постоянным перемещением клеток крови.
Различают центральные и периферические органы кроветворения и иммуногенеза. К центральным органам относят красный костный мозг и вилочковую железу. К периферическим кроветворным и иммунным органам принадлежат лимфатические узлы, селезенка, миндалины и другие лимфоидные образования в составе слизистных оболочек органов.
Красный костный мозг
Красный костный мозг — центральный гемопоэтический орган. В нем находится основная часть стволовых кроветворных клеток и происходит развитие клеток миелоидного и лимфоидного рядов, осуществляется антигеннезависимая дифференцировка В-лимфоцитов (рис. 108).
В эмбриогенезе человека костный мозг появляется впервые на 2-3-м месяцах в плоских костях и позвонках, на 4-м месяце — в трубчатых костях конечностей. Различают красный костный мозг и желтый костный мозг. Красный костный мозг находится в эпифизах трубчатых костей, в губчатом веществе плоских костей, в лопатках, грудине, позвонках, костях черепа. Несмотря на такое рассредоточение, функционально он тесно взаимосвязан благодаря постоянной миграции клеток и наличию общих механизмов регуляции процессов кроветворения.
Масса костного мозга 1,6-3,7 кг, что составляет 3-6% от массы тела. Красный костный мозг имеет темно-красный цвет. Консистенция его полужидкая. Это позволяет делать из него тонкие мазки, изучение которых имеет большое диагностическое значение в клинике.
Строма красного костного мозга образована костными перекладинами, идущими от эндоста. Между ними располагается ретикулярная ткань. Последняя состоит из трехмерной сети гетероморфных ретикулярных клеток фибробластического вида (фибробласты костного мозга). Они вырабатывают межклеточное вещество, включающее ретикулярные волокна и амфорный компонент с большим содержанием гликозаминогликанов, ростовые факторы (интерлейкины). Кроме ретикулярных клеток к стромальным клеточным элементам относятся остеобласты, входящие в состав эндоста и способные влиять на пролиферацию гемопоэтических клеток, адвентициальные — малодифференцированные клетки, сопровождающие кровеносные сосуды, жировые клетки. Все эти клетки развиваются в результате дивергентной дифференцировки стромальной стволовой клетки и играют роль микроокружения для развивающихся клеток крови.
Строма красного костного мозга пронизана кровеносными сосудами микроциркуляторного русла. В основном это капилляры синусоидного типа с диаметром около 30 мкм.
В петлях ретикулярной ткани красного костного мозга расположено множество кроветворных клеток (в том числе стволовых кроветворных, клеток-предшественников миело- и лимфопоэза, клеток гранулоцитарного, эритроцитарного, лимфоцитарного, моноцитарного и тромбоцитарного рядов на различных стадиях дифференцировки).
Количество стволовых кроветворных клеток в красном костном мозге наибольшее по сравнению с другими кроветворными органами (50 на 105 клеток). Концентрация стволовых кроветворных клеток вблизи эндоста в 3 раза больше, чем в других участках костного мозга. Именно здесь наиболее интенсивно идет кроветворение, что связывается с выработкой остеобластами интерлейкинов и повышенным содержанием кальция.
Развивающиеся клетки крови располагаются в красном костном мозге группами (островками, «гнездами»), представляющими собой диффероны, или гистогенетические ряды клеточной дифференцировки. Эритробласты находятся вблизи макрофагов, содержащих железо фагоцитированных эритроцитов, и получают от них железо, необходимое для построения гемоглобина. Созревающие гранулоциты образуют островки, подобно эритроидным клеткам, с тем, однако, отличием, что они не имеют связи с макрофагами.
Клетки тромбоцитарного ряда (мегакариобласты и мегакариоциты) локализуются преимущественно вблизи кровеносных синусоидов. Отростки цитоплазмы мегакариоцитов при этом проникают через поры в стенке синусоидов внутрь сосудов, и от них отделяются фрагменты цитоплазмы в виде кровяных пластинок (тромбоцитов). Последние тут же поступают в кровоток.
В красном костном мозге обычно вокруг кровеносных сосудов встречаются небольшие группы лимфоцитов и моноцитов. Среди множества кровяных клеток в красном костном мозге больше всего зрелых клеточных форм или близких к состоянию зрелости (эритробластов, метамиелоцитов и др.). В случае необходимости, например, при кровопотере, они могут быстро завершить дифференцировку и перейти в кровоток. В нормальных условиях через стенку синусоидных капилляров могут проникать лишь зрелые формы клеточных дифферонов.
Желтый костный мозг расположен в диафизах трубчатых костей. Он представлен преимущественно жировой тканью. В жировых клетках содержится пигмент липохром, имеющий желтый цвет. Желтый костный мозг рассматривается как кроветворный резерв, и в случае больших кровопотерь он начинает функционировать как кроветворный орган. Желтый и красный костный мозг — это два функциональных состояния одного кроветворного органа.
Красный костный мозг очень чувствителен к действию радиации, интоксикаций бензолом, толуолом и другими ядами. Особенно уязвимы при этом «бластные» клеточные формы. Происходит опустошение костного мозга и в результате остается лишь ретикулярная строма. Отмечаются выраженные изменения костного мозга, связанные с превращением миелоидной ткани в жировую, а в старческом возрасте — в слизистую, желатинозную ткани.
Регенерация. Костный мозг обладает высокой регенерационной способностью. После удаления части костного мозга или после облучения ионизирующей радиацией происходит его восстановление за счет заселения костного мозга циркулирующими в крови стволовыми клетками. Необходимым условием при этом является сохранение жизнеспособности стро-мальных клеток. В клинике широко применяют различные методы трансплантации костного мозга.


