Молекулярная биология что это кратко

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ, изучает явления жизни на уровне макромолекул (гл. обр. белков и нуклеиновых к-т) в бесклеточных структурах (рибосомы и др.), в вирусах, а также в клетках. Цель молекулярной биологии-установление роли и механизма функционирования этих макромолекул на основе знания их структуры и св-в.

По истокам своего развития молекулярная биология неразрывно связана с м о л е к у л я р н о й г е н е т и к о й (наука, изучающая струк-турно-функцион. организацию генетич. аппарата клеток и механизма реализации наследств. информации), к-рая продолжает составлять важную часть молекулярной биологии, хотя и сформировалась уже в значит. мере в самостоят. дисциплину. Именно в этой области были достигнуты результаты, к-рые способствовали развитию молекулярной биологии и восприятию ее принципов.

Исследование механизма биосинтеза белка позволило установить т. наз. центр. постулат, характеризующий движение генетич. информации: ДНК—> матричная рибонуклеи-новая кислота (мРНК) —> белок (существование мРНК впервые предсказано Белозерским и А. С. Спириным в 1957). Согласно этому постулату, белок представляет собой своего рода информац. клапан, препятствующий возвращению информации на уровень РНК и ДНК.

X. Маттеи, С. Очоа и Кораной в 1961-65) позволило установить соотношение последовательности нуклеотидов в нуклеиновых к-тах с последовательностью аминокислот в белках. Регуляция синтеза белка наиб. изучена на уровне транскрипции. Для объяснения механизма регуляции важное значение имеет концепция оперона (совокупность связанных между собой генов и прилегающих к ним регуляторных участков), разработанная Жакобом и Ж. Моно в 1959, открытие белков-репрессоров (подавляют транскрипцию гена; см. Регуляторные белки), аллостерич. регуляции (изменение скорости транскрипции в зависимости от активности ферментов, участвующих в этом процессе) и регуляции по принципу обратной связи (см. также Регуляторы ферментов).

К сер. 60-х гг. 20 в. утвердилось представление об универсальности осн. черт строения и ф-ции гена как сложной линейной структуры ДНК, к-рый в результате транскрипции и послед. трансляции определяет первичную структуру по-липептидной цепи.

Для проведения исследований в молекулярной биологии широко используют физ.-хим. методы и биол. эксперименты. Применяют разл. виды хроматографии, ультрацентрифугирование, рентгено-структурный анализ, электронную микроскопию, ЭПР, ЯМР и изотопные индикаторы, используют также син-хротронное (магнитно-тормозное) излучение, дифракцию нейтронов, мёссбауэровскую спектроскопию и лазерную технику. В экспериментах широко применяют модельные системы «ин витро» и мутагены.

Важное практич. значение молекулярная биология играет в развитии с. х-ва (направленное и контролируемое изменение наследств. аппарата животных и растений для получения высокопродуктивных пород и сортов), микробиол. пром-сти (см., напр., Микробиологический синтез), в развитии теоретич. основ разл. разделов медицины. Актуальные проблемы молекулярной биологии-исследование мол. механизмов злокачественного роста клеток, поиск способов предупреждения наследств. заболеваний, познание механизмов памяти, дальнейшее изучение механизмов действия ферментов, гормонов, лек. и токсич. в-в.

===
Исп. литература для статьи «МОЛЕКУЛЯРНАЯ БИОЛОГИЯ» : Кольцов Н. К., Наследственные молекулы, «Бюллетень Московского общества испытателей природы», отдел биологический, 1965, т. 70, в. 4, с. 75-104; Энгельгардт В. А., Молекулярная биология, в кн.: Развитие биологии в СССР, М., 1967; Белозерский А. Н., Молекулярная биология-новая ступень познания природы, М., 1970; Баев А. А., Химические основы жизни, в кн.: Октябрь и наука, под ред. А. П. Александрова и др., М., 1977, с. 417-36; Уотсон Дж., Молекулярная биология гена, пер. с англ., М., 1978; Зенг-буш П., Молекулярная и клеточная биология, пер. с нем., т. 1-3, М., 1982; Молекулярная биология. Структура и биосинтез нуклеиновых кислот, под ред. А. С. Спирина, М., 1990. А. А. Баев, А. Д. Мирзабеков.

Страница «МОЛЕКУЛЯРНАЯ БИОЛОГИЯ» подготовлена по материалам химической энциклопедии.

Источник

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ позднелат. molecula, уменьшительное от лат. moles масса; биология) — медико-биологическая наука, изучающая явления жизни на уровне биологических макромолекул — белков и нуклеиновых кислот, таких простых систем, как бесклеточные структуры, вирусы и, как предел, — на уровне клетки. Большая часть таких объектов является неживой или наделенной элементарными проявлениями жизни. Положение М. б. в системе биол, наук определяется представлениями о структурных уровнях живой материи, т. е. эволюционно сложившихся формах жизни, начинающихся с пребиотических ступеней и кончающихся сложными системами: малые органические молекулы — макромолекулы — клетка и субклеточные структуры — организм и т. д., соответственно к-рым строятся и уровни познания. Исторически М. б. сформировалась в результате исследования биологических макромолекул, в силу чего М. б. рассматривается как раздел биохимии (см.). М. б. является вместе с тем пограничной наукой, возникшей на стыке биохимии, биофизики (см.), органической химии (см.), цитологии (см.) и генетики (см.). Идея М. б. заключается в раскрытии элементарных механизмов основных процессов жизнедеятельности — наследственности (см.), изменчивости (см.), движения и др.— через исследование биол, макромолекул. Молекулярно-биол. представления нашли благодатную почву особенно в генетике — возникла молекулярная генетика (см.), и именно здесь были достигнуты результаты, к-рые способствовали развитию М. б. и признанию ее принципов. Представления М. б. имеют эвристическую (познавательную) ценность, т. к. на всех уровнях развития живой материи существуют и действуют биол, макромолекулы — белки (см.) и нуклеиновые кислоты (см.). По этой причине границы М. б. трудно определимы: она оказывается всепроникающей наукой.

Само название «молекулярная биология» принадлежит англ. кристаллографу Астбери (W. Т. Astbury). Формальной датой возникновения М. б. считают 1953 г., когда Дж. Уотсон и Ф. Крик установили структуру ДНК и высказали подтвердившееся позже предположение о механизме ее репликации, лежащей в основе наследственности. Но по крайней мере с 1944 г., начиная с работ Эйвери (О. Th. Avery), накапливались факты, указывавшие на генетическую роль ДНК; Н. К. Кольцов высказал идею о матричном синтезе в весьма ясной форме еще в 1928 г.; изучение молекулярных основ мышечного сокращения началось с работ В. А. Энгельгардта и М. Н. Любимовой, опубликованных в 1939—1942 гг. М. б. развивалась также в сфере эволюционного учения и систематики. В СССР инициатором изучения нуклеиновых к-т и исследований по молекулярным основам эволюции был А. Н. Белозерский.

Отличительная черта М. б. состоит в характере наблюдений, в ее методических приемах и построении эксперимента. М. б. заставила биологов по-новому взглянуть на материальную основу жизнедеятельности. Для молекулярно-биол. исследований характерно сопоставление биол, функций с хим. и физ. характеристиками (свойствами) биополимеров и в особенности с их пространственным строением.

Для понимания закономерностей строения нуклеиновых к-т и их поведения в клетке важнейшее значение имеет принцип комплементарности оснований в двухтяжевых структурах нуклеиновых к-т, установленный в 1953 г. Дж. Уотсоном и Ф. Криком, Признание значения пространственных отношений нашло свое выражение в представлении о комплементарности поверхностей макромолекул и молекулярных комплексов, составляющей необходимое условие проявления слабых сил, действующих лишь на коротких дистанциях и способствующих созданию морфол, разнообразия биол. структур, их функциональной подвижности. Эти слабые силы участвуют в образовании комплексов типа фермент — субстрат, антиген — антитело, гормон — рецептор и т. п., в явлениях самосборки биол, структур, напр, рибосом, в образовании пар азотистых оснований в молекулах нуклеиновых к-т и в тому подобных процессах.

М. б. направила внимание биологов на простые, стоящие у границ жизни объекты, ввела в арсенал биол, исследований идеи и точные методы химии и физики. Мутационный процесс получил истолкование на молекулярном уровне как выпадение, вставка и перемещение отрезков ДНК, замена пары азотистых оснований в функционально значимых отрезках генома (см. Мутация). Явления мутагенеза (см.) были, т. о., переведены на хим. язык. Благодаря методам М. б. были раскрыты молекулярные основы таких генетических процессов у прокариотов, как рекомбинация (см.), трансдукции (см.), трансформация (см.), трансфекция, сексдукция. Достигнуты значительные успехи в изучении строения хроматина и хромосом эукариотов; усовершенствование методов культивирования и гибридизации животных клеток создало возможность развития генетики соматических клеток (см.). Регуляция репликации ДНК нашла свое выражение в представлении о репликоне Ф. Жакоба и Бреннера (S. Brenner).

В области биосинтеза белка был установлен так наз. центральный постулат, характеризующий следующее движение генетической информации: ДНК —> информационная РНК —> белок. Согласно этому постулату, белок является своего рода информационным клапаном, препятствующим возвращению информации на уровень РНК и ДНК. В процессе развития М. б. в 1970 г. Темином (H. Temin) и Балтимором (D. Baltimore) было открыто явление обратной транскрипции (в природе синтез ДНК происходит у онкогенных РНК-содержащих вирусов с помощью специального фермента — обратной транскриптазы). Синтезы белков и нуклеиновых к-т происходят по типу матричных синтезов, для их протекания необходима матрица (шаблон) — исходная полимерная молекула, к-рая предопределя-ет последовательность нуклеотидов (аминокислот) в синтезируемой копии. Такими матрицами при репликации и транскрипции является ДНК и при трансляции — информационная РНК. Генетический код (см.) формулирует способ «записи» наследственной информации в информационной РНК, другими словами, он согласует последовательность нуклеотидов в нуклеиновых к-тах и аминокислот в белках. С биосинтезом белка связана транскрипция — синтез информационных РНК на матрице ДНК, катализируемый РНК-полимеразами; трансляция — синтез белка на связанной с рибосомой информационной РНК, протекающий по весьма сложному механизму, в к-ром участвуют десятки вспомогательных белков и транспортные РНК (см. Рибосомы). Регуляция белкового синтеза наиболее изучена на уровне транскрипции и сформулирована в представлении Ф. Жакоба и Моно (J. Monod) об опероне, белках-репрессорах, аллостерическом эффекте, позитивной и негативной регуляции. Разнородным по своему содержанию и еще менее завершенным, чем предыдущие, разделом М. б. является целый ряд проблем фундаментального и прикладного характера. К ним относится репарация повреждений генома, причиненных коротковолновой радиацией, мутагенами (см.) и другими влияниями. Большую самостоятельную область составляют исследования механизма действия ферментов, основанные на представлениях о трехмерной структуре белков и роли слабых хим. взаимодействий. М. б. выяснила многие детали строения и развития вирусов, в особенности бактериофагов. Изучение гемоглобинов у лиц, страдающих серповидно-клеточной анемией (см.) и другими гемоглобинопатиями (см.), положило начало изучению структурной основы «молекулярных болезней», врожденных «ошибок» метаболизма (см. Наследственные болезни). Самая поздняя ветвь М. б.— генная инженерия (см.) — разрабатывает методы конструирования наследственных структур в виде молекул рекомбинантных ДНК.

Для развития М. б. в СССР большое значение имело постановление ЦК КПСС и Совета Министров СССР «О мерах по ускорению развития молекулярной биологии и молекулярной генетики и использованию их достижений в народном хозяйстве», опубликованное 20 мая 1974 г. Исследования координируются Межведомственным научно-техническим советом по проблемам молекулярной биологии и молекулярной генетики при ГКНТ Совета Министров СССР и АН СССР, Научным советом по проблемам молекулярной биологии АН СССР, аналогичными советами АН союзных республик и отраслевых академий. Издается журнал «Молекулярная биология» (с 1967 г.) и реферативный журнал с тем же названием. Исследования по М. б. ведутся в ин-тах АН СССР, АМН СССР, республиканских академий наук, Главмикробиопрома, в высших учебных заведениях страны. В социалистических странах работают многие лаборатории такого профиля. В Европе действуют Европейская молекулярно-биологическая организация (ЕМБО), Европейская молекулярно-биологическая лаборатория (ЕМБЛ) в Гейдельберге, Европейская молекулярно-биологическая конференция (ЕМБК). Работают крупные специализированные лаборатории в США, Франции, Великобритании, ФРГ и других странах.

Специальные периодические издания, посвященные проблемам М. б., за рубежом: «Journal of Molecular Biology», «Nucleic Acids Research», «Molecular Biology Reports», «Gene».

Обзоры по М. б. публикуются в серии «Молекулярная биология» ВИНИТИ, в «Progress in Nucleic Acids Research and Molecular Biology», «Progress in Biophysics and Molecular Biology», «Annual Rewiew of Biochemistry», изданиях «Cold Spring Harbor Symposia on Quantitative Biology».

Библиография: Ашмарин И. П. Молекулярная биология, Л., 1977; Белозерский А. Н. Молекулярная биология — новая ступень познания природы, М., 1970; Бреслер С. Е. Молекулярная биология, Л., 1973; Кольцов Н. К. Наследственные молекулы, Бюлл. Моск. об-ва испыт. природы, отд. биол., т. 70, в. 4, с. 75, 1965; Октябрь и наука, под ред. А.П. Александрова и др., с. 393, 417, М., 1977; Северин С. Е. Современные проблемы физико-химической биологии, в кн.: 250 лет Академии наук СССР, с. 332, М., 1977; Уотсон Дж. Молекулярная биология: гена, пер. с англ., М., 1978; Энгельгардт В. А. Молекулярная биология, в кн.: Развитие биол, в СССР, под ред. Б. Е. Быховского, с. 598, М., 1967.

Источник

История молекулярной биологии

На сегодняшний день существуют сотни тысяч доказательств генетической роли нуклеиновых кислот. Приведенные три являются классическими.

Пользователей онлайн: 0.

Молекулярная биология что это кратко. Смотреть фото Молекулярная биология что это кратко. Смотреть картинку Молекулярная биология что это кратко. Картинка про Молекулярная биология что это кратко. Фото Молекулярная биология что это кратко

Приветствую вас на своем сайте, здесь вы можете найти много полезной информации (или что-то типа того)

САЗОНОВ Вячеслав Фёдорович

доцент кафедры биологии Рязанского государственного университета имени С.А. Есенина, кандидат биологических наук. Преподаватель вуза с 1978 года.

Your browser does not support canvas.

Реклама

Поиск

Притча наудачу:

На сайте введена регистрация через социальные сети, если вы хотите оставлять комментарии без потверждения, пожалуйста, воспользуйтесь именно этим типом аутентификации.

Если у вас уже есть аккаунт на сайте, вы можете привязать его к любой социальной сети? зайдя в настройки вашего аккаунта(«Мои учётные данные») ниже и воспользовавшись вкладкой «Подключение к социальным сетям».

После того, как вы зайдёте при помощи аккаунта в социальной сети, ваши возможности на сайте возрастут.

Поддержка сайта

Вы можете поддержать сайт не только добрым словом, но и материально!

Это очень поможет. IT-специалисты, следящие за сайтом день и ночь, хотя бы лишнюю чашечку кофе выпьют.

Для этого по своему желанию перечислите любую сумму на карту Сбербанка номер:

Источник

Молекулярная биология

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ, раздел биологии, изучающий структуры и процессы, свойственные живым организмам, на уровне молекул. Молекулярная биология стремится объяснить важнейшие явления жизнедеятельности (наследственность, изменчивость, рост, развитие, движение, обмен веществ и энергии, чувствительность, иммунитет и др.) строением, свойствами и взаимодействием входящих в состав организмов химических веществ. В любом организме в каждый момент его существования проходит огромное число биохимических реакций, в которых участвуют молекулы большие и малые, простые и сложные, органические и неорганические. Все эти реакции строго упорядочены и, в зависимости от условий и потребностей организма, подвергаются настройке и регулировке. Решающая роль в организации этих процессов принадлежит двум классам больших молекул – белкам и нуклеиновым кислотам. Эти биополимеры и служат главным объектом исследования в молекулярной биологии.

С самого начала молекулярная биология развивалась как научная область, родственная прежде всего биохимии и биофизике, а также генетике, микробиологии, вирусологии. В 30—40-е гг. 20 в. для установления пространственной структуры важнейших белков стали применять рентгеноструктурный анализ, сыгравший впоследствии решающую роль и в установлении строения ДНК. Внедрение в эти годы в биологию методов и идей физики и химии заложило основы для развития «молекулярного» направления. Во многом его будущие успехи предопределил интерес физиков и химиков к проблеме наследственности. В 1944 г. вышла книга одного из создателей квантовой механики Э. Шрёдингера «Что такое жизнь? С точки зрения физика», содержавшая краткое изложение основ генетики. Многими представителями точных наук эта работа была воспринята как призыв сосредоточить усилия на решении загадки «вещества наследственности».

Через 9 лет Дж. Уотсон и Ф. Крик решили эту задачу. Ко времени выхода в свет их статьи (апрель 1953 г.), в которой предлагалась модель молекулы ДНК (т. н. двойная спираль), принято относить рождение молекулярной биологии. Модель Уотсона – Крика ярко выражала главную направленность новой науки: биологические функции макромолекулы можно было объяснить её структурой (см. Дезоксирибонуклеиновые кислоты). При этом молекулярный уровень (двухцепочные ДНК) логично увязывался с субклеточным (репликация хромосом), клеточным (митоз, мейоз) и организменным (наследование признаков).

Близкий подход встречался и в более ранних работах. Ещё в 1927 г. Н.К. Кольцов высказал гипотезу о «наследственных молекулах», способных воспроизводиться путём матричного синтеза, а В.А. Энгельгардту в 1939 г. удалось связать строение мышечных белков с их ролью в мышечном сокращении. Однако только после «двойной спирали» началось бурное развитие молекулярной биологии, ставшей лидером естествознания. Помимо многочисленных конкретных достижений (расшифровка генетического кода, раскрытие механизмов биосинтеза белка, пространственной структуры ферментов и других белков, строения и роли в клеточных процессах биологических мембран и т. д.), молекулярная биология выявила некоторые общие принципы, на основе которых осуществляются самые различные биологические процессы. Так, комплементарность взаимодействующих молекул (их взаимодополняемость, взаимное соответствие как «ключа и замка»), приводящая к образованию нековалентных химических связей между ними, лежит в основе процессов, требующих биологической специфичности (избирательности, «узнавания»), начиная от синтеза ДНК и белков и кончая образованием комплексов между ферментом и субстратом, антителом и антигеном, самосборкой вирусных частиц и цитоскелета. Точно так же принцип матричного синтеза используется клетками не однократно, а на разных этапах реализации генетиче-ской информации.

В апреле 2003 г. учёными всего мира отмечался полувековой юбилей «двойной спирали» и молекулярной биологии. В нашей стране фундамент для развития этого направления заложен трудами академиков В.А. Энгельгардта (1894–1984), А.Н. Белозерского (1905–1972), А.А. Баева (1903/04—1994).

Источник

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ

М. б.- новая область естествознания, тесно связанная с давно сложившимися направлениями исследований, которые охватываются биохимией, биофизикой и биоорганической химией. Разграничение здесь возможно лишь на основе учёта применяемых методов и по принципиальному характеру используемых подходов.

Фундамент, на к-ром развивалась М. б., закладывался такими науками, как генетика, биохимия, физиология элементарных процессов и т. д. По истокам своего развития М. б. неразрывно связана с молекулярной генетикой, к-рая продолжает составлять важную часть М. б., хотя и сформировалась уже в значит, мере в самостоят, дисциплину. Вычленение М. б. из биохимии продиктовано след, соображениями. Задачи биохимии в основном ограничиваются констатацией участия тех или иных химич. веществ при определённых биологич. функциях и процессах и выяснением характера их превращений; ведущее значение принадлежит сведениям о реакционной способности и об осн. чертах химич. строения, выражаемого обычной химич. формулой. Т. о., по существу, внимание сосредоточено на превращениях, затрагивающих главновалентные химич. связи. Между тем, как было подчёркнуто Л. Полингом, в биологич. системах и проявлениях жизнедеятельности осн. значение должно быть отведено не главно-валентным связям, действующим в пределах одной молекулы, а разнообразным типам связей, обусловливающих межмолекулярные взаимодействия (электростатическим, ван-дер-ваальсовым, водородным связям и др.).

Конечный результат биохим. исследования может быть представлен в виде той или иной системы химич. уравнений, обычно полностью исчерпываемой их изображением на плоскости, т. е. в двух измерениях. Отличит, чертой М. б. является её трёхмерность. Сущность М. б. усматривается М. Перуцем в том, чтобы истолковать биологические функции в понятиях молекулярной структуры. Можно сказать, что если прежде при изучении биологич. объектов необходимо было ответить на вопрос «что», т. е. какие вещества присутствуют, и на вопрос «где»-в каких тканях и органах, то М. б. ставит своей задачей получить ответы на вопрос «как», познав сущность роли и участия всей структуры молекулы, и на вопросы «почему» и «зачем», выяснив, с одной стороны, связи между свойствами молекулы (опять-таки в первую очередь белков и нуклеиновых к-т) и осуществляемыми ею функциями и, с другой стороны, роль таких отд. функций в общем комплексе проявлений жизнедеятельности.

Решающую роль приобретают взаимное расположение атомов и их группировок в общей структуре макромолекулы, их пространственные взаимоотношения. Это касается как отдельных, индивидуальных, компонентов, так и общей конфигурации молекулы в целом. Именно в результате возникновения строго детерминированной объёмной структуры молекулы биополимеров приобретают те свойства, в силу к-рых они оказываются способными служить материальной основой биологич. функций. Такой принцип подхода к изучению живого составляет наиболее характерную, типическую черту М. б.

Возникновение М. б. как сформировавшейся науки принято относить к 1953, когда Дж. Уотсоном и Ф. Криком в Кембридже (Великобритания) была раскрыта трёхмерная структура дезоксирибонук-леиновой кислоты (ДНК). Это позволило говорить о том, каким образом детали данной структуры определяют биологич. функции ДНК в качестве материального носителя наследственной информации. В принципе, об этой роли ДНК стало известно неск. раньше (1944) в результате работ амер. генетика О. Т. Эйвери с сотрудниками (см. Молекулярная генетика), но не было известно, в какой мере данная функция зависит от молекулярного строения ДНК. Это стало возможным лишь после того, как в лабораториях У. Л. Брэгга, Дж. Бернала и др. были разработаны новые принципы рентгеноструктурного анализа, обеспечившие применение этого метода для детального познания пространств, строения макромолекул белков и нуклеиновых кислот.

Три биотических потока. В свете представлений М. б. совокупность явлений жизни можно рассматривать как результат сочетания трёх потоков: потока материи, находящего своё выражение в явлениях обмена веществ, т. е. ассимиляции и диссимиляции; потока энергии, являющейся движущей силой для всех проявлений жизнедеятельности; и потока информации, пронизывающего собой не только всё многообразие процессов развития и существования каждого организма, но и непрерывную череду сменяющих друг друга поколений. Именно представление о потоке информации, внесённое в учение о живом мире развитием М. б., накладывает на неё свой специфический, уникальный отпечаток.

За сравнительно короткий срок в СССР вырос значит, отряд исследователей в области М. б.; это учёные старшего поколения, частично переключившие свои интересы из др. областей; в главной же своей массе это многочисл. молодые исследователи. Из числа ведущих учёных, принявших деятельное участие в становлении и развитии М. б. в СССР, можно назвать таких, как А. А. Баев, А. Н. Белозерский, А. Е. Браунштейн, Ю. А. Овчинников, А. С. Спирин, М. М. Шемякин, В. А. Эн-гельгардт. Новым достижениям М. б. и молекулярной генетики будет способствовать постановление ЦК КПСС и Сов. Мин. СССР (май 1974) «О мерах по ускорению развития молекулярной биологии и молекулярной генетики и использованию их достижений в народном хозяйстве».

, раздел генетики и молекулярной биологии, ставящий целью познание материальных основ наследственности и изменчивости живых существ путём исследования протекающих на субклеточном, молекулярном уровне процессов передачи, реализации и изменения генетич. информации, а также способа её хранения.

За свою недолгую историю М. г. достигла значит, успехов, углубив и расширив представления о природе наследственности и изменчивости, и превратилась в ведущее и наиболее быстро развивающееся направление генетики.

Т. о., М. г. уже выяснила в принципе вопрос о том, как записана и хранится генетич. информация, получаемая потомками от родителей, хотя расшифровка конкретного содержания этой информации для каждого отд. гена требует ещё огромной работы.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *