на что влияет разрядность кодирования звука

Акустика для «чайников»: от чего зависит качество звука

на что влияет разрядность кодирования звука. Смотреть фото на что влияет разрядность кодирования звука. Смотреть картинку на что влияет разрядность кодирования звука. Картинка про на что влияет разрядность кодирования звука. Фото на что влияет разрядность кодирования звука

на что влияет разрядность кодирования звука. Смотреть фото на что влияет разрядность кодирования звука. Смотреть картинку на что влияет разрядность кодирования звука. Картинка про на что влияет разрядность кодирования звука. Фото на что влияет разрядность кодирования звука

Качественное воспроизведение музыки Hi-Fi и High-End-устройствами способно покорить как искушенных аудиофилов, так и обычных слушателей. Но прежде чем покупать технику, нужно разобраться, какой звук нравится конкретно вам. Универсального звучания, подходящего для любого жанра и ценителя музыки, не существует. Однако есть общие критерии, которые определяют, от чего зависит качество звука, и позволяют вывести его на нужный уровень. Собрать стереосистему в домашних условиях несложно, но чтобы результат точно оправдал ожидания, можно придерживаться упрощенных рекомендаций, обычно сопровождаемых термином «акустика для чайников». Они помогут избежать лишних затрат на дорогостоящую аппаратуру, правильно подобрать компоненты системы и убедиться в их совместимости.

на что влияет разрядность кодирования звука. Смотреть фото на что влияет разрядность кодирования звука. Смотреть картинку на что влияет разрядность кодирования звука. Картинка про на что влияет разрядность кодирования звука. Фото на что влияет разрядность кодирования звука

От чего зависит качество звука

В подавляющем большинстве современных устройств для воспроизведения аудиоконтента используются цифровые технологии. Список параметров, от которых зависит качество цифрового звука, включает множество пунктов. Ниже мы отметили наиболее важные из них.

Немного теории

Чтобы строить домашнюю аудиосистему более осознанно, нужно иметь базовое представление о природе аналогового и цифрового звука. Наиболее наглядное представление о разнице между этими сигналами дает их графическое изображение. График аналоговой звуковой волны представляет собой плавную линию, похожую на синусоиду. Цифровой сигнал выглядит на изображении как ступенчатая линия. Для оцифровки аналогового (или непрерывного) звука используется АЦП – аналого-цифровой преобразователь. Процесс преобразования состоит из трех этапов. На первом исходный непрерывный сигнал становится дискретным, когда плавная линия на графике делится на точки, между которыми есть некоторый интервал. Чем меньше этот интервал, тем больше частота дискретизации, а значит – точнее повторяется исходный сигнал. На втором этапе происходит квантование полученного дискретного сигнала (присвоение каждому отрезку цифрового значения), на третьем – оцифровка (кодирование в виде последовательности 0 и 1).

Формат

Все аудиоформаты делятся на три типа.

Без сжатия. Сюда входят WAV, AIFF, CDDA и другие. Аудиотреки, записанные в этих форматах, отличаются безупречным качеством и звучанием, максимально приближенным к оригинальному. Их недостаток – большой вес: минута записи может занимать до 10 Мб.

Со сжатием без потерь (lossless). В этой категории находятся форматы FLAC, ALAC, APE. Звук в этом случае записан с сохранением качества и занимает меньше места, чем в формате без сжатия. Такие файлы гораздо удобнее хранить, например, на персональном компьютере.

Сжатие с потерями (lossy). Это форматы MP3, AAC, Ogg Vorbis, когда для уменьшения объема данных вырезают часть информации, например, о частотах, которые лежат за пределами человеческого восприятия (средний человек слышит звуки в диапазоне 20-22 000 Гц).

на что влияет разрядность кодирования звука. Смотреть фото на что влияет разрядность кодирования звука. Смотреть картинку на что влияет разрядность кодирования звука. Картинка про на что влияет разрядность кодирования звука. Фото на что влияет разрядность кодирования звука

Проигрыватель

Сегодня рынок предлагает широкий выбор проигрывателей цифровых аудиотреков. Важно четко представлять, как вы будете слушать музыку и собирать фонотеку: на плеере, компьютере, с помощью наушников или каким-либо другим способом. Т. е. что для вас наиболее удобно и приемлемо по цене. По мнению большинства экспертов, любой, даже очень качественный цифровой плеер, уступает по насыщенности передаваемого звука виниловым проигрывателям и даже катушечным магнитофонам. И тем не менее среди цифровой техники вполне можно подобрать устройство с более чем приличным звучанием. Это могут быть проигрыватель CD-дисков (такой, например, как Harman Kardon HD 990/230), домашний компьютер или портативный аудиоплеер. Использование компьютера или ноутбука в домашней стереосистеме привлекает компактностью и экономичностью. Внешний же модуль интересен тем, что исключает влияние каких-либо компьютерных помех на качество звука.

Преобразователь сигнала

Для преобразования цифрового сигнала в аналоговый потребуется ЦАП – цифро-аналоговый преобразователь. Устройство может быть встроенным в проигрыватель или представлять собой отдельный модуль. Встроенный, как правило, проигрывает по техническим характеристикам модульному. Внешний ЦАП предусматривает отдельный блок питания, интегрированный – питается от общего с проигрывателем источника. Как следствие – помехи, возникающие в проигрывающем устройстве, могут влиять на вмонтированный преобразователь. Отдельный модуль от этих рисков избавлен. Наиболее целесообразным бывает применение внешнего ЦАП при прослушивании контента, записанного в lossless-форматах. Такие записи распространяются преимущественно через интернет, и, если компьютер оснащен звуковой картой низкого класса, звучание будет посредственным. Чтобы добиться хорошего звука, к S/PDIF-выходу компьютера подключают модульный ЦАП, частота дискретизации и разрядность которого не меньше, чем у прослушиваемого трека, и равны соответственно минимум 96 кГц и 24 бита.

Усилитель

Если вы определились с форматом и типом проигрывателя, приобрели хороший ЦАП, самое время переходить к выбору усилителя – устройства, главной функцией которого является повышение уровня поступающих на него аналоговых звуковых сигналов. Усилители бывают ламповые и транзисторные. Первые дают более мягкий, переливчатый звук, вторые – более резкий и детализированный. Какой вариант подойдет именно вам, лучше определить, оценив звучание каждого из них. Как среди ламповых, так и среди транзисторных усилителей есть модели с обратной связью и без нее. Функция обратной связи сводится к исправлению искажений, вносимых в звуковой сигнал самим усилителем. При этом устранение таких искажений ведет к потере части динамического диапазона звука.

Колонки

Практика показывает, что правильно подобранные акустические системы даже в комплекте со среднего уровня усилителем могут обеспечить вполне убедительный звук. Нередко колонки становятся самым дорогостоящим компонентом стереосистемы, но эти расходы чаще всего оправданы. На рынке сегодня предлагаются акустические системы в корпусе из пластика, МДФ, ДСП, натурального дерева, оргстекла, металла и даже мрамора и гранита. По габаритам колонки делятся на полочные и напольные, конструктивно – на широкополосные и многополосные. Качество звучания домашней стереосистемы во многом зависит от мощности колонок. Этот показатель определяет, как долго акустическая система сможет звучать на максимальной громкости без искажений и хрипов. Чтобы не навредить оборудованию, нужно убедиться в том, что мощность динамиков не превышает аналогичный параметр усилителя.

на что влияет разрядность кодирования звука. Смотреть фото на что влияет разрядность кодирования звука. Смотреть картинку на что влияет разрядность кодирования звука. Картинка про на что влияет разрядность кодирования звука. Фото на что влияет разрядность кодирования звука

Кабели

Выстраивая аудиосистему, пользователь неизбежно сталкивается с проблемой выбора кабелей для соединения комплектующих, а также для подключения внешних устройств, например, микрофона. На качество получаемого звука влияет прежде всего длина используемых проводов. Рекомендуется придерживаться правила: чем короче кабель, тем лучше звучание. Все провода системы принято делить на межблочные и акустические. Первые необходимы для соединения отдельных блоков между собой, например, усилителя и ЦАП. Вторые – для подключения колонок. В зависимости от материала изготовления кабели делятся на типы:

Питание

Разбираясь в том, от каких характеристик зависит качество звучания стереосистемы, нельзя обойти стороной тему электропитания. Влияние сетевого шнура на качество цифрового звука часто недооценивается. В том, что питающий кабель действительно играет определенную роль в формировании звука, легко убедиться опытным путем. Для этого нужно попробовать разные типы проводов и оценить разницу звучания при подключении каждого из них. Помимо этого, каждый элемент системы лучше подключать отдельным кабелем и, если есть возможность, напрямую к распределительному щитку на входе в квартиру. Таким образом минимизируется влияние сетевых помех на качество звукового сигнала. Все используемые розетки должны обеспечивать надежную фиксацию штепселя. Оптимальным будет включение в систему сетевого фильтра, который стабилизирует параметры питания, а кроме того защитит аппаратуру от пиковых значений напряжения.

Источник

Сравнение 24-битного и 16-битного звука: результаты аудиотеста

Блогер Archimago немало сил потратил, чтобы ответить на вопрос: какое качество звука человек способен определять на слух? В рамках одного из его последних аудиотестов респондентов просят вслепую различить звуки с динамическим диапазоном 24 бит и 16 бит. Каждый из них скачивал несколько пар 24-битных файлов, один из которых претерпел конверсию 24-16-24 бита, то есть на практике был 16-битным файлом. Их просили определить разницу.

В тесте приняли участие 140 добровольцев (138 мужчин и 2 женщины: честная демографическая картина для аудиофилов). Средний возраст респондентов: 44 года.

Согласно анкетам, более 20% респондентов назвались музыкантами и звукоинженерами, поэтому можно сравнить результаты среди «профессионалов» и любителей, с учётом статистической погрешности.

А в композиции Bozza 52,85% пользователей ошиблись, приняв 16-битный файл за 24-битный.

на что влияет разрядность кодирования звука. Смотреть фото на что влияет разрядность кодирования звука. Смотреть картинку на что влияет разрядность кодирования звука. Картинка про на что влияет разрядность кодирования звука. Фото на что влияет разрядность кодирования звука

на что влияет разрядность кодирования звука. Смотреть фото на что влияет разрядность кодирования звука. Смотреть картинку на что влияет разрядность кодирования звука. Картинка про на что влияет разрядность кодирования звука. Фото на что влияет разрядность кодирования звука

на что влияет разрядность кодирования звука. Смотреть фото на что влияет разрядность кодирования звука. Смотреть картинку на что влияет разрядность кодирования звука. Картинка про на что влияет разрядность кодирования звука. Фото на что влияет разрядность кодирования звука

20 респондентов правильно ответили на все вопросы, а 21 человек ошибся во всех вариантах, что тоже вписывается в рамки статистического распределения.

Ещё более удивительно, что музыканты показали результат хуже среднего, даже с учётом статистической погрешности! Особенно сильно напутали в композиции Вивальди.

на что влияет разрядность кодирования звука. Смотреть фото на что влияет разрядность кодирования звука. Смотреть картинку на что влияет разрядность кодирования звука. Картинка про на что влияет разрядность кодирования звука. Фото на что влияет разрядность кодирования звука

на что влияет разрядность кодирования звука. Смотреть фото на что влияет разрядность кодирования звука. Смотреть картинку на что влияет разрядность кодирования звука. Картинка про на что влияет разрядность кодирования звука. Фото на что влияет разрядность кодирования звука

Наушники тоже вовсе не помогают отличить 16-битную музыку от 24-битной.

на что влияет разрядность кодирования звука. Смотреть фото на что влияет разрядность кодирования звука. Смотреть картинку на что влияет разрядность кодирования звука. Картинка про на что влияет разрядность кодирования звука. Фото на что влияет разрядность кодирования звука

Подводя итог. Конечно, есть приложения, в которых нужно работать именно с 24-битным звуком (тот же мастеринг). Но факт в том, что на слух 16- и 24-битный звук совершенно не различимы друг от друга. Если кто-то заявляет, что способен услышать разницу, то этот человек наверняка заблуждается.

Источник

Обработка звука

Под обработкой звука следует понимать различные преобразования звуковой информации с целью изменения каких-то характеристик звучания. К обработке звука относятся способы создания различных звуковых эффектов, фильтрация, а также методы очистки звука от нежелательных шумов, изменения тембра и т.д. Все это огромное множество преобразований сводится, в конечном счете, к следующим основным типам:

1. Амплитудные преобразования. Выполняются над амплитудой сигнала и приводят к ее усилению/ослаблению или изменению по какому-либо закону на определенных участках сигнала.

2. Частотные преобразования. Выполняются над частотными составляющими звука: сигнал представляется в виде спектра частот через определенные промежутки времени, производится обработка необходимых частотных составляющих, например, фильтрация, и обратное «сворачивание» сигнала из спектра в волну.

3. Фазовые преобразования. Сдвиг фазы сигнала тем или иным способом; например, такие преобразования стерео сигнала, позволяют реализовать эффект вращения или «объёмности» звука.

4. Временные преобразования. Реализуются путем наложения, растягивания/сжатия сигналов; позволяют создать, например, эффекты эха или хора, а также повлиять на пространственные характеристики звука.

Аналоговый и дискретный способы представления звука

Информация, в том числе графическая и звуковая, может быть представлена в аналоговой или дискретной форме.

При аналоговом представлении физическая величина принимает бесконечное множество значений, причем ее значения изменяются непрерывно.

При дискретном представлении физическая величина принимает конечное множество значений, причем ее величина изменяется скачкообразно.

на что влияет разрядность кодирования звука. Смотреть фото на что влияет разрядность кодирования звука. Смотреть картинку на что влияет разрядность кодирования звука. Картинка про на что влияет разрядность кодирования звука. Фото на что влияет разрядность кодирования звука

Примером аналогового хранения звуковой информации является виниловая пластин­ка (звуковая дорожка изменяет свою форму непрерывно), а дискретного — аудиокомпакт-диск (звуковая дорожка которого содержит участки с различной отражающей способностью).

Восприятие звука человеком

Звуковые волны улавливаются слуховым органом и вызывают в нем раздражение, которое передается по нервной системе в головной мозг, создавая ощущение звука.

Колебания барабанной перепонки в свою очередь передаются во внутреннее ухо и раздражают слуховой нерв. Так образом человек воспринимает звук.

В аналоговой форме звук представляет собой волну, которая характеризуется:

Герц (Гц или Hz) — единица измерения частоты колебаний. 1 Гц= 1/с

Человеческое ухо может воспринимать звук с частотой от 20 колебаний в секунду (20 Герц, низкий звук) до 20 000 колебаний в секунду (20 КГц, высокий звук).

на что влияет разрядность кодирования звука. Смотреть фото на что влияет разрядность кодирования звука. Смотреть картинку на что влияет разрядность кодирования звука. Картинка про на что влияет разрядность кодирования звука. Фото на что влияет разрядность кодирования звука

на что влияет разрядность кодирования звука. Смотреть фото на что влияет разрядность кодирования звука. Смотреть картинку на что влияет разрядность кодирования звука. Картинка про на что влияет разрядность кодирования звука. Фото на что влияет разрядность кодирования звука

Кодирование звуковой информации

Для того чтобы комп ьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть превращен в последовательность электрических импульсов (двоичных нулей и единиц).

на что влияет разрядность кодирования звука. Смотреть фото на что влияет разрядность кодирования звука. Смотреть картинку на что влияет разрядность кодирования звука. Картинка про на что влияет разрядность кодирования звука. Фото на что влияет разрядность кодирования звука

Качество кодирования звуковой информации зависит от :

1)частотой дискретизации, т.е. количества измерений уровня сигнала в единицу времени. Чем большее количество измерений производится за 1 секунду (чем больше частота дискретизации), тем точнее процедура двоичного кодирования.

2)глубиной кодирования, т.е. количества уровней сигнала.

Современные звуковые карты обеспечивают 16-битную глубину кодирования звука. Количество различных уровней сигнала (состояний при данном кодировании) можно рассчитать по формуле: N = 2 i = 2 16 = 65536, где i — глубина звука.

Таким образом, современные звуковые карты могут обеспечить кодирование 65536 уровней сигнала. Каждому значению амплитуды звукового сигнала присваивается 16-битный код.

Форматы звуковых файлов

РСМ. РСМ расшифровывается как pulse code modulation, что и является в переводе как импульсно-кодовая. Файлы именно с таким расширением встречаются довольно редко. Но РСМ является основополагающей для всех звуковых файлов.

RIFF. Resource Interchange File Format. Уникальная система хранения любых структурированных данных.

MOD. Файл хранит в себе короткий образец звука, который потом можно использовать в качестве шаблона для инструмента.

AIF или AIFF. Audio Interchange File Format. Данный формат распространен в системах Apple Macintosh и Silicon Graphics. Заключает в себе сочетание MOD и WAV.

MID. Файл, хранящий в себе сообщения MIDI-системе, установленной на Вашем компьютере или в устройстве.

МР3. Самый скандальный формат за последнее время. Многие для объяснения параметров сжатия, которые в нем применяют, сравнивают его с jpeg для изображений. Там очень много наворотов в вычислениях, чего и не перечислишь, но коэффициент сжатия в 10-12 раз сказали о себе сами. Специалисты говорят о контурности звука как о самом большом недостатке данного формата. Действительно, если сравнивать музыку с изображением, то смысл остался, а мелкие нюансы ушли. Качество МР3 до сих пор вызывает много споров, но для «обычных немузыкальных» людей потери не ощутимы явно.

RA. Real Audio или потоковая передача аудиоданных. Довольно распространенная система передачи звука в реальном времени через Интернет. Скорость передачи порядка 1 Кб в секунду. Полученный звук обладает следующими параметрами: 8 или 16 бит и 8 или 11 кГц.

Источник

Статьи

Аудио-кодирование: секреты раскрыты

Настройка аудио для видеозахвата и трансляции.

Как люди, непосредственно связанные с AV сферой, мы постоянно говорим об аудио-кодировании и аудиокодеках, а что же это такое? Аудиокодек – это, по сути, устройство или алгоритм, способный кодировать и декодировать цифровой аудиосигнал.

на что влияет разрядность кодирования звука. Смотреть фото на что влияет разрядность кодирования звука. Смотреть картинку на что влияет разрядность кодирования звука. Картинка про на что влияет разрядность кодирования звука. Фото на что влияет разрядность кодирования звука

На практике аудиоволны, которые передаются по воздуху, являются продолжительными аналоговыми сигналами. Сигналы преобразуются в цифровой формат устройством, которое называется аналого-цифровой преобразователь (АЦП), а устройство обратного преобразования – цифро-аналоговый преобразователь (ЦАП). Кодек находится между этими двумя функциями и именно он позволяет откорректировать некоторые важные параметры для успешного захвата, записи и трансляции звукового сигнала: алгоритм кодека, частота дискретизации, разрядность и скорость передачи данных.

на что влияет разрядность кодирования звука. Смотреть фото на что влияет разрядность кодирования звука. Смотреть картинку на что влияет разрядность кодирования звука. Картинка про на что влияет разрядность кодирования звука. Фото на что влияет разрядность кодирования звука

Три наиболее популярных аудиокодека: Pulse-Code Modulation ( PCM), MP3 и Advanced Audio Coding ( AAC ). Выбор кодека определяет степень сжатия и качество записи. PCM – кодек, который используется компьютерами, CD-дисками, цифровыми телефонами и иногда SACD-дисками. Источник сигнала для PCM сэмплируется через равные интервалы, и каждый сэмпл представляет собой амплитуду аналогового сигнала в цифровом значении. PCM – это наиболее простой вариант для оцифровки аналогового сигнала.

При наличии правильных параметров этот оцифрованный сигнал может быть полностью реконструирован обратно в аналоговый без каких-либо потерь. Но этот кодек, обеспечивающий практически полную идентичность оригинальному аудио, к сожалению, не очень экономичен, что выражается в очень больших объемах файлов, а такие файлы не подходят для потокового вещания. Мы рекомендуем использовать PCM для записи цифровых образов для ваших источников или когда вы занимаетесь постобработкой аудио.

на что влияет разрядность кодирования звука. Смотреть фото на что влияет разрядность кодирования звука. Смотреть картинку на что влияет разрядность кодирования звука. Картинка про на что влияет разрядность кодирования звука. Фото на что влияет разрядность кодирования звука

К счастью, у нас всегда есть возможность выбрать другой кодек, который может сжимать цифровые данные (по сравнению с PCM) на основании некоторых полезных наблюдений о поведении звуковых волн. Но в этом случае приходится идти на компромисс: все альтернативные алгоритмы сопряжены с «потерями», так как невозможно полностью восстановить исходный сигнал, но, тем не менее, результат всё равно хорош настолько, что большинство пользователей не смогут уловить разницу.

MP3 – это формат аудио-кодирования с использованием как раз такого алгоритма сжатия цифровых данных, который позволяет сохранять аудиосигнал в меньшие по объему файлы. Кодек MP3 чаще всего используется пользователями для записи и хранения музыкальных файлов. Мы рекомендуем применять MP3 для трансляций аудио-контента, так как ему требуется меньшая пропускная способность сети.

AAC – это более новый алгоритм кодирования аудиосигнала, ставший «преемником» MP3. AAC стал стандартом для форматов MPEG-2 и MPEG-4. По сути это тоже кодек сжатия цифровых данных, но с меньшей, чем у MP3, потерей качества при кодировании с одинаковыми битрейтами. Мы рекомендуем использовать этот кодек для онлайн трансляций.

Частота дискретизации (кГц, kHz)

Измеряется в герцах (Гц, Hz) или килогерцах (кГц, kHz,) 1 кГц равен 1000 Гц. Например, 44 100 сэмплов в секунду можно обозначить как 44 100 Гц или 44,1 кГц. Выбранная частота дискретизации будет определять максимальную частоту воспроизведения, и, как следует из теоремы Котельникова, для того, чтобы полностью восстановить исходный сигнал, частота дискретизации должна в два раза превышать наибольшую частоту в спектре сигнала.

Как известно, человеческое ухо способно улавливать частоты между 20 Гц и 20 кГц. Учитывая эти параметры и значения, показанные в таблице ниже, можно понять, почему именно частота 44,1 кГц была выбрана в качестве частоты дискретизации для CD и до сих пор считается очень хорошей частотой для записи.

на что влияет разрядность кодирования звука. Смотреть фото на что влияет разрядность кодирования звука. Смотреть картинку на что влияет разрядность кодирования звука. Картинка про на что влияет разрядность кодирования звука. Фото на что влияет разрядность кодирования звука

Есть ряд причин для выбора более высокой частоты дискретизации, хотя может показаться, что воспроизводить звук вне диапазона человеческого слуха – пустая трата сил и времени. При этом среднестатистическому слушателю будет вполне достаточно 44,1 – 48 кГц для качественного решения большинства задач.

Разрядность

Наряду с частотой дискретизации есть такое понятие как разрядность или глубина звука. Разрядность – это количество бит цифровой информации для кодирования каждого сэмпла. Проще говоря, разрядность определяет «точность» измерения входного сигнала. Чем больше разрядность, тем меньше погрешность каждого отдельного преобразования величины электрического сигнала в число и обратно. С минимальной возможной разрядностью есть только два варианта измерения точности звука: 0 для полной тишины и 1 для звучания в полном объеме. Если разрядность равна 8 (16), то при измерении входного сигнала может быть получено 2 8 = 256 (2 16 = 65 536) различных значений.

Разрядность закреплена в кодеке PCM, но для кодеков, которые предполагают сжатие (например, MP3 и AAC) этот параметр рассчитывается при кодировании и может меняться от сэмпла к сэмплу.

Битрейт

битрейт = частота дискретизации × разрядность × каналы

Для таких систем как Epiphan Pearl Mini, которые кодируют линейный PCM 16-бит (разрядность 16), этот расчет может быть использован для определения, сколько дополнительных полос пропускания может потребоваться для PCM аудио. Например, для стерео (два канала) оцифровка сигнала производится с частотой 44,1 кГц на 16-бит, а битрейт при этом рассчитывается таким образом:

44,1 кГц × 16 бит × 2 = 1 411,2 кбит/с

Между тем алгоритмы сжатия аудиосигнала, такие как AAC и MP3, имеют меньшее количество бит для передачи сигнала (в этом и заключается их цель), поэтому они используют небольшие битрейты. Обычно значения находятся в диапазоне от 96 кбит/с до 320 кбит/с. Для этих кодеков чем выше битрейт вы выбираете, тем больше аудио бит вы получаете на сэмпл, и тем выше будет качество звучания.

Частота дискретизации, разрядность и битрейты в реальной жизни.

Аудио CD-диски, одни из первых наиболее популярных изобретений для простых пользователей для хранения цифрового аудио, использовали частоту 44,1 кГц (20 Гц – 20 кГц, диапазон человеческого уха) и разрядность 16-бит. Данные значения были выбраны, чтобы при хорошем качестве звука иметь возможность сохранять как можно больше аудио на диске.

Когда к аудио добавилось видео и появились DVD, а позднее Blu-Ray диски, был создан новый стандарт. Записи для DVD и Blu-Rays обычно используют линейный формат PCM с частотой 48 кГц (стерео) или 96 кГц (звук 5.1 Surround) и разрядность 24. Эти значения были выбраны в качестве идеального варианта, чтобы сохранять аудио с синхронизацией с видео и при этом получать максимально возможное качество с использованием дополнительного доступного дискового пространства.

Наши рекомендации

CD, DVD и Blu-Ray диски преследовали одну цель – дать потребителю высококачественный механизм воспроизведения. Задачей всех разработок было предоставить высокое качество аудио и видео, не заботясь о величине файла (лишь бы он умещался на диск). Такое качество мог обеспечить линейный PCM.

Напротив, у мобильных средств информации и потокового медиа совсем другая цель – использовать максимально низкий битрейт, при этом достаточный для поддержания приемлемого для слушателя качества. Для этой задачи лучше всего подходят алгоритмы сжатия. Теми же принципами вы можете руководствоваться для своих записей.

на что влияет разрядность кодирования звука. Смотреть фото на что влияет разрядность кодирования звука. Смотреть картинку на что влияет разрядность кодирования звука. Картинка про на что влияет разрядность кодирования звука. Фото на что влияет разрядность кодирования звука

При записи аудио с видео…

При потоковой передаче аудио с видео…

При потоковой передаче или записи для последующей трансляции можно получить хорошее звучание аудио при меньшей полосе пропускания, используя кодеки AAC или MP3 с частотой 44,1 кГц и битрейт 128 кбит/с или выше. Такие параметры гарантируют, что звук будет достаточно хорош и не скажется на качестве трансляции.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *