процесс передачи информации источник и приемник информации сигнал кодирование и декодирование
Передача информации
Содержание урока
1.3.1. Сигнал. Кодирование и декодирование
1.3.1. Сигнал. Кодирование и декодирование
Чаще всего передача информации осуществляется в форме сигналов.
Сигнал — это символ (знак), имеющий определённое смысловое значение согласно предварительной договорённости между источником и приёмником информации. Иными словами, обе стороны, участвующие в обмене информацией, должны понимать смысл используемых сигналов и располагать оборудованием для преобразования сигналов, доступных им для восприятия, в форму, требуемую для передачи при помощи выбранного носителя.
Пример 3 (рис. 1.9). При радиовещании происходят следующие преобразования сигналов:
• речь диктора (звуковые сигналы);
• электрические сигналы, полученные при преобразовании звуковых сигналов в микрофоне;
• радиосигналы, полученные при преобразовании электрических
• сигналов в радиопередатчике;
• электрические сигналы после преобразования радиосигналов в радиоприёмнике;
• звуковые сигналы после преобразования электрических сигналов в динамике радиоприёмника.
Рис. 1.9
Преобразование информации в форму сигналов называют кодированием.
Кодирование осуществляется в соответствии с некоторым набором (алфавитом) символов (знаков). Например, речь представляет собой информацию, закодированную при помощи звуков; письменный текст — это информация, закодированная при помощи букв и других символов; цифровая информация в компьютере закодирована при помощи двоичных нулей и единиц и т. д.
Обратное преобразование информации называют декодированием. Например, декодирование информации происходит при чтении текста или прослушивании речи собеседника.
Часто понятия «кодирование» и «декодирование» рассматривают в более узком, техническом смысле, подразумевая под кодированием процесс преобразования информации, форма представления которой доступна для восприятия человеком без использования технических устройств, в другую форму, удобную для передачи по используемому информационному каналу. Например, под кодированием понимается преобразование человеческой речи в электрические, а далее — в радиосигналы. Соответственно, под декодированием в этом случае понимается обратное преобразование информации из формы, используемой при передаче по информационному каналу, в форму, доступную для восприятия человеком, — например, из радио- и электрических сигналов в звуки музыки или речи.
Отдельной разновидностью кодирования и декодирования является шифрование и дешифрование. Они используются для того, чтобы защитить информацию от несанкционированного доступа к ней посторонних лиц, сделать информацию секретной. При шифровании и дешифровании используются такие коды и такие методы использования этих кодов, которые известны только источнику (отправителю) и приёмнику (получателю) информации. Например, при шифровании в качестве кодов могут использоваться обычные буквы русского алфавита, но переставленные местами по определённым правилам. Так, в шифре Цезаря каждая буква заменяется на другую, отстоящую от неё в алфавите на одно и то же фиксированное число позиций (рис. 1.10). Алфавит при этом считается замкнутым в кольцо.
Рис. 1.10
Следующая страница 1.3.2. Равномерные и неравномерные коды. Условие Фано
Cкачать материалы урока
1.1.2 Процесс передачи информации, источник и приемник информации. Сигнал, кодирование и декодирование. Искажение информации
Видеоурок: Передача информации
Лекция: Процесс передачи информации, источник и приемник информации. Сигнал, кодирование и декодирование. Искажение информации
Что такое передача информации, мы уже оговорили в предыдущем вопросе. Сейчас же хотелось бы рассмотреть, каким образом она передается.
Для начала необходимо определиться, что если информация передается, то в обязательном порядке есть её источник и приемник. Но чтобы информация попала от источника к приемнику, необходим канал связи, по которому и передается информация в виде зашифрованных сигналов. Данные сигналы могут иметь различную природу – тепловую, световую, электрическую и другие.
В обыкновенной жизни мы всегда получаем информацию в виде сигнала. Например, если из рупора (источника информации) разносится сирена, то человек (приемник информации) понимает, что это некий знак о чрезвычайной ситуации. Если телефон издает мелодию, то человек понимает, что ему звонят. Однако в некоторых случаях, когда информация передается, она может искажаться. Это достаточно распространенная проблема, связанная с помехами на канале связи, на кодирующем или декодирующем устройстве. Мы очень часто замечаем, что во время разговора по телефону может искажаться голос или не полностью удается расслышать слова – все это происходит из-за помех. Наука, которая изучает кодирование и декодирование информации, называется криптография. Кодирование информации происходит по определенному засекреченному коду.
Величина, которая характеризует передачу информации, называется скоростью информационного потока. Её определяют, как качество информации за некоторое время.
С единицей измерения скорости информационного потока Вы сталкиваетесь практически каждый день – это бит/с, байт/с, кбит/с, кбайт/с. Однако, мы знаем, что в зависимости от скорости, которую мы оплачиваем у провайдера, или же из-за характеристик роутера, мы можем получать ограниченную скорость информации.
Величина, которая характеризует максимально возможную скорость передачи информации, называется пропускной способностью.
Билет № 5 Процесс передачи информации, источник и приемник информации, канал передачи информации. Скорость передачи информации.
В любом процессе передачи или обмене информацией существует ее источник и получатель, а сама информация передается по каналу связи с помощью сигналов: механических, тепловых, электрических и др. В обычной жизни для человека любой звук, свет являются сигналами, несущими смысловую нагрузку. Например, сирена — это звуковой сигнал тревоги; звонок телефона — сигнал, чтобы взять трубку; красный свет светофора — сигнал, запрещающий переход дороги.
В процессе передачи информация может утрачиваться, искажаться. Это происходит из-за различных помех, как на канале связи, так и при кодировании и декодировании информации. С такими ситуациями вы встречаетесь достаточно часто: искажение звука в телефоне, помехи при телевизионной передаче, ошибки телеграфа, неполнота переданной информации, неверно выраженная мысль, ошибка в расчетах. Вопросами, связанными с методами кодирования и декодирования информации, занимается специальная наука — криптография.
Прием-передача информации могут происходить с разной скоростью. Количество информации, передаваемое за единицу времени, есть скорость передачи информации или скорость информационного потока.
Очевидно, эта скорость выражается в таких единицах, как бит в секунду (бит/с), байт в секунду (байт/с), килобайт в секунду (Кбайт/с) и т.д.
К сожалению, в отношении трактовки приставок существует неоднозначность. Встречается два подхода:
· при одном, килобит трактуется как 1000 бит (как килограмм или километр), мегабит как 1000 килобит и т. д. Основной довод сторонников такого подхода — отсутствие сложности в вычислениях.
· при другом подходе, килобит трактуется как 1024 бита (как килобайт), мегабит как 1024 килобита и так далее. Основной довод — соответствие с традиционными для вычислительной техники килобайтами (1024 байта), мегабайтами и т. п.
Применяются оба подхода, хотя для бита правильным считается «стандартный» подход, в отличии от байта, с которым «компьютерный» подход признают основным за традиционность. К битам, «компьютерный» подход применяют, преимущественно в компьютерной технике и программах.
Максимальная скорость передачи информации по каналу связи называется пропускной способностью канала.
Билет № 6 Понятие алгоритма. Исполнитель алгоритма. Система команд исполнителя (на примере учебного исполнителя). Свойства алгоритма. Способы записи алгоритмов; блок-схемы.
Алгоритм – описание последовательности действий (план), строгое исполнение которых приводит к решению поставленной задачи за конечное число шагов.
Вы постоянно сталкиваетесь с этим понятием в различных сферах деятельности человека (кулинарные книги, инструкции по использованию различных приборов, правила решения математических задач. ). Обычно мы выполняем привычные действия не задумываясь, механически. Например, вы хорошо знаете, как открывать ключом дверь. Однако, чтобы научить этому малыша, придется четко разъяснить и сами эти действия и порядок их выполнения:
1. Достать ключ из кармана.
2. Вставить ключ в замочную скважину.
3. Повернуть ключ два раза против часовой стрелки.
Свойства алгоритмов:
1. Дискретность (от лат. discretus — разделённый, прерывистый, раздельность) (алгоритм должен состоять из конкретных действий, следующих в определенном порядке);
2. Детерминированность (от. лат. determinate – определенность, точность) (любое действие должно быть строго и недвусмысленно определено в каждом случае);
3. Конечность (каждое действие и алгоритм в целом должны иметь возможность завершения);
4. Массовость (один и тот же алгоритм можно использовать с разными исходными данными);
5. Результативность (отсутствие ошибок, алгоритм должен приводить к правильному результату для всех допустимых входных значениях).
Замечание: Иногда детерминированность разделяют на понятность(исполнитель алгоритма должен понимать, как выполнять каждое действие) и точность, а конечность и массовость объединяет в одно свойство.
Виды алгоритмов:
1. Линейный алгоритм (описание действий, которые выполняются однократно в заданном порядке);
2. Циклический алгоритм (описание действий, которые должны повторятся указанное число раз или пока не выполнено заданное условие);
3. Разветвляющийся алгоритм (алгоритм, в котором в зависимости от условия выполняется либо одна, либо другая последовательность действий);
4. Вспомогательный алгоритм (алгоритм, который можно использовать в других алгоритмах, указав только его имя).
На практике наиболее распространены следующие формы представления алгоритмов:
Стадии создания алгоритма:
1. Алгоритм должен быть представлен в форме, понятной человеку, который его разрабатывает (определить цель, наметить план действий).
2. Алгоритм должен быть представлен в форме, понятной тому объекту (в том числе и человеку), который будет выполнять описанные в алгоритме действия (выбрать среду и объект алгоритма, детализировать алгоритм).
Объект, который будет выполнять алгоритм, обычно называют исполнителем.
Назначение исполнителя точно выполнить предписания алгоритма, подчас не задумываясь о результате и целях, т.е. формально. Идеальными исполнителями являются машины, роботы, компьютеры.
Компьютер – автоматический исполнитель алгоритмов.
Процесс передачи информации источник и приемник информации сигнал кодирование и декодирование
Код ОГЭ: 1.2.1 Процесс передачи информации, источник и приемник информации, сигнал, скорость передачи информации
Передача информации — перемещение сообщений от источника к приемнику по каналу передачи. В процессе передачи информации всегда имеется несколько участников:
Общую схему передачи информации разработал основоположник цифровой связи (создатель теории информации) Клод Шеннон.
Передача информации означает ее перемещение в виде информационных сообщений в пространстве — от источника к приемнику. Передаваемое источником сообщение кодируется в передаваемый сигнал.
Источниками и приемниками информации могут быть живые существа или технические устройства. Каналами связи могут быть, например, электромагнитные, звуковые и световые волны.
Информационные сообщения передаются по каналам связи в форме сигналов. Сигнал — это изменение во времени некоторой физической величины (например, уровня напряжения). Именно изменения некоторых параметров (характеристик) сигнала отображают сообщение. Таким образом, сигналы являются материально–энергетической формой представления информации.
Сигналы могут быть аналоговыми (непрерывными) или дискретными (импульсными). Сигнал является дискретным, если его параметр может принимать только конечное число значений и существует лишь в конечное число моментов времени. В компьютерах используются сигналы, которые могут принимать только два дискретных значения — 0 и 1.
По способу передачи сигналов различают каналы проводной связи (например, кабельные) и каналы беспроводной связи (например, спутниковые).
По типу среды распространения каналы связи делятся на проводные, акустические, оптические, инфракрасные и радиоканалы. Например, один из современных каналов передачи информации — световод (оптоволокно) — позволяет передавать сигналы лазеров на расстояние более 100 км без усиления.
Основной характеристикой каналов передачи информации является их пропускная способность, или скорость передачи по каналу информации.
Скорость передачи информации (информационных сообщений) — количество информации, переданное в единицу времени. Скорость передачи сообщений обычно измеряется в битах за секунду (бит/с). Кроме того, используются другие единицы: килобиты за секунду (Кбит/с), мегабиты за секунду (Мбит/с), байты за секунду (Б/с), килобайты за секунду (Кб/с).
Скорость передачи информации отображает, как быстро передается информация от источника к получателю — безотносительно к тому, по каким каналам происходит передача.
Пропускная способность канала — максимальное количество переданной или полученной по этому каналу информации за единицу времени. Таким образом, пропускная способность канала — максимально возможная скорость передачи информации по этому каналу. Например, пропускная способность современных оптоволоконных каналов — более 100 Мбит/с, т. е. в миллиарды раз выше, чем у нервной системы человека при чтении текстов.
Пропускная способность канала измеряется в тех же единицах, что и скорость передачи информации.
В сетях передачи данных по одному каналу может одновременно происходить огромное количество процессов передачи информации (от многих источников ко многим получателям). При этом скорость передачи информации для каждой конкретной пары «источник — получатель» может быть разной, а пропускная способность канала — величина, как правило, постоянная.
Конспект урока по информатике «Процесс передачи информации».
Билет № 5
1. Процесс передачи информации, источник и приемник информации, канал передачи информации. Скорость передачи информации.
Развитие человечества не было бы возможно без обмена информацией. С давних времен люди из поколения в поколение передавали свои знания, извещали об опасности или передавали важную и срочную информацию, обменивались сведениями. Например, в Петербурге в начале XIX века была весьма развита пожарная служба. В нескольких частях города были построены высокие каланчи, с которых обозревались окрестности. Если случался пожар, то на башне днем поднимался разноцветный флаг (с той или иной геометрической фигурой), а ночью зажигалось несколько фонарей, число и расположение которых означало часть города, где произошел пожар, а также степень его сложности.
Пожарная каланча в Костроме | Оптический телеграф Шаппа в Литермонте (Германия) |
В качестве источника информации может выступать живое существо или техническое устройство. От него информация попадает на кодирующее устройство, которое предназначено для преобразования исходного сообщения в форму, удобную для передачи. С такими устройствами вы встречаетесь постоянно: микрофон телефона, лист бумаги и т. д. По каналу связи информация попадает в декодирующее устройство получателя, которое преобразует кодированное сообщение в форму, понятную получателю. Одни из самых сложных декодирующих устройств — человеческие ухо и глаз.
В процессе передачи информация может утрачиваться, искажаться. Это происходит из-за различных помех, как на канале связи, так и при кодировании и декодировании информации. С такими ситуациями вы встречаетесь достаточно часто: искажение звука в телефоне, помехи при телевизионной передаче, ошибки телеграфа, неполнота переданной информации, неверно выраженная мысль, ошибка в расчетах. Вопросами, связанными с методами кодирования и декодирования информации, занимается специальная наука — криптография.
При передаче информации важную роль играет форма представления информации. Она может быть понятна источнику информации, но недоступна для понимания получателя. Люди специально договариваются о языке, с помощью которого будет представлена информация для более надежного ее сохранения.
Прием-передача информации могут происходить с разной скоростью. Количество информации, передаваемое за единицу времени, есть скорость передачи информации или скорость информационного потока.
Очевидно, эта скорость выражается в таких единицах, как бит в секунду (бит/с), байт в секунду (байт/с), килобайт в секунду (Кбайт/с) и т.д.
К сожалению, в отношении трактовки приставок существует неоднозначность. Встречается два подхода:
при одном, килобит трактуется как 1000 бит (как килограмм или километр), мегабит как 1000 килобит и т. д. Основной довод сторонников такого подхода — отсутствие сложности в вычислениях.
при другом подходе, килобит трактуется как 1024 бита (как килобайт), мегабит как 1024 килобита и так далее. Основной довод — соответствие с традиционными для вычислительной техники килобайтами (1024 байта), мегабайтами и т. п.
Применяются оба подхода, хотя для бита правильным считается «стандартный» подход, в отличии от байта, с которым «компьютерный» подход признают основным за традиционность. К битам, «компьютерный» подход применяют, преимущественно в компьютерной технике и программах.
Следует упомянуть еще одну единицу измерения скорости передачи информации – бод. Бод (англ. baud) в связи и электронике — единица скорости передачи сигнала, количество изменений информационного параметра несущего периодического сигнала в секунду. Названа по имени Эмиля Бодо, изобретателя кода Бодо — кодировки символов для телетайпов.
Зачастую, ошибочно считают что бод это количество бит переданное в секунду. В действительности же, это верно лишь для двоичного кодирования, которое используется не всегда. Например, в современных модемах используется квадратурная амплитудная манипуляция (КАМ), и одним изменением уровня сигнала может кодироваться несколько (до 16) бит информации. Например, при скорости изменения сигнала 2400 бод, скорость передачи может составлять 9600 бит/c, благодаря тому, что в каждом временном интервале передаётся 4 бита.
Кроме этого, бодами выражают полную емкость канала, включая служебные символы (биты), если они есть. Эффективная же скорость канала выражается другими единицами, например битами в секунду.
Одним из самых совершенных средств связи являются оптические световоды. Информация по таким каналам передается в виде световых импульсов, посылаемых лазерным излучателем. Оптические каналы отличаются от других высокой помехоустойчивостью и пропускной способностью, которая может составлять десятки и сотни мегабайт в секунду. Например, при скорости 50 Мбайт/с в течении 1 секунды передается объем информации, приблизительно равный содержанию 10 школьных учебников.