в каком случае в проводниках электрический заряд не накапливается

Закон сохранения электрического заряда.

Закон сохранения электрического заряда гласит, что алгебраическая сумма электрических зарядов всех частиц изолированной системы не меняется при происходящих в ней процессах.

Электрический заряд любой частицы или системы частиц является целым кратным элементарному электрическому заряду (равному по величине заряду электрона) или нулевым.

Закон сохранения заряда подтверждается и простыми опытами по электризации тел. Укрепим на стержне электромера металлический диск и, положив на него прослойку из сукна, поставим сверху еще один такой же диск, но с ручкой из диэлектрика. Совершив несколько движений верхним диском по изоляционной прослойке, уберем его в сторону. Мы увидим, что стрелка электромера отклонится, свидетельствуя о появлении на сукне и соприкасающемся с ним диске электрического заряда. Далее прикоснемся вторым диском (которым мы терли о сукно) к стерж­ню второго электромера. Стрелка этого электромера отклонится примерно на такой же угол, что и стрелка первого электромера. Это означает, что при электризации оба диска получили одинако­вый по модулю заряд. Что можно сказать о знаках этих зарядов? Для ответа на этот вопрос завер­шим опыт, соединив электромеры металлическим стержнем. Мы увидим, как стрелки приборов опустятся вниз. Нейтрализация зарядов свидетельствует о том, что они были равны по модулю, но противоположны по знаку (и, следовательно, в сумме давали нуль).

Этот и другие опыты показывают, что в процессе электризации общий (суммарный) заряд тел сохраняется: если он был равен нулю до электризации, то таким он останется и после нее.

Полный электрический заряд сохраняется и в том случае, если первоначальные заряды тел были отличны от нуля. Если обозначить первоначальные заряды тел как q1 и q2, а заряд тех же тел после их взаимодействия как q’1 и q’2 то можно записать:

При любых взаимодействиях тел их полный электрический заряд остается неизменным.

В этом заключается фундаментальный закон природы — закон сохранения электрического заряда.

Закон сохранения заряда был установлен в 1750 г. американским ученым и видным политическим деятелем Бенджамином Франклином. Он же ввел понятие о положительных и отрицатель­ных зарядах, обозначив их знаками «+» и «-».

Закон сохранения заряда имеет глубокий смысл. Он очевиден, когда число элементарных частиц не меняется. Однако элементарные частицы могут возникать (рождаться) и исчезать, т. е. пре­терпевать различные превращения. Возникают и исчезают элементарные частицы всегда пара­ми (с противоположными зарядами). Многочисленные наблюдения превращений элементарных частиц подтверждают закон сохранения заряда. Этот закон выражает одно из фундаментальных свойств электрического заряда.

Таким образом, электрический заряд во Вселенной сохраняется, а полный электрический за­ряд Вселенной, скорее всего, равен нулю.

Источник

Закон сохранения электрических зарядов

Закон сохранения электрического заряда

В обычных условиях микроскопические тела являются электрически нейтральными, потому что положительно и отрицательно заряженные частицы, которые образуют атомы, связаны друг с другом электрическими силами и образуют нейтральные системы. Если электрическая нейтральность тела нарушена, то такое тело называется наэлектризованное тело. Для электризации тела необходимо, чтобы на нём был создан избыток или недостаток электронов или ионов одного знака.

Способы электризации тел, которые представляют собой взаимодействие заряженных тел, могут быть следующими:

Многочисленные опыты показывают, что когда имеет место электризация тела, то на телах возникают электрические заряды, равные по модулю и противоположные по знаку.

Отрицательный заряд тела обусловлен избытком электронов на теле по сравнению с протонами, а положительный заряд обусловлен недостатком электронов.

Когда происходит электризация тела, то есть когда отрицательный заряд частично отделяется от связанного с ним положительного заряда, выполняется закон сохранения электрического заряда. Закон сохранения заряда справедлив для замкнутой системы, в которую не входят извне и из которой не выходят наружу заряженные частицы.

Закон сохранения электрического заряда формулируется следующим образом:

В замкнутой системе алгебраическая сумма зарядов всех частиц остаётся неизменной:

Определения

Элементарные частицы могут иметь эл. заряд, тогда они называются заряженными;

Существует 2 знака эл.зарядов:

В обычном состоянии тела электрически нейтральны (т.к. атом нейтрален), и электромагнитные силы не проявляются.

Тело заряжено, если имеет избыток зарядов какого-либо знака:

Взаимодействие электрически заряженных тел

в каком случае в проводниках электрический заряд не накапливается. Смотреть фото в каком случае в проводниках электрический заряд не накапливается. Смотреть картинку в каком случае в проводниках электрический заряд не накапливается. Картинка про в каком случае в проводниках электрический заряд не накапливается. Фото в каком случае в проводниках электрический заряд не накапливается

Взаимодействие тел, имеющих заряды одинакового или разного знака, можно продемонстрировать на следующих опытах. Наэлектризуем эбонитовую палочку трением о мех и прикоснёмся ею к металлической гильзе, подвешенной на шёлковой нити.

На гильзе и эбонитовой палочке распределяются заряды одного знака (отрицательные заряды). Приближая заряженную отрицательно эбонитовую палочку к заряженной гильзе, можно увидеть, что гильза будет отталкиваться от палочки (рис. 1.1).

Если теперь поднести к заряженной гильзе стеклянную палочку, потёртую о шёлк (положительно заряженную), то гильза будет к ней притягиваться (рис. 1.2).

Закон сохранения электрического заряда на практике

в каком случае в проводниках электрический заряд не накапливается. Смотреть фото в каком случае в проводниках электрический заряд не накапливается. Смотреть картинку в каком случае в проводниках электрический заряд не накапливается. Картинка про в каком случае в проводниках электрический заряд не накапливается. Фото в каком случае в проводниках электрический заряд не накапливается

Возьмём два одинаковых электрометра и один из них зарядим (рис. 2.1). Его заряд соответствует 6 делениям шкалы.

Если соединить эти электрометры стеклянной палочкой, то никаких изменений не произойдёт. Это подтверждает тот факт, что стекло является диэлектриком. Если же для соединения электрометров использовать металлический стержень А (рис. 2.2), держа его за не проводящую электричество ручку В, то можно заметить, что первоначальный заряд разделится на две равные части: половина заряда перейдёт с первого шара на второй. Теперь заряд каждого электрометра соответствует 3 делениям шкалы. Таким образом, первоначальный заряд не изменился, он только разделился на две части.

Если заряд передать от заряженного тела к незаряженному телу такого же размера, то заряд разделится пополам между двумя этими телами. Но если второе, незаряженное тело, будет больше, чем первое, то на второе перейдёт больше половины заряда. Чем больше тело, которому передают заряд, тем большая часть заряда на него перейдёт.

Но общая сумма заряда при этом не изменится. Таким образом, можно утверждать, что заряд сохраняется. Т.е. выполняется закон сохранения электрического заряда.

Электрические заряды не существуют сами по себе, а являются внутренними свойствами элементарных частиц – электронов, протонов и др.

В реакции образования электронно-позитронной пары действует закон сохранения заряда.

Позитрон — элементарная частица, имеющая массу, приблизительно равную массе электрона; заряд позитрона положительный и равен заряду электрона.

На основании закона сохранения электрического заряда объясняется электризация макроскопических тел.

Как известно, все тела состоят из атомов, в состав которых входят электроны и протоны. Количество электронов и протонов в составе незаряженного тела одинаковое. Поэтому такое тело не проявляет электрического действия на другие тела. Если же два тела находятся в тесном контакте (при натирании, сжатии, ударе и т.п.), то электроны, связанные с атомами значительно слабее, чем протоны, переходят с одного тела на другое.

Тело, на которое перешли электроны, будет иметь их избыток. Согласно закону сохранения электрический заряд этого тела будет равняться алгебраической сумме положительных зарядов всех протонов и зарядов всех электронов. Этот его заряд будет отрицательным и по значению равным сумме зарядов избыточных электронов.

У тела с излишком электронов отрицательный заряд.

Тело, утратившее электроны, будет иметь положительный заряд, модуль которого бу­дет равен сумме зарядов электронов, поте­рянных телом.

У тела, имеющего положитель­ный заряд, электронов мень­ше, чем протонов.

Электрический заряд не изме­няется при переходе тела в другую систему отсчета.

Источник

Проводники в электрическом поле.

Проводниками называются тела, по которым электрические заряды перемещаются свободно. К ним в первую очередь относятся металлы. Хорошая проводимость металлов объясняется наличием в них свободных электронов, которые движутся между положительно заряженными ионами решетки. Положительные ионы участия в переносе заряда не принимают.

Электронная природа носителей тока в металлах объясняется следующим образом. Кристаллическая решетка металла состоит из положительно заряженных ионов, расположенных в узлах решетки, и электронов, свободно передвигающихся между узлами. Свободные электроны — это валентные электроны атомов металла, покинувшие свои атомы. Они совершают беспорядочное движение по кристаллу, «не помня», какому атому они принадлежали. Их называют электрон­ным газом. Свободные электроны участвуют в тепловом движении и способны перемещаться под действием электрического поля.

Внутри проводника, помещенного во внешнее электрическое поле, электростатическое поле отсутствует. Объясняется это тем, что под действием внешнего поля свободные электроны, перемещаясь в на­правлении, противоположном внешнему полю в каком случае в проводниках электрический заряд не накапливается. Смотреть фото в каком случае в проводниках электрический заряд не накапливается. Смотреть картинку в каком случае в проводниках электрический заряд не накапливается. Картинка про в каком случае в проводниках электрический заряд не накапливается. Фото в каком случае в проводниках электрический заряд не накапливается, распределяются по поверхности проводника, в результате чего одна часть проводника заряжается отрицательно, противоположная — положительно. Раз­деленные заряды создают внутреннее поле в каком случае в проводниках электрический заряд не накапливается. Смотреть фото в каком случае в проводниках электрический заряд не накапливается. Смотреть картинку в каком случае в проводниках электрический заряд не накапливается. Картинка про в каком случае в проводниках электрический заряд не накапливается. Фото в каком случае в проводниках электрический заряд не накапливается, которое компенсирует внешнее поле в каком случае в проводниках электрический заряд не накапливается. Смотреть фото в каком случае в проводниках электрический заряд не накапливается. Смотреть картинку в каком случае в проводниках электрический заряд не накапливается. Картинка про в каком случае в проводниках электрический заряд не накапливается. Фото в каком случае в проводниках электрический заряд не накапливается, так что суммарное поле внутри проводника рав­но нулю.

в каком случае в проводниках электрический заряд не накапливается. Смотреть фото в каком случае в проводниках электрический заряд не накапливается. Смотреть картинку в каком случае в проводниках электрический заряд не накапливается. Картинка про в каком случае в проводниках электрический заряд не накапливается. Фото в каком случае в проводниках электрический заряд не накапливается

На этом основана электростатическая защита. Чтобы защитить приборы от влияния электрического поля, их поме­щают в металлический ящик.

Таким разделением заряда объясняется электростатическая ин­дукция. Если пластину металла разрезать по линии MN, обе полови­ны окажутся заряженными.

Линии напряженности электрического поля вне проводника всег­да перпендикулярны поверхности проводника. В противном случае составляющая поля, параллельная поверхности, приводила бы к пос­тоянному перемещению зарядов (электрическому току).

Весь статический заряд проводника сосредоточен на его поверх­ности. В противном случае внутри проводника имелось бы электрическое поле, что не соответствует действительности. Это относится как к заряженным, так и к незаряженным проводникам, помещен­ным в электрическое поле.

Источник

Билет №15. Электризация тел. Два вида электрических зарядов. Взаимодействие зарядов. Закон сохранения электрического заряда

Определение

Электризацией называется процесс разделения электрических зарядов и накопление их в определенных местах предметов и тел. Явление происходит в результате трения, соприкосновения тел или в результате электростатической индукции. Простыми словами, когда рядом расположен какой-то предмет, обладающий электрическим полем.

: в физике выделяют два рода зарядов – положительные и отрицательные, или протоны и электроны. Между ними возникает электрическое поле. Одноименные заряды притягиваются, а разноименные отталкиваются.

Явление наблюдается на источниках питания и не только. На диэлектриках накапливаются заряды, все видели это в опытах, иллюстрирующих явление с эбонитовыми и стеклянными палочками, которые демонстрировали на уроках физики в школе.

Изначально все атомы, из них состоит всё что нас окружает, электрически нейтральны. В результате явления электризации на поверхности предметов появляются положительные или отрицательные заряды. Напомним школьный опыт: если потереть эбонитовую палочку шерстяной тканью, после прекращения трения палочка останется заряженной. Тогда говорят, что тело электризовано.

в каком случае в проводниках электрический заряд не накапливается. Смотреть фото в каком случае в проводниках электрический заряд не накапливается. Смотреть картинку в каком случае в проводниках электрический заряд не накапливается. Картинка про в каком случае в проводниках электрический заряд не накапливается. Фото в каком случае в проводниках электрический заряд не накапливается

Таким образом, во время трения электроны переходили с одного предмета на другой. В результате, после прекращения трения избыточные электроны остались «не на своих» телах и получился избыточный заряд, и оно перестало быть нейтральным. В результате трения палочки о шерсть или мех на её поверхности образовался отрицательный заряд.

Статическое электричество в быту

Пенопластовые шарики прилипли к кошачьей шерсти из-за статического электричества
Статическое электричество широко распространено в обыденной жизни. Если, например, на полу лежит ковер из шерсти, то при трении об него человеческое тело может получить отрицательный электрический заряд, в то время как ковёр получит положительный. Другим примером может служить электризация пластиковой расчески, которая после причёсывания получает минус-заряд, а волосы получают плюс-заряд. Накопителем минус-заряда нередко являются полиэтиленовые пакеты, полистироловый пенопласт. Накопителем плюс-заряда может являться сухая полиуретановая монтажная пена, если её сжать рукой.

Электростатический разряд происходит при очень высоком напряжении и чрезвычайно низких токах. Даже простое расчёсывание волос в сухой день может привести к накоплению статического заряда с напряжением в десятки тысяч вольт, однако ток его освобождения будет настолько мал, что его зачастую невозможно будет даже почувствовать. Именно низкие значения тока не дают статическому заряду нанести человеку вред, когда происходит мгновенный разряд.[2]

С другой стороны, такие напряжения могут быть опасны для элементов различных электронных приборов — микропроцессоров, транзисторов и т. п. Поэтому при работе с радиоэлектронными компонентами рекомендуется принимать меры по предотвращению накопления статического заряда.

Условия возникновения явления и способы передачи зарядов

Мы рассказали, как объясняется это явление в природе, а теперь давайте рассмотрим, как можно наэлектризовать тела. Сразу отметим, что выполнение всех условий необязательно – электризация может происходить по тем или иным причинам, разделим их на две основных группы:

Вторая группа — электризация влиянием, то есть явление наблюдается при воздействии на тело внешних сил, среди которых:

в каком случае в проводниках электрический заряд не накапливается. Смотреть фото в каком случае в проводниках электрический заряд не накапливается. Смотреть картинку в каком случае в проводниках электрический заряд не накапливается. Картинка про в каком случае в проводниках электрический заряд не накапливается. Фото в каком случае в проводниках электрический заряд не накапливается

Это и есть основные виды электризации.

Три способа электризации тел

Электрически нейтральное тело можно наэлектризовать разными способами:

Электризация трением

Электризация трением происходит, когда вы трёте один предмет о другой.

в каком случае в проводниках электрический заряд не накапливается. Смотреть фото в каком случае в проводниках электрический заряд не накапливается. Смотреть картинку в каком случае в проводниках электрический заряд не накапливается. Картинка про в каком случае в проводниках электрический заряд не накапливается. Фото в каком случае в проводниках электрический заряд не накапливается
Проведите эксперимент. Возьмите небольшой лист бумаги и пластмассовую ручку. Потрите ручку о волосы, а потом прикоснитесь к бумаге. Вы наэлектризовали ручку трением о волосы.

Электризация прикосновением

При взаимодействии двух тел, одно из которых наэлектризовано, незаряженное тело получает электрический заряд, если к нему прикоснуться заряженным. Если поднести пластмассовую ручку, обладающую положительным зарядом, к нейтральному стержню электроскопа, то произойдёт перераспределение заряда. Электроны стержня будут притягиваться положительным зарядом ручки (перетекать на ручку). Соответственно, на стержне образуется недостаток электронов, то есть положительный заряд. Причём равный по величине заряду ручки.

в каком случае в проводниках электрический заряд не накапливается. Смотреть фото в каком случае в проводниках электрический заряд не накапливается. Смотреть картинку в каком случае в проводниках электрический заряд не накапливается. Картинка про в каком случае в проводниках электрический заряд не накапливается. Фото в каком случае в проводниках электрический заряд не накапливается

Электризация наведением (электростатическая индукция)

Этот способ электризации означает, что вы подносите заряженный предмет к изолированному проводнику, но не прикасаетесь к нему. Тогда на проводнике появляются заряды, притом на той его части, которая ближе к предмету, эти заряды противоположного знака. А на дальнем конце образуется заряд того же знака, что и на заряженном предмете.

При удалении заряженного предмета заряды на проводнике пропадают. Но если до удаления предмета разделить проводник на две части, то заряды на них сохранятся.

Какие законы физики связаны с электризацией

Явление электризации связано с такими физическими законами как:

Мы уже рассматривали эти законы, вы можете ознакомиться подробнее в соответствующих статьях, на которые мы сослались.

Молнии

Основная статья: Молния

В результате движения воздушных потоков, насыщенных водяными парами, образуются грозовые облака, являющиеся носителями статического электричества. Электрические разряды образуются между разноименными заряженными облаками или, чаще, между заряженным облаком и озоновым слоем земли, с последующим разрядом на землю. При достижении критической разности потенциалов происходит разряд молнии между облаками, на земле или в околокосмическом слое планеты. Для защиты от молний устанавливаются молниеотводы, проводящие разряд напрямую в землю.

Помимо молний, грозовые облака могут вызывать на изолированных металлических предметах опасные электрические потенциалы из-за электростатической индукции.

В 1872 году экспедицией под руководством географа Генри Ганнетта[en] была покорена 13-я по высоте гора штата Монтана (США)[en]. Ей дали название Электрический пик

, так как у первопроходцев-покорителей, находящихся на вершине, после грозы начали сыпаться искры из пальцев рук и волос на голове[3][4][5].

Делимость электрического заряда. Электрон

В эксперименте с электрометрами металлическим стержнем часть заряда переносится от одного электрометра на другой. Из опыта видно, что заряд делится. Если коснуться стержня второго электрометра рукой, то заряд с него снимется, и распределится по всему телу (человеческое тело является хорошим проводником электричества). Если снова соединить приборы стержнем из металла, оставшийся заряд опять разделится. При повторении тех же шагов заряд каждый раз будет делиться. Кажется, что этот процесс будет происходить до бесконечности.

в каком случае в проводниках электрический заряд не накапливается. Смотреть фото в каком случае в проводниках электрический заряд не накапливается. Смотреть картинку в каком случае в проводниках электрический заряд не накапливается. Картинка про в каком случае в проводниках электрический заряд не накапливается. Фото в каком случае в проводниках электрический заряд не накапливается

Заряды постепенно настолько уменьшаются, что электрометр уже не в состоянии их измерить. Уже очень точные опыты показали, что делить заряд до бесконечности нельзя, существует наименьший электрический заряд, который поделить уже нельзя. Называют его элементарным зарядом с абсолютной величиной e. Заряды измеряют в кулонах (Кл) в честь Шарля Кулона, французского физика.

Элементарным электрическим зарядом с отрицательным знаком обладает частица электрон (греч. «еlectron» – «янтарь»).

Передача (проведение) электричества

Все ли вещества могут одинаково передавать электрический заряд? Ответ можно получить с помощью двух электрометров, металлического стержня и эбонитовой палочки. Стержень и палочка крепятся к пластмассовой ручке.

в каком случае в проводниках электрический заряд не накапливается. Смотреть фото в каком случае в проводниках электрический заряд не накапливается. Смотреть картинку в каком случае в проводниках электрический заряд не накапливается. Картинка про в каком случае в проводниках электрический заряд не накапливается. Фото в каком случае в проводниках электрический заряд не накапливается

Вещества, способные проводить электрические заряды, как в случае под буквой б, называются проводниками (металлы, кислотные, щелочные и солевые растворы). Вещества, с помощью которых нельзя передать заряды, называются диэлектриками (изоляторами). Хорошие диэлектрики – это резина, стекло, эбонит, фарфор, пластмассы, воздух и др.

В повседневной жизни

Вокруг нас постоянно происходит электризация тел. При трении некоторых предметов она становится настолько высокой, что к ним притягиваются даже габаритные тяжелые детали. В домашних условиях наблюдать процесс электризации можно следующим образом:

в каком случае в проводниках электрический заряд не накапливается. Смотреть фото в каком случае в проводниках электрический заряд не накапливается. Смотреть картинку в каком случае в проводниках электрический заряд не накапливается. Картинка про в каком случае в проводниках электрический заряд не накапливается. Фото в каком случае в проводниках электрический заряд не накапливается
Телевизоры по этой же причине притягивают пыль к экранам и корпусу. А воздушный шарик, натертый о волосы головы, можно надолго подвесить к потолку. Происходит притяжение заряженной поверхности к обоям или другому покрытию.

Источник

Закон сохранения электрического заряда

в каком случае в проводниках электрический заряд не накапливается. Смотреть фото в каком случае в проводниках электрический заряд не накапливается. Смотреть картинку в каком случае в проводниках электрический заряд не накапливается. Картинка про в каком случае в проводниках электрический заряд не накапливается. Фото в каком случае в проводниках электрический заряд не накапливается

Электрический заряд

Электрический заряд — это физическая величина, которая определяет способность тел создавать электромагнитное поле и принимать участие в электромагнитном взаимодействии.

Мы состоим из клеток, клетки состоят из молекул, молекулы в свою очередь состоят из атомов, а атомы — из ядра и электронов. Ядро состоит из протонов и нейтронов.

Протон — это частица, которая заряжена положительно, нейтрон — нейтрально, а электрон — отрицательно. Электрон вращается по орбитам, которые во много раз больше, чем размер электрона.

в каком случае в проводниках электрический заряд не накапливается. Смотреть фото в каком случае в проводниках электрический заряд не накапливается. Смотреть картинку в каком случае в проводниках электрический заряд не накапливается. Картинка про в каком случае в проводниках электрический заряд не накапливается. Фото в каком случае в проводниках электрический заряд не накапливается

Размер электрона с размером орбиты можно сравнить так: представьте футбольный мяч и футбольное поле. Во сколько раз поле больше мяча, во столько же раз орбита больше, чем электрон.

в каком случае в проводниках электрический заряд не накапливается. Смотреть фото в каком случае в проводниках электрический заряд не накапливается. Смотреть картинку в каком случае в проводниках электрический заряд не накапливается. Картинка про в каком случае в проводниках электрический заряд не накапливается. Фото в каком случае в проводниках электрический заряд не накапливается

Как мы уже выяснили, электрические заряды бывают положительными и отрицательными. Одноименные заряды отталкиваются, разноименные притягиваются:

в каком случае в проводниках электрический заряд не накапливается. Смотреть фото в каком случае в проводниках электрический заряд не накапливается. Смотреть картинку в каком случае в проводниках электрический заряд не накапливается. Картинка про в каком случае в проводниках электрический заряд не накапливается. Фото в каком случае в проводниках электрический заряд не накапливается

А вот измерять Электрический заряд мы будем в Кулонах [Кл]. Нет, не тех, что болтаются на цепочке. Шарль Кулон — это физик, который изучал электромагнитные явления.

в каком случае в проводниках электрический заряд не накапливается. Смотреть фото в каком случае в проводниках электрический заряд не накапливается. Смотреть картинку в каком случае в проводниках электрический заряд не накапливается. Картинка про в каком случае в проводниках электрический заряд не накапливается. Фото в каком случае в проводниках электрический заряд не накапливается

Электризация

Чтобы разобраться с тем, как тело приобретает электрический заряд и сохраняет его, нам для начала нужно поближе познакомится с протоном и электроном. Протон — ленивый и неповоротливый — он точно не будет никуда перемещаться, если мы не переместим атом целиком.

А вот электрон — парень подвижный, и ему перебежать с одного атома на другой — ничего не стоит.

в каком случае в проводниках электрический заряд не накапливается. Смотреть фото в каком случае в проводниках электрический заряд не накапливается. Смотреть картинку в каком случае в проводниках электрический заряд не накапливается. Картинка про в каком случае в проводниках электрический заряд не накапливается. Фото в каком случае в проводниках электрический заряд не накапливается

Мы поговорим о двух типах электризации: электризация соприкосновением и электризация трением.

Свободные электроны переходят с незаряженного тела на нейтральное. А если мы возьмем положительно заряженное тело вместо отрицательного, то свободные электроны перейдут с нейтрального тела, чтобы уравновесить заряды.

Электроны переходят от одного тела к другому и в отличии от электризации соприкосновением заряжаются противоположными по знаку и равными по модулю зарядами.

То есть при соприкосновении заряд раздают одного знака и поровну. Как если бы ты поделился с другом конфетами, которых у тебя с избытком.

При трении наоборот — заряды у тел будут разных знаков, но также в одинаковом количестве. Например, у вас есть равное количество денег в рублях и долларах, и у меня аналогичная ситуация с той же суммой. Вы решили лететь в США, а мне как раз доллары не нужны. Чтобы не ходить в банк, мы можем просто поменяться. Тогда у вас будут только доллары, а у меня — только рубли. Главное, договориться про курс 🙂

Давайте решим пару задач по этой теме.

Задачка один

Из какого материала может быть сделан стержень, соединяющий электрометры, изображённые на рисунке?

в каком случае в проводниках электрический заряд не накапливается. Смотреть фото в каком случае в проводниках электрический заряд не накапливается. Смотреть картинку в каком случае в проводниках электрический заряд не накапливается. Картинка про в каком случае в проводниках электрический заряд не накапливается. Фото в каком случае в проводниках электрический заряд не накапливается

Решение:

Он может быть сделан либо из проводника, либо из диэлектрика. Проводник пропускает через себя заряды, а диэлектрик — нет. Если мы посмотрим на показания электрометров, то увидим, что они отличаются.

Как мы помним, при соприкосновении заряды уравниваются по величине (один электрометр делится конфетами с другим). В данном случае никто ни с кем не делился, это значит, что стержень не пропускает — он диэлектрик. И стекло, и эбонит являются диэлектриками. Значит подходят оба варианта!

Задачка два

В процессе трения о шёлк стеклянная линейка приобрела положительный заряд. Как при этом изменилось количество заряженных частиц на линейке и шёлке при условии, что обмен при трении не происходил?

А) количество протонов на стеклянной линейке

Б) количество электронов на шёлке

Решение:

Вспомните, как мы охарактеризовали протон: он ленивый и неподвижный! Значит количество протонов ни на стеклянной линейке, ни на шелке измениться просто не может. Мы же не отламываем кусок линейки вместе с атомами, из которых она состоит. А вот электроны охотно перемещаются. Нам известно, что линейка приобрела положительный заряд. Получается, электроны сбежали от нее к шелку. Следовательно, количество электронов на шелке увеличилось.

Электростатическая индукция

Кажется, с электризацией разобрались. Теперь разберемся, что произойдет, если мы поднесем одно тело к другому, но не вплотную. Произойдет такое явление, как электростатическая индукция — явление перераспределения зарядов в нейтрально заряженных телах.

Давай разбираться на примере задачи:

На нити подвешен незаряженный металлический шарик. К нему снизу поднесли положительно заряженную палочку. Как изменится при этом сила натяжения нити?

в каком случае в проводниках электрический заряд не накапливается. Смотреть фото в каком случае в проводниках электрический заряд не накапливается. Смотреть картинку в каком случае в проводниках электрический заряд не накапливается. Картинка про в каком случае в проводниках электрический заряд не накапливается. Фото в каком случае в проводниках электрический заряд не накапливается

Решение:

Здесь важно подчеркнуть, что незаряженный — значит заряжен нейтрально. То есть в теле равное количество положительных и отрицательных зарядов.

Электроны металлического шарика будут притягиваться к поднесенной положительной палочке. В результате шарик притягивается к палочке, следовательно, сила натяжения нити увеличивается.

Ответ: сила натяжения нити увеличивается

Поляризация диэлектрика

Давайте возьмем два, на первый взгляд, одинаковых задания из ЕГЭ.

Задание 1

Если к незаряженному металлическому шару поднести, не касаясь, точечный положительный заряд, то на стороне шара, ближайшей к заряду, появится отрицательный заряд. Как называется это явление?

Мы только что это разобрали: то электростатическая индукция.

Задание 2

Если к незаряженному диэлектрическому шару поднести, не касаясь, точечный положительный заряд, то на стороне шара, ближайшей к заряду, появится отрицательный заряд. Как называется это явление?

Кажется, что очень похоже на электростатическую индукцию, но это явление будет называться поляризация. В чем разница:

В первом случае — это проводник, а во втором — диэлектрик. Если не вдаваться в подробности, то поляризация диэлектрика — процесс, очень похожий по природе своей на электростатическую индукцию, только происходит в непроводящих материалах.

Закон сохранения электрического заряда

И последнее, о чем мы сегодня поговорим — этот закон сохранения заряда

Алгебраическая сумма зарядов электрически замкнутой системы сохраняется.

Закон сохранения заряда

q1 + q2 + q3 + … + qn = const

q1, q2, q3, …, qn — заряды электрически замкнутой системы [Кл]

Задачка раз

Решение:

Для решения этой задачи нам нужно найти алгебраическую сумму зарядов.

Это суммарный заряд шариков и до, и после и во время взаимодействия.

Так как суммарный заряд сохраняется, но шарики соприкоснулись, суммарный заряд разделится между всеми шариками поровну. То есть нам нужно суммарный заряд просто поделить на количество шариков — на 2.

И это ответ к нашей задаче.

Задачка два

Металлическая пластина, имевшая положительный заряд, по модулю равный 10е, при освещении потеряла шесть электронов. Каким стал заряд пластины?

Решение:

q = q₀ — 6(— e) = 10e + 6e = 16e

Красный знак «минус» образуется из-за того, что мы «отнимаем» электроны, а зеленый — из-за того, что электрон отрицательный. «Минус на минус» дает плюс, поэтому мы получаем 10e + 6e = 16е.

Ответ: 16е

Задачка три

Решение:

По закону сохранения заряда сумма зарядов в замкнутой системе остается постоянной.

Два шарика привели в соприкосновение и развели, значит их суммарный заряд разделится между шариками поровну.

Ответ: заряды шариков равны 2q.

Закон Кулона и связь с гравитацией

Мы уже упоминали Шарля Кулона. В честь него названа единица измерения заряда — Кулон. Он придумал закон о взаимодействии зарядом.

Закон Кулона

k — коэффициент пропорциональности

в каком случае в проводниках электрический заряд не накапливается. Смотреть фото в каком случае в проводниках электрический заряд не накапливается. Смотреть картинку в каком случае в проводниках электрический заряд не накапливается. Картинка про в каком случае в проводниках электрический заряд не накапливается. Фото в каком случае в проводниках электрический заряд не накапливается

E₀= 8,85 * 10-12Н*м²/Кл² — электрическая постоянная

E — диэлектрическая проницаемость среды — показывает во сколько раз сила электростатического взаимодействия в вакууме больше силы в среде (в вакууме равна 1)

q1 — заряд первого тела [Кл]

q2 — заряд второго тела [Кл]

r — расстояние между телами [м]

F — сила электростатического взаимодействия (кулоновская) [Н]

Мы уже знаем, что заряды бывают положительными и отрицательными. Одноименные заряды отталкиваются, а разноименные — притягиваются. Это значит, что сила направлена туда же, куда заряд будет стремиться двигаться.

Например, у положительного заряда сила будет направлена в сторону отрицательного, если он есть где-то поблизости, и от положительного, так как одноименные заряды отталкиваются.

Согласно третьему закону Ньютона, силы одной природы возникают попарно, равны по величине, противоположны по направлению. Если взаимодействуют два неодинаковых заряда, сила, с которой больший заряд действует на меньший (В на А) равна силе, с которой меньший действует на больший (А на В).

в каком случае в проводниках электрический заряд не накапливается. Смотреть фото в каком случае в проводниках электрический заряд не накапливается. Смотреть картинку в каком случае в проводниках электрический заряд не накапливается. Картинка про в каком случае в проводниках электрический заряд не накапливается. Фото в каком случае в проводниках электрический заряд не накапливается

Интересно, что у различных законов физики есть некоторые общие черты. Вспомним закон тяготения. Сила гравитации также обратно пропорциональны квадрату расстояния, но уже между массами. И невольно возникает мысль, что в этой закономерности таится глубокий смысл. До сих пор никому не удалось представить тяготение и электричество, как два разных проявления одной и той же сущности.

Сила и тут изменяется обратно пропорционально квадрату расстояния, но разница в величине электрических сил и сил тяготения поразительна. Пытаясь установить общую природу тяготения и электричества, мы обнаруживаем такое превосходство электрических сил над силами тяготения, что трудно поверить, будто у тех и у других один и тот же источник. Нельзя говорить, что одно действует сильнее другого, ведь все зависит от того, какова масса и каков заряд.

Рассуждая о том, насколько сильно действует тяготение, мы не вправе говорить: «Возьмем массу такой-то величины», потому что мы выбираем ее сами. Но если мы возьмем то, что предлагает нам сама Природа: ее собственные числа и меры, которые не имеют ничего общего с нашими дюймами, годами — с любыми нашими мерами, вот тогда мы можем сравнивать.

Мы возьмем элементарную заряженную частицу, например, электрон. Две элементарные частицы, два электрона, за счет электрического заряда отталкивают друг друга с силой, обратно пропорциональной квадрату расстояния между ними, а за счет гравитации притягиваются друг к другу опять-таки с силой, обратно пропорциональной квадрату расстояния.

Закон Всемирного тяготения

G= 6,67 * 10⁻¹¹*11м³/кг*c² — гравитационная постоянная

m1 — масса первого тела [кг]

m2 — масса второго тела [кг]

r — расстояние между телами [м]

F — сила гравитационного притяжения [Н]

Тяготение относится к электрическому отталкиванию, как единица к числу с 42 нулями. Да, это огромное число! Исследователи перебирали все большие числа, чтобы понять — откуда это взялось. Одно из таких больших чисел — это отношение диаметра Вселенной к диаметру протона — как ни удивительно, это тоже число с 42 нулями. Нормально так перебрали.

Если вы смотрели Рика и Морти, то знаете о теории параллельных вселенных и о том, что эти вселенные расширяются. Из-за расширения вселенной постоянная сила тяготения меняется. Хотя эта гипотеза еще не опровергнута, у нас нет никаких свидетельств в ее пользу. Наоборот, некоторые данные говорят о том, что постоянная сила тяготения не менялась таким образом. Это громадное число по сей день остается загадкой.

От расширяющихся вселенных и мультиков перейдем к чему-то более приземленному — к задачам.

Задачка раз

Расстояние между двумя точечными электрическими зарядами уменьшили в 3 раза, каждый из зарядов увеличили в 3 раза. Во сколько раз увеличился модуль сил электростатического взаимодействия между ними?

Решение:

Возьмем закон Кулона.

Если расстояние уменьшилось в 3 раза, то знаменатель уменьшился в 9 раз. Каждый из зарядов увеличился в три раза, значит числитель увеличился в 9 раз. Уменьшаем знаменатель в 9 раз, тем самым увеличивая всю дробь в 9 раз, увеличиваем числитель в 9 раз, получаем, что вся дробь увеличилась в 81 раз. И это ответ.

Ответ: модуль сил электростатического взаимодействия увеличится в 81 раз.

Задачка два (последняя!)

Два одинаковых маленьких отрицательно заряженных металлических шарика находятся в вакууме на достаточно большом расстоянии друг от друга. Модуль силы их кулоновского взаимодействия равен F₁. Модули зарядов шариков отличаются в 5 раз.

Если эти шарики привести в соприкосновение, а затем расположить на прежнем расстоянии друг от друга, то модуль силы их кулоновского взаимодействия станет равным F₂. Определите отношение F₂ к F₁.

Решение:

Для начала найдем заряд шариков после соприкосновения.

Теперь по закону кулона найдем силу F2

И находим отношение сил

Ответ: отношение сил равно 1,8

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *