в каком случае в трехфазной сети по нулевому проводу ток протекать не будет
Почему ток в нулевом (нейтральном) проводе может превысить ток в фазном проводе
Почему ток в нулевом (нейтральном) проводе может превысить ток в фазном проводе
В трехфазной системе, при симметричной линейной нагрузке (например трехфазный электродвигатель) ток в нулевом проводе отсутствует. В реальности идеальной симметрии не существует, ток в нулевом проводе будет присутствовать, но он будет меньше фазных (если совсем отключить нагрузку с двух фаз он станет равен току оставшейся фазы).
Поскольку ток в нулевом проводе был меньше тока в фазном проводнике (раньше было мало нелинейных нагрузок), то для экономии нулевой проводник делался тоньше фазных, теперь сечение нулевого проводника совпадает с сечением фазного.
Примеры нелинейных нагрузок, способных вызвать рост тока в нулевом проводнике (если в них нет корректора коэффициента мощности):
Газоразрядные лампы
Светодиодные лампы
Дуговые и индукционные печи
Трансформаторы работающие в режиме насыщения
Компьютеры, мониторы, оргтехника
Телевизоры
Инверторные кондиционеры
Источники бесперебойного питания
Микроволновые печи
Импульсные блоки питания, инверторы, преобразователи частоты
Электродвигатели с регуляторами скорости вращения (инверторами)
Форма тока, потребляемого нелинейной нагрузкой, значительно отличается от чистой синусоиды (совсем на нее не похожа). Математически форму несинусоидального тока можно представить в виде суммы, уменьшающихся по амплитуде, синусоид кратных частоте питающего напряжения (50 Гц, 100 Гц, 150 Гц, 200 Гц….).
ГОСТ Р 50571.5.52-2011:
предлагает узнать ток и в нулевом проводнике и выбрать сечение всех проводников по наиболее нагруженному проводу;
следует указать, что ситуация ухудшается, если в трехфазной системе нагружены только две фазы. В этом случае ток высших гармоник в нейтральном проводнике будет суммироваться током дисбаланса;
если доля третьей гармоники превышает 33%, необходимо увеличить площадь поперечного сечения нейтрального проводника.
Открытие: без нулевого потенциала никакой ток никуда течь не может
Различия фазного и нулевого провода
Фазный провод (фаза) предназначен для подачи электричества к потребителю.
Назначение нулевого провода (нейтрального или нуля) состоит в выравнивании асимметрии напряжений при разном значении нагрузки в фазах.
Он присоединён к нулевым точкам источника и потребителя при их соединении в «звезду».
Присоединение нейтрального провода (трехфазная четырехпроводная сеть) является возможным только в том случае, когда источник и нагрузка соединены в «звезду».
При соединении в «треугольник» необходимость в нём отпадает, так как линейное и фазное напряжения в фазах одинаковы.
Чтобы понять разницу между линейным и фазным напряжением, необходимо понимать, что в трехфазной трехпроводной цепи линейное (напряжение между двумя фазными проводами) в основном составляет 380 В, а фазное — напряжение между фазой и нулем — в √3 раз меньше приблизительно 220 В.
Нейтральный провод заслужил свое название тем, что при работе устройств ток в нём, при одинаковой нагрузке трёх фаз, равен нулю. Сопротивление его невелико. Поэтому при перегрузке одной или нескольких фаз, ток в нем быстро возрастет. В схеме освещения его наличие является обязательным условием. В ином случае не гарантируется равномерность освещения.
В зависимости от роли, нулевой провод может быть рабочим, защитным, совмещенным.
Рабочий обозначается латинской буквой N и выполняется голубым цветом в европейских странах. В некоторых других странах цвет может быть серым либо белым.
Защитный обозначается РЕ. Он предназначен для безопасности в случае попадания потенциала на корпус электроприбора. В нормальном режиме он обесточен, а при поломке является проводником, который отведет от электроприбора опасный потенциал в землю. Цвет этой жилы желто-зеленый.
В некоторых системах нулевой провод совмещен с защитным. В таком случае маркировка будет обозначена как PEN и окраска этой жилы будет синей с полосками на концах желто-зеленого цвета.



Электропроводка в доме: азы
Прячем провода. Проводка должна быть скрытой — монтироваться в штробах на стенах, в кабель-каналах, глухих (неразборных) коробах, стяжке пола и т.д. Уложенные открытым способом провода вызовут недовольство инспектора Энергонадзора, который будет принимать объект вашего загородного дома.
На фото:
Провода в стене прокладываются в гофротрубе, а потом зашпаклевываются.
Исключение могут составлять те случаи, когда скрытый монтаж по тем или иным причинам невозможен. Этот нюанс обязательно должен быть отражен в проектной документации.
Особенности нейтрального провода
Нулевой провод предотвращает нежелательные ситуации при аварийных режимах работы. Без его наличия в случае фазного короткого замыкания двух фаз напряжение в третьей фазе мгновенно возрастет в √3 раз. Это губительно скажется на оборудовании, которое питает этот источник. В случае наличия нуля в такой ситуации, напряжение не изменится.
При обрыве одной из фаз в трехфазной трехпроводной системе (без нуля), напряжение на двух оставшихся фазах уменьшится. Они окажутся соединенными последовательно, а при этом виде соединения напряжение распределяется между потребителями в зависимости от их сопротивления.
При обрыве одной из фаз в трехфазной четырёхпроводной системе, напряжение в двух оставшихся фазах своего значения не изменит.
Предохранители в нулевой провод не устанавливают из-за его большой значимости, потому как его обрыв является нежелательным
Так как большую часть времени работы электроустановок ток в этом проводе либо равен нулю, либо незначителен, нет смысла изготавливать его такого же сечения, как и сечение фазных. Чаще всего, из соображений экономии, он имеет меньшее сечение жилы, нежели сечение жил фаз в одной электроустановке. Если защитный провод не совмещен с нулевым, его сечение выполняют вдвое меньше, нежели, у фазного провода.
Укладка проводов в гофрошланг или трубу
Объединять между собой рабочий и защитный нулевой провода при однофазной разводке категорически запрещено. Вы лишь создаете видимость наличия системы защитного заземления. Однако на самом деле такой защиты здесь нет. Более того, если по каким-либо причинам фазовый и нулевой рабочий проводник поменяются местами, то защитный нулевой провод, как и корпуса всех подключенных к нему электроприборов, окажется под напряжением.
Запасаемся гофрой. При прокладывании проводов внутри стены или стяжки пола применяется специальный пластиковый гофрошланг или ПНД-труба (труба из полиэтилена низкого давления). Последняя является предпочтительной, так как ее гладкая внутренняя поверхность позволяет сравнительно легко заменить проводку в случае возникновения такой необходимости. При этом не потребуется заново долбить стену или вскрывать пол: провода просто вытягиваются из трубы, а на их место укладываются новые.
На фото:
Но это возможно только при сравнительно небольшой протяженности проводки — до нескольких десятков метров.
Классификация нейтралей линий электропередач
Назначение линий электропередач весьма разнообразно. А также разнообразна аппаратура для их защиты от утечек и коротких замыканий. В связи с этим нейтрали классифицируются на три вида:
Если линия электропередач напряжением от 0,38 кВ до 35 кВ имеет небольшую длину, а количество подключенных потребителей велико, то применяется глухозаземленная нейтраль. Потребители трехфазной нагрузки получают питание, благодаря трем фазам и нулю, а однофазной — одной из фаз и нулю.
При средней протяженности линий электропередач напряжением от 2 кВ до 35 кВ и небольшим количеством потребителей, подключенных к данной линии, находят применение изолированные нейтрали. Они широко используются для подключений трансформаторных подстанций в населённых пунктах, а также мощного электрооборудования в промышленности.
В сетях, с напряжением 110 кВ и выше, с большой протяженностью линий электропередач, применяется эффективно заземлённая нейтраль.
Другие причины нагрева
Провода и контакты, как уже было сказано, могут греться из-за возросшей нагрузки. Здесь есть три варианта проблемы:
Способы устранения проблемы
Если вы заметили греющий кабель, то необходимо знать, как можно решить данную проблему. Существует несколько популярных способов определения неисправности и её устранения.
Бытовая техника
Бытовая техника – это основная причина перегрева электрической сети. Чрезмерный нагрев проводников происходит из-за большой мощности потребителя и не рассчитанного на такую мощность кабеля. Но если причина не в этом, то простая последовательность поможет быстро найти и устранить неисправность.
Как устранить:
Как устранить:
Электропроводка
Излишнее нагревание проводов в домашней электропроводке сопровождается запахом горелой изоляции и приводит к неправильной работе бытовой техники. В некоторых случаях возможен даже выход из строя электрических приборов.
Последовательность определения неисправности:
Важно! Многожильные медные провода необходимо сначала опрессовать гильзой, после чего наконечник закрепить на шине с помощью болтового соединения.

Плохой контакт проводника и автоматического выключателя
Способы устранения проблемы
Если вы заметили греющий кабель, то необходимо знать, как можно решить данную проблему. Существует несколько популярных способов определения неисправности и её устранения.
Бытовая техника
Бытовая техника – это основная причина перегрева электрической сети. Чрезмерный нагрев проводников происходит из-за большой мощности потребителя и не рассчитанного на такую мощность кабеля. Но если причина не в этом, то простая последовательность поможет быстро найти и устранить неисправность.
Как устранить:
Нагрузка на ноль в трехфазной сети
Фразу об «отгорании нуля» слышал, наверное, каждый из нас. Почему же таинственный ноль имеет тенденцию всё время отгорать? Для того чтобы внести некоторую ясность в этот вопрос, необходимо вспомнить кое-что из курса физики средней школы.
Для однофазной цепи «ноль» — это просто название для проводника, не находящегося под высоким потенциалом относительно земли. Второй проводник в однофазной цепи называется «фазой» и имеет относительно земли высокий потенциал переменного напряжения (в нашей стране чаше всего 220 В). Никакой тенденции к отгоранию однофазный ноль не проявляет.
Беда в том, что все электрические коммуникации (т. е. линии электропередачи) являются трёхфазными. Рассмотрим схему «звезда», в которой появляется понятие «нулевой провод».
Переменные токи каждой фазы в трёх одинаковых нагрузках сдвинуты по фазе ровно на одну треть и в идеале компенсируют друг друга, поэтому нагрузка в такой схеме обычно называется трёхфазной сосредоточенной нагрузкой. При такой нагрузке векторная сумма токов в средней точке равна нулю. Нулевой провод, подключённый к средней точке, практически не нужен, т. к. ток через него не течёт. Незначительный ток появляется только тогда, когда нагрузки на каждой фазе не полностью одинаковые и не полностью компенсируют друг друга. И действительно, на практике многие виды трёхфазных четырёхжильных кабелей имеют нулевую жилу вдвое меньшего сечения. Нет смысла тратить дефицитную медь на проводник, по которому ток практически не течёт. Никакой тенденции к отгоранию трёхфазный ноль при трёхфазной сосредоточенной нагрузке тоже не проявляет.
Чудеса начинаются тогда, когда к трёхфазным цепям подключаются однофазные нагрузки. На первый взгляд это тот же самый случай, но есть одно маленькое отличие. Каждая однофазная нагрузка представляет собой совершенно случайно выбранное устройство, т. е. однофазные нагрузки не одинаковые. Глупо думать, что различные однофазные потребители всегда будут потреблять одинаковый ток. Однофазные нагрузки в трёхфазных цепях всегда стараются максимально приблизить к трёхфазным нагрузкам. Это означает, что при подключении однофазных потребителей в трёхфазную сеть их стараются так распределить по мощности по разным фазам, чтобы на каждую фазу приходилась примерно одинаковая нагрузка. Но полного равенства никогда не достигается и понятно почему. Потребители случайным образом включают и выключают своё электрооборудование, тем самым постоянно меняя нагрузку на свою фазу.
В результате полной компенсации фазных токов в средней точке практически никогда не происходит, но ток в нулевом проводе обычно не достигает своего максимального значения равного самому большому току по одной из фаз. То есть ситуация неприятная, но предсказуемая. Вся проводка рассчитана на неё, и отгорания нуля обычно не происходит, а если и происходит, то крайне редко.
Такая ситуация сложилась к 90-м годам XX века. Что же изменилось к этому времени? В обиход широко вошли импульсные источники питания. Такой источник питания практически у всей современной бытовой аппаратуры (телевизоров, компьютеров, радиоприёмников и т. п.). Весь ток такого источника протекает в течение только одной трети полупериода, т. е. характер потребления тока очень сильно отличается от характера потребления тока классическими нагрузками. В результате в трёхфазной сети возникают дополнительные импульсные токи, не компенсирующиеся в средней точке. Не забудьте прибавить к этому некомпенсированные токи, вызванные наличием однофазных нагрузок в трёхфазной сети. В такой ситуации по нулевому проводу часто течёт ток, близкий или превышающий самый большой ток одной из фаз. Это и есть условия, благоприятные для «отгорания нуля».
Проводники в трёхфазных кабелях имеют одинаковое сечение, рассчитываемое согласно максимальной мощности нагрузки, следовательно, нулевой проводник имеет такое же сечение, как и любой из фазных проводников, а ток через него сегодня может течь больший, чем через любой фазный проводник. Получается, что нулевой проводник работает в условиях перегрузки, и вероятность его отгорания возрастает.
Так в 90-х годах прошлого века мы незаметно для самих себя вступили в эпоху «отгорания нуля». С каждым днём ситуация всё ухудшается. Высокую вероятность «отгорания нуля» необходимо учитывать и при построении домашней электропроводки.
Фразу об «отгорании нуля» слышал, наверное, каждый из нас. Почему же таинственный ноль имеет тенденцию всё время отгорать? Для того чтобы внести некоторую ясность в этот вопрос, необходимо вспомнить кое-что из курса физики средней школы.
Для однофазной цепи «ноль» — это просто название для проводника, не находящегося под высоким потенциалом относительно земли. Второй проводник в однофазной цепи называется «фазой» и имеет относительно земли высокий потенциал переменного напряжения (в нашей стране чаше всего 220 В). Никакой тенденции к отгоранию однофазный ноль не проявляет.
Беда в том, что все электрические коммуникации (т. е. линии электропередачи) являются трёхфазными. Рассмотрим схему «звезда», в которой появляется понятие «нулевой провод».
Переменные токи каждой фазы в трёх одинаковых нагрузках сдвинуты по фазе ровно на одну треть и в идеале компенсируют друг друга, поэтому нагрузка в такой схеме обычно называется трёхфазной сосредоточенной нагрузкой. При такой нагрузке векторная сумма токов в средней точке равна нулю. Нулевой провод, подключённый к средней точке, практически не нужен, т. к. ток через него не течёт. Незначительный ток появляется только тогда, когда нагрузки на каждой фазе не полностью одинаковые и не полностью компенсируют друг друга. И действительно, на практике многие виды трёхфазных четырёхжильных кабелей имеют нулевую жилу вдвое меньшего сечения. Нет смысла тратить дефицитную медь на проводник, по которому ток практически не течёт. Никакой тенденции к отгоранию трёхфазный ноль при трёхфазной сосредоточенной нагрузке тоже не проявляет.
Чудеса начинаются тогда, когда к трёхфазным цепям подключаются однофазные нагрузки. На первый взгляд это тот же самый случай, но есть одно маленькое отличие. Каждая однофазная нагрузка представляет собой совершенно случайно выбранное устройство, т. е. однофазные нагрузки не одинаковые. Глупо думать, что различные однофазные потребители всегда будут потреблять одинаковый ток. Однофазные нагрузки в трёхфазных цепях всегда стараются максимально приблизить к трёхфазным нагрузкам. Это означает, что при подключении однофазных потребителей в трёхфазную сеть их стараются так распределить по мощности по разным фазам, чтобы на каждую фазу приходилась примерно одинаковая нагрузка. Но полного равенства никогда не достигается и понятно почему. Потребители случайным образом включают и выключают своё электрооборудование, тем самым постоянно меняя нагрузку на свою фазу.
В результате полной компенсации фазных токов в средней точке практически никогда не происходит, но ток в нулевом проводе обычно не достигает своего максимального значения равного самому большому току по одной из фаз. То есть ситуация неприятная, но предсказуемая. Вся проводка рассчитана на неё, и отгорания нуля обычно не происходит, а если и происходит, то крайне редко.
Такая ситуация сложилась к 90-м годам XX века. Что же изменилось к этому времени? В обиход широко вошли импульсные источники питания. Такой источник питания практически у всей современной бытовой аппаратуры (телевизоров, компьютеров, радиоприёмников и т. п.). Весь ток такого источника протекает в течение только одной трети полупериода, т. е. характер потребления тока очень сильно отличается от характера потребления тока классическими нагрузками. В результате в трёхфазной сети возникают дополнительные импульсные токи, не компенсирующиеся в средней точке. Не забудьте прибавить к этому некомпенсированные токи, вызванные наличием однофазных нагрузок в трёхфазной сети. В такой ситуации по нулевому проводу часто течёт ток, близкий или превышающий самый большой ток одной из фаз. Это и есть условия, благоприятные для «отгорания нуля».
Проводники в трёхфазных кабелях имеют одинаковое сечение, рассчитываемое согласно максимальной мощности нагрузки, следовательно, нулевой проводник имеет такое же сечение, как и любой из фазных проводников, а ток через него сегодня может течь больший, чем через любой фазный проводник. Получается, что нулевой проводник работает в условиях перегрузки, и вероятность его отгорания возрастает.
Так в 90-х годах прошлого века мы незаметно для самих себя вступили в эпоху «отгорания нуля». С каждым днём ситуация всё ухудшается. Высокую вероятность «отгорания нуля» необходимо учитывать и при построении домашней электропроводки.
Даже те, кто не имеет электротехнического образования, наверняка слышали о такой аварийной ситуации, как перекос фаз. В некоторых предыдущих публикациях мы уже упоминали, чем грозит обрыв нуля, и кратко упоминали о способах защиты от несимметрии фазных напряжений. Сегодня мы более подробно рассмотрим данную тему.
Что такое обрыв нуля?
Для полноценного ответа на этот вопрос необходимо привести примеры штатной работы трехфазной схемы ввода электроснабжения. В качестве примера приведем упрощенный вариант с вводом для этажного распределительного щита.

Как видно из рисунка, каждая из квартир на этаже запитана от отдельной фазы (L1 – L3) и общего нуля. Что формирует в бытовой сети каждой квартиры фазное напряжение 220 вольт (L1N=L2N=L3=220 В.). В данном случае используется схема питания TN-C-S, где задействована шина заземления PE, соединяемая в РУ здания с нулем. Приведенная система сбалансированная, поскольку ток нагрузки в фазных проводах суммируется через нулевую линию, что снижает вероятность перекоса фазных напряжений.
Заметим, что полностью исключить данное явление довольно сложно, поскольку сопротивление нагрузок на каждой фазе может различаться. К примеру, в квартире_1 включен кондиционер и стиральная машина, в квартире_2 хозяин запустил бойлер и электропечку, а в квартире_3 жильцы отсутствуют и все бытовые приборы отключены от сети. По итогу, в трехфазной системе питания возникнет несимметрия напряжений.
Теперь рассмотрим работу сети в нештатном режиме, когда происходит отгорание нуля.
Что происходит в электросети при обрыве нуля?
Рассмотрим отдельно, изменение режима работы трехфазной сети при обрыве магистрального нуля и как поведет себя однофазная электрическая проводка, если отгорание нулевого проводника произойдет на вводе.
Отгорание нуля в трехфазной сети

В данном случае обрыв общего нулевого провода приведет к тому, что движение электрического тока по нему прекратиться. В результате все квартиры R1-R3 будут запитаны по типу подключения «звезда без нулевой магистрали». Другими словами, при обрыве нуля на каждую квартиру будет поступать не фазное, а линейное напряжение.

Для примера предлагаем рассмотреть, как сложится ситуация в квартирах 1 и 2. Нагрузка электрических приборов суммируется в данном контуре при прохождении через него тока I12. Соответственно, уровень напряжения для квартир установится в зависимости от нагрузки подключенных к сети приборов. То есть: U1 = I12*R1, а U2 = I12* R2. Из этого следует, что суммарная величина силы тока составит I12 = U12 / (R1+R2) :
Обратим внимание, что суммарное напряжение контура будет равно линейному в данной электросети, то есть U12 = 380 вольт. Но при этом показатели U1 и U2 могут варьироваться в диапазоне 0-380 вольт и, естественно, существенно отличаться друг от друга. На данные значения может влиять как нагрузка подключенных приборов в каждой из квартир, так и ее активная и пассивная составляющая.
В результате если произойдут проблемы с нейтралью трансформатора (нулем источника), велика вероятность выхода из строя подключенных к сети приборов. Причина – повышение уровня напряжения в сети.
Обрыв нуля в однофазной сети
В данной ситуации последствия будут не такими печальными, как в описанном выше случае, но, тем не менее, если отгорает вводный ноль в системе TN-C, это может представлять серьезную опасность для жизни человека.

Для однофазных нагрузок обрыв нуля будет аналогичен отключению напряжения, за исключением того фактора, что на фазном проводе останется потенциал, представляющий опасность для жизни. Причем, он также проявится там, где был ранее защитный ноль в контактах розеток. Если корпуса электроприборов заземлялись рабочим нулем, то весьма велика вероятность негативных последствий. В системах TN-C-S фактор риска существенно сокращается, за счет использования PEN проводника.
Как защититься?
Узнав об опасности, представляемой потерей нуля, предлагаем рассмотреть варианты защиты от данного явления:
В приведенных выше вариантах мы рассматривали защиту от перекосов в глобальных масштабах, конечный потребитель может обеспечить должный уровень защиты значительно проще. Для этого достаточно установить реле контроля напряжения, в котором указать допустимый минимальный и максимальный уровень. Как правило, это ±10% от нормы.
Подведем итоги
Безусловно, что вероятности аварий носят случайный характер, максимум, что можно сделать в таких ситуациях, — принять необходимые меры для обеспечения защиты. Но помимо этого не будет лишним вовремя определить аварийную ситуацию по характерным признакам. В первую очередь отгорание нулевого магистрального провода приводит к перенапряжению сети. Обнаружив первые признаки этого явления, следует отключить все электроприборы.
Сделать это оперативно и самостоятельно практически нереально. Временной промежуток для этого слишком коротким, поэтому следует установить на электрическом щитке специальные приборы, реагирующие на обрыв нуля. Как только напряжение выйдет за установленные пределы, реле контроля напряжения произведет защитное отключение.
Полностью доверять системе защиты не стоит. Может случиться так, что при наличии характерных признаков перепадов напряжения, отключение питания не произойдет. Поэтому имеет смысл перечислить наиболее вероятные проявления для данного явления:
Собственно, только многоуровневая защита может обеспечить максимальную безопасность.


