в каком случае выдается заключение по оценке качества цементирования скважины
Методы оценки качества цементирования скважин
Общепринятыми показателями качества крепления обсадных колонн являются: подъем цементного раствора на расчетную высоту, сплошность цементного камня в интервале цементирования, однородная плотность тампонажного раствора, герметичность колонного и заколонного пространства.
Герметичность заколонного пространства определяется, по данным геофизических исследований, методами акустической цементометрии и СГДТ (скважинным дефектомером-толщиномером).
Для оценки качества цементирования скважин необходимо применять оптимальный комплекс геофизических исследований (термометрия, радиоактивный и акустический методы).
Метод термометрии следует применять в случае невозможности использования радиоактивного и акустического методов из-за ограничений (малый диаметр скважины, небольшая разница в плотностях бурового и
тампонажного растворов и т.д.)
Не рекомендуется использования метод термометрии по истечении времени тепловыделения формирующимся цементным камнем, а также в высокотемпературных скважинах и обсадных колоннах, зацементированных шлаковым или гельцементным растворами.
При разнице в плотностях бурового и тампонажного растворов более 300 кг/м3 для оценки характера распределения цементного камня за колонной, изменения его плотности, а также эксцентриситета колонны рекомендуется применять радиоактивные цементомеры ЦМТУ-1 и СГДГ-2.
Для определения состояния контакта цементного камня с колонной и породой следует применять акустические цементомеры АКЦ-1 или АКЦ-2.
В целях получения наибольшей информации о качестве цементирования скважин рекомендуется проводить комплексные исследования термометрией, акустическим и радиоактивным цементомерами до и после вскрытия продуктивных пластов перфорацией.
Оценка качества цементирования скважин. Для оценки качества цементирования скважин необходимо, как правило, применять оптимальный комплекс геофизических исследований (термометрия
Для оценки качества цементирования скважин необходимо, как правило, применять оптимальный комплекс геофизических исследований (термометрия, радиоактивный и акустический методы).
Метод термометрии следует применять в случае невозможности использования радиоактивного и акустического методов из-за ограничений (малый диаметр скважины, небольшая разница в плотностях бурового и тампонажного растворов и т.д.).
Не рекомендуется использовать метод термометрии по истечении времени тепловыделения формирующимся цементным камнем. а также в высокотемпературных скважинах и обсадных колоннах, зацементированных шлаковым или гельцементным растворами.
При разнице в плотностях бурового и тампонажного растворов более 300 кг м для оценки характера распределения цементного камня за колонной, изменения его плотности, а также эксцентриситета колонны рекомендуется применять радиоактивные цементомеры ЦМТУ-1 и СГДГ-2.
Для определения состояния контакта цементного камня с колонной и породой следует применять акустические цементомеры АКЦ-1 или АКЦ-2.
В целях получения наибольшей информации о качестве цементирования скважин рекомендуется проводить комплексные исследования термометрией, акустическим и радиоактивный цементомерами до и после вскрытия продуктивных пластов перфорацией.
Герметичность обсадной колонны, резьб, оснастки и зацементированного интервала проверяют путем опрессовки. Продавочную жидкость в колонне заменяют на воду. При опрессовке внутреннее давление должно быть не менее, чем на 10 % выше, чем ожидаемое давление в период опробывания или эксплуатации скважины. Если колонну целесообразно опрессовывать по секциям, испытываемую секцию отделяют от нижерасположенных при помощи пакера.
Во всех случаях давление опрессовки должно быть не ниже:
Диаметр | 426-377 | 351-273 | 245-219 | 194-178 | 146-140 | 127-114 |
колонны, мм | ||||||
Давление | 7.5 | |||||
опрессовки. МПа |
Колонна считается герметичной, если после замены продавочной жидкости водой не наблюдается перелива жидкости и выделение газа на устье и если в период выдерживания колонны под опрессовочным давлением Р0пр > 7 МПав течение 30 мин давление не снижается более, чем на 0.5 МПа: при Ропр
Герметичность колонны в скважинах, в которых в период эксплуатации. освоения давление на устье не превышает атмосферного, дополнительно проверяют путем снижения уровня жидкости. При этом рекомендуется снижать уровень на 20-50 м ниже того, при котором предполагается вызывать приток пластовой жидкости. Глубина снижения уровня не должна превышать величины, при которой избыточное наружное давление может стать больше сопротивляемости труб на смятие. Глубина снижения уровня должна быть не ниже:
Глубина скважины, м | 500-1000 | 1000-1500 | 1500-2000 |
Наим. глубина снижения уровня, м |
Если продавливание осуществлялось на промывочной жидкости, в качестве которой использовалась техническая вода, уровень не снижают, а ограничивают ожиданием.
Колонну считают герметичной, если за 8 часов наблюдения уровень жидкости в ней не поднимется более:
Диаметр колонны, мм | Глубина снижения уровня, м | 1000 | |||
114-219 | 0.80 0.50 | 1.10 0.80 | 1.40 1.10 | 1,70 1.30 | 2.00 1,50 |
Если колонна спущена в несколько приемов, герметичность обычно проверяют после затвердевания тампонажного раствора гидравлической опрессовкой сначала верхнего участка, затем следующих. Если один из них оказался не герметичным, устраняют обнаруженные дефекты и повторно опрессовывают. и лишь затем проверяют герметичность следующего участка.
В газовых скважинах герметичность устьевой части дополнительно проверяют опрессовкой воздухом. Для этого в обсадную колонну спускают НКТ. межколонное пространство герметизируют при помощи превентора или фонтанной арматуры, восстанавливают обратную промывку водой, в которую нагнетают воздух. После того как давление нагнетания достигнет максимума, задвижку на устье межколонного пространства закрывают, и в НКТ цементировочным насосом закачивают воду до тех пор. пока давление сжатого воздуха в межколонном пространстве не достигнет заданного давления.
Если на кондукторе или промежуточной колонне должен устанавливаться превентор., то также опрессовывают заколонное пространство данной колонны. При этом необходимо, чтобы башмак колонны находился в интервале непроницаемых пород.
1—пьедестал; 2 — нажимная гайка; 3 — металлическое кольцо; 4, 5 — уплотнительиые кольца; 6 — уплотнитель; 7 — корпус головки; 8 — контрольные отверстия с пробками; 9— клинья; 10 — фланец; 11 — уплотнительная манжета; 12, 13, 14— обсадные колонны
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Оценка качества цементирования скважин
Для оценки качества цементирования скважин необходимо, как правило, применять оптимальный комплекс геофизических исследований (термометрия, радиоактивный и акустический методы).
Метод термометрии следует применять в случае невозможности использования радиоактивного и акустического методов из-за ограничений (малый диаметр скважины, небольшая разница в плотностях бурового и тампонажного растворов и т.д.)
Не рекомендуется использовать метод термометрии по истечении времени тепловыделения формирующимся цементным камнем, а также в высокотемпературных скважинах и обсадных колоннах, зацементированных шлаковым или гельцементным раствором.
При разнице в плотностях бурового и тампонажного растворов более
0,3 г/см 3 для оценки характера распределения цементного камня за колонной, изменения его плотности, а также эксцентриситета колонны рекомендуется применять радиоактивные цементомеры ЦМТУ-1 и СГДГ-2.
Для определения состояния контакта цементного камня с колонной и породой следует применять акустические цементомеры АКЦ-1 или AKЦ-2.
В целях получения наибольшей информации о качестве цементирования скважин рекомендуется проводить комплексные исследования термометрией, акустическим и радиоактивный цементомерами до и после вскрытия продуктивных пластов перфорацией.
Герметичность обсадной колонны, резьб, оснастки и зацементированного интервала проверяют путем опрессовки. Продавочную жидкость в колонне заменяют на воду. При опрессовке внутреннее давление должно быть не менее чем на 10 % выше, чем ожидаемое давление в период опробывания или эксплуатации скважины. Если колонну целесообразно опрессовывать по секциям, отделяя испытываемую секцию от нижерасположенных при помощи пакера, то
Во всех случаях давление опрессовки должно быть не ниже
426-377 | 351-273 | 245-219 | 194-178 | 146-140 | 127-114 |
7,5 |
Колонна считается герметичной, если после замены продавочной жидкости водой не наблюдается перелива жидкости и выделение газа наустье и если в период выдерживания колонны под опрессовочным давлением в течении 30 мин давление не снижается более чем на 0,5 МПа; при Ропр = 7 МПа не более 0,3 МПа. Контроль ведут через 5 минут после создания заданного давления.
Герметичность колонны в скважинах, в которых в период эксплуатации, освоения, давление на устье не превышает атмосферного дополнительно проверяют путем снижения уровня жидкости. При этом рекомендуется снижать уровень на 20-50м ниже того, при котором предполагается вызывать приток пластовой жидкости. Глубина снижения уровня не должна превышать величины, при которой избыточное наружное давление может стать больше сопротивляемости труб на смятие. Глубина снижения уровня должна быть не ниже:
Глубина скважины | 500-1000 | 1000-1500 | 1500-2000 |
Наим. глубина снижения уровня |
Если продавка осуществлялась на промывочной жидкости, в качестве которой использовалась техническая вода, уровень не снижают, а ограничивают ожиданием.
Колонну считают герметичной, если за 8 часов наблюдения уровень жидкости в ней не поднимется более:
Глубина снижения уровня
кол. | 400-600 | 600-800 | 800-1000 | ||
114-219 | 0,80 | 1,10 | 1,40 | 1,70 | 2,00 |
0,50 | 0,80 | 1,10 | 1,30 | 1,50 |
Если колонна спущена в несколько приемов, герметичность обычно проверяют после затвердевания тампонажного раствора путем гидравлической опрессовки сначала верхнего участка, затем следующих. Если один из них оказался не герметичным, устраняют обнаруженные дефекты, и повторно опрессовывают, и лишь затем проверяют герметичность следующего участка.
Если на кондукторе или промежуточной колонне должен устанавливаться превентор, то его также опрессовывают. При этом необходимо чтобы башмак колонны находился в интервале непроницаемых пород.
Лекция 15. Испытание перспективных горизонтов.
Задачи и сущность опробывания
Окончательное решение о наличии нефти и газа в том или ином пласте, о их промышленных запасах можно получить только в результате прямого опробывания, т.е. получение притока нефти или газа из пласта. В задачи опробывания перспективных горизонтов вводят:
— получение притока пластовой жидкости из опробываемого горизонта;
— отбор пробы пластовой жидкости для последующего лабораторного анализа;
— оценка продуктивности объекта;
— оценка коллекторских свойств пласта;
— оценка степени загрязненности приствольной зоны пласта.
Сущность процесса опробывания заключается в изоляции опробываемого пласта от всех остальных проницаемых объектов и от воздействия столба промывочной жидкости, создания достаточно большой разницы между давлением в пласте и давлением в скважине с целью получения притока пластовой жидкости, регистрации объемной скорости притока и характера изменения давления в скважине против данного объекта на протяжении всего периода опробывания, а также отбор достаточной для анализа пробы пластовой жидкости.
Решить эти задачи можно как в процессе бурения, сразу же после вскрытия данного продуктивного горизонта, так и после завершения процесса бурения всей скважины. В последнем случае решение задач опробывание совмещают с детальным испытанием объекта, если из него получают приток жидкости.
Опробывание пласта в период бурения позволяет получать более достаточные данные, поскольку степень загрязненности пласта меньше. Кроме того, если опробованные пласты оказались непродуктивными, то отпадает необходимость спуска и цементирования обсадной колонны; если непродуктивным оказалась часть объекта, то отпадает необходимость детального испытания его, перфорация обсадной колонны против таких объектов, а также установка разобщающих мостов.
К опробыванию после окончания бурения прибегает лишь в крайних случаях:
— если породы крайне неустойчивы и эффективное опробывание в процессе бурения невозможно или ненадежности разобщения данного объекта от других проницаемых объектов и воздействия давления столба промывочной жидкости;
— если аппаратура непригодна для опробывания данного объекта, например, вследствие высокой температуры.
Для опробывания объектов в процессе бурения используют специальные аппараты. Их можно выделить в три группы.
1. Аппараты, спускаемые на каротажном кабеле. С их помощью можно отобрать небольшое количество нефти или газа (5-20 дм 3 ), зарегистрировать характер изменения давления и температуры за период отбора.
2. Аппараты, спускаемые на колонне бурильные труб. Их называют пластоиспытателями.
Пластоиспытатели, спускаемые на бурильных трубах
Основные узлы трубного пластоиспытателя типа КИИ (комплект испытательных инструментов) УфНИИ, ГрозНИИ.
В состав КИИ входят:
В процессе опробывания возможна кольматация щелей фильтра. При этом скорость поступления пластовой жидкости уменьшается. Для разграничения уменьшения скорости притока вследствие кольматации от других причин необходимо знать изменение давления. Для этого в обеих секциях помещают глубинные манометры. Манометр в нижней секции регистрирует давление в скважине. Различие в показаниях манометров является признаком закупорки щелей. К нижней секции снизу присоединяют опорный башмак. Фильтр должен находится непосредственно против того участка пласта, из которого предстоит получить приток. Если расстояние от этого участка до забоя больше длины фильтра, то к последнему присоединяют хвостовик. На конце хвостовика навинчивают башмак.
При постановке башмака на забой создается частью веса инструмента нагрузка, корпус пакера будет перемещаться вниз относительно передвижного штока, который через нижний переводник соединен с фильтром. При перемещении корпуса вниз нажимная головка прижимаем резиновый элемент к металлической опоре, и сдавливает его в осевое направлении: при этом в радиальном направлении резиновый элемент расширяется и плотно прижимается к стенкам скважины, лепестковая опора препятствует затеканию резины и служит нижней опорой. По окончании опробывания при приложении осевой растягивающей силы элемент сокращается в радиальном направлении, а пластины лепестковой опоры воз вращаются в исходное транспортное положение
— в период опробывания нижние узлы могут быть прихвачены.
Опробыватель. В его состав входят:
— уравнительный клапан (для перетока жидкости промывочной при спуске пластоиспытателя);
— главный или впускной клапан (должен препятствовать поступлению промывочной жидкости в полость пластоиспытателя из скважины при спуске);
— тормозная камера с поршнем (гидравлическое реле времени) предназначена для задержки открытия впускного клапана на некоторый наперед заданный интервал времени после создания на пластоиспытатель осевой сжимающей силы;
— штуцер для ограничения скорости притока пластовой жидкости в период опробывания и уменьшения ударной нагрузки на хвостовик в момент открытия впускного клапана;
— шток и корпус, предназначенные для размещения названных устройств, а также для передачи осевых усилий и вращающего момента от колонны труб к расположенным ниже узлам.
Гидравлическое сопротивление канала можно регулировать изменением его длины и вязкости жидкости в камере. Для этого поршень изготовлен из двух деталей, соединяемых между собой при помощи резьбы.
Запорный поворотный клапан служит для прекращения притока пластовой жидкости в полость колонны бурильных труб при закрытом уравнительном клапане. Задачи опробывания более полно решаются при использовании запорного клапана многократного действия.
Пробоотборники. Для отбора пробы пластовой жидкости в период опробывания при давлении, максимально приближающемся к пластовому, используют специальные пробоотборники. Они устанавливаются ниже запорного клапана. При создании осевой нагрузки на пластоиспытатель для пакеровки нагрузка передается на патрубок, размещенный в корпусе пробоотборника. При его перемещении открываются размещенные по его торцам два клапана, при снятии нагрузки патрубок возвращается в первоначальное положение и клапана закрываются. Отсеченная жидкость вместе с прибором подымается на устье.
Способ оценки качества цементирования нефтегазовых скважин
Владельцы патента RU 2629724:
Изобретение относится к области геофизических исследований и может быть использовано для контроля технического состояния нефтяных и газовых скважин. Технический результат заключается в повышении достоверности и точности оценки качества цементирования обсадных колонн нефтегазовых скважин. Способ оценки качества цементирования нефтегазовых скважин включает акустическое секторное сканирование заколонного пространства с измерением амплитуд отраженного сигнала от внутренней стенки обсадной трубы. Выявляют сообщающиеся дефекты цементирования среди множества хаотически распределенных участков с различным состоянием цементирования и количественно оценивают их протяженность вдоль колонны и величину их раскрытости по периметру. Выполняют последовательный анализ данных по секторам на каждом кванте глубины. Выделяют сектора с дефектами цементирования по периметру и вдоль заколонного пространства. В случае совпадения секторов с дефектами цементирования последующего и предыдущего квантов глубины сектора последующего кванта приобщают к секторам предыдущего кванта. По длительности совпадения секторов с такими дефектами судят о протяженности сквозных каналов с дефектами цементирования в заданном интервале исследований, а по количеству секторов на каждом кванте оценивают их раскрытость по периметру в градусах. Также оценивают раскрытость в градусах изолированных секторов с дефектами цементирования по периметру на отдельных квантах глубины, не примыкающих к выделенным сквозным каналам. Определяют отдельный вклад сквозных каналов с дефектами цементирования и изолированных дефектов цементирования в суммарном дефекте цементирования. 1 ил.
Изобретение относится к области геофизических исследований и может быть использовано для контроля технического состояния нефтяных и газовых скважин.
Контроль качества цементирования обсадных колонн на этапе строительства и в процессе эксплуатации скважин является одной из важнейших задач промысловой геофизики. Основными дефектами цементирования, обуславливающими негерметичность заколонного пространства, являются продольные каналы и кольцевые зазоры на границе контакта цемента и колонны. Для выявления таких дефектов цементирования скважин эффективными являются геофизические методы, основанные на использовании сканирующей аппаратуры.
Наиболее близким техническим решением к предлагаемому является способ оценки качества цементирования обсадных колонн, при котором осуществляется выделение дефектов цементного камня с использованием метода акустического сканирования, основанного на измерении параметров отраженного сигнала от внутренней стенки обсадной трубы по 30 секторам [2]. Такой способ обеспечивает высокое разрешение выделяемых дефектов цементирования по периметру и вдоль обсадной колонны. Основными параметрами, используемыми для определения плотности контакта цемента с обсадной колонной, является относительное изменение амплитуды сигнала реверберации по секторам, нормированной по значениям при плотном контакте колонны с цементом и в свободной колонне от 0 до 1 усл. ед. Предлагаются градации состояния контакта по 4 уровням сигнала: плотный контакт 0-0.2 усл. ед., кавернозный цемент (частичный контакт) 0.2-0.9 усл. ед., отсутствие контакта 0.9-1.0 усл. ед. и канал в цементе, если 3-10 секторов подряд имеют значение 0.8-1.0 усл. ед. (Методическое руководство по применению аппаратуры акустического каротажа АСТ-К-80. МИ 41-17-1405-2011). Для визуализации результатов оценки качества цементирования служит объемная модель цементирования, колонка заключения в графическим виде и среднее значение индекса цементирования в виде кривой.
Недостатком этого способа является то, что представляемые результаты исследований обеспечивают уверенное выделение только явно выраженных дефектов цементирования. Наличие канала в цементе в 3-10 секторах подряд соответствует его раскрытости по периметру 36-120°, поэтому такая градация качества цементирования является завышенной, так как переток жидкости и газа в заколонном пространстве может происходить по каналу, соизмеримая с одним сектором.
Общими недостатками известных способов оценки качества цементирования обсадных колонн с использованием методов акустического сканирования являются низкая достоверность и точность выделения сообщающихся дефектов цементирования в заколонном пространстве. С применением этих способов выделяются наиболее простые состояния цементирования: участки со сплошным отсутствием и плотным контактом и явно выраженные каналы плохого цементирования.
Технической задачей изобретения является повышение достоверности и точности оценки качества цементирования обсадных колонн нефтегазовых скважин.
Технический результат достигается за счет того, что согласно предлагаемому изобретению по результатам акустического секторного сканирования заколонного пространства выявляют сообщающиеся дефекты цементирования среди множества хаотически распределенных участков с различным состоянием цементирования и количественно оценивают их протяженность вдоль колонны и величину их раскрытости по периметру.
Таким образом, по длительности совпадения секторов с таким качеством цементирования судят о протяженности сквозных каналов с дефектами цементирования в заданном интервале исследований, а по количеству секторов на каждом кванте оценивают их раскрытости по периметру (в градусах). Также оценивают раскрытость (в градусах) изолированных секторов с дефектами цементирования по периметру на отдельных квантах глубины, не примыкающих к выделенным сквозным каналам.
Технический результат заявляемого технического решения иллюстрируется фигурой, где приведен фрагмент геофизического планшета с данными по оценке качества цементирования обсадной 7» эксплуатационной колонны газовой скважины по предлагаемому способу. Результаты анализа визуализируются в графическом виде цветовой карты с разверткой 360° и в виде параметров дефектов цементирования по секторам (в градусах) с заданным шагом квантования по глубине скважины:
— раскрытость сквозных продольных каналов,
— раскрытость изолированных дефектов цементирования, не сообщающихся со сквозными каналами,
— суммарная раскрытость дефектов цементирования.
Экономическая эффективность предлагаемого способа оценки качества цементирования нефтегазовых скважин обусловлена высокой достоверностью и точностью выделения дефектов цементирования при оценке качества изоляции заколонного пространства, обуславливающих техническую и экологическую безопасность эксплуатации нефтегазовых скважин.
Источники информации, принятые во внимание при экспертизе:
2. Смирнов Н.А., Варыхалов А.С., Рыбаков В.В. и др. Технико-технологические особенности оценки качества цементирования обсадных колонн методом акустического сканирования // НТВ «Каротажник». Тверь: Изд. АИС. 2009. Вып. 4 (181). С. 98-108.
Способ оценки качества цементирования нефтегазовых скважин, включающий акустическое секторное сканирование заколонного пространства с измерением амплитуд отраженного сигнала от внутренней стенки обсадной трубы, отличающийся тем, что выявляют сообщающиеся дефекты цементирования среди множества хаотически распределенных участков с различным состоянием цементирования и количественно оценивают их протяженность вдоль колонны и величину их раскрытости по периметру, причем выполняют последовательный анализ данных по секторам на каждом кванте глубины, выделяют сектора с дефектами цементирования по периметру и вдоль заколонного пространства, при этом в случае совпадения секторов с дефектами цементирования последующего и предыдущего квантов глубины сектора последующего кванта приобщают к секторам предыдущего кванта, по длительности совпадения секторов с такими дефектами судят о протяженности сквозных каналов с дефектами цементирования в заданном интервале исследований, а по количеству секторов на каждом кванте оценивают их раскрытость по периметру в градусах, причем также оценивают раскрытость в градусах изолированных секторов с дефектами цементирования по периметру на отдельных квантах глубины, не примыкающих к выделенным сквозным каналам, при этом определяют отдельный вклад сквозных каналов с дефектами цементирования и изолированных дефектов цементирования в суммарном дефекте цементирования.