в какую энергию переходит часть внутренней энергии ядра при его делении кинетическая энергия
Вопросы § 58
Физика А.В. Перышкин
1.Почему деление ядра может начаться только тогда, когда оно деформируется под действием поглощённого им нейтрона?
При деформации ядра ядерные силы ослабевают, и ядро распадается под действием электростатических сил отталкивания.
2. Что образуется в результате деления ядра?
В результате деления ядер образуются два осколка и 2—3 нейтрона.
3. В какую энергию переходит часть внутренней энергии ядра при его делении; кинетическая энергия осколков ядра урана при их торможении в окружающей среде?
Внутренняя энергия ядра при делении переходит в кинетическую энергию разлетающихся осколков и частиц.
Энергия выделяется в окружающую среду и переходит во внутреннюю энергию.
4. Как идёт реакция деления ядер урана — с выделением энергии в окружающую среду или, наоборот, с поглощением энергии?
Реакция деления ядер урана идет с выделением энергии.
5. Расскажите о механизме протекания цепной реакции, используя рисунок 163.
Ядро урана в результате захвата протона расщепляется на два осколка и выделяет три нейтрона, который в свою очередь взаимодействуют с другими ядрами урана, в результате чего происходит и их деление и выделение нейтронов.
6. Что называется критической массой урана?
Критической массой урана называется наименьшая их масс, при которой возможно протекание цепной реакции.
7. Возможно ли протекание цепной реакции, если масса урана меньше критической; больше критической? Почему?
Если масса урана меньше критической, то протекание цепной реакции невозможно, так как нейтроны выходят за пределы куска не встречая на своем пути ядра.
Если масса урана больше критической, то цепная реакция носит взрывной характер.
В какую энергию переходит часть внутренней энергии ядра при его делении кинетическая энергия
1. Когда было открыто деление ядер урана при бомбардировке их нейтронами?
Деление ядер урана при бомбардировке их нейтронами было открыто в 1939 г. немецкими учёными Отто Ганом и Фрицем Штрассманом.
2. Почему деление ядра может начаться только тогда, когда оно деформируется под действием поглощенного им нейтрона?
3. Что образуется в результате деления ядра?
4. В какую энергию переходит часть внутренней энергии ядра при его делении?
Часть внутренней энергии ядра переходит в кинетическую энергию разлетающихся осколков и частиц.
5. В какой вид энергии преобразуется кинетическая энергия осколков ядра урана при их торможении в окружающей среде?
Разлетающиеся на огромной скорости осколки ядра быстро тормозятся в окружающей среде.
В результате торможения их кинетическая энергия преобразуется во внутреннюю энергию среды (т. е. в энергию взаимодействия и теплового движения составляющих её частиц).
При одновременном делении большого количества ядер урана внутренняя энергия окружающей уран среды и её температура сильно возрастают (т. е. среда нагревается).
Реакция деления ядер урана идёт с выделением энергии в окружающую среду.
Энергия, заключённая в ядрах атомов, колоссальна.
Например:
При полном делении всех ядер, имеющихся в 1 г урана, выделилось бы столько же энергии, сколько выделяется при сгорании 2,5 т нефти.
§ 58. Деление ядер урана. Цепная реакция
Деление ядер урана при бомбардировке их нейтронами было открыто в 1939 г. немецкими учёными Отто Ганом и Фрицем Штрассманом.
Рассмотрим механизм этого явления. На рисунке 162, (а) условно изображено ядро атома урана 
Вы уже знаете, что в ядре действует два вида сил: электростатические силы, отталкивания между протонами, стремящиеся разорвать ядро, и ядерные силы притяжения между всеми нуклонами, благодаря которым ядро не распадается. Но ядерные силы — короткодействующие, поэтому в вытянутом ядре они уже не могут удержать сильно удалённые друг от друга части ядра. Под действием электростатических сил отталкивания ядро разрывается на две части (рис. 162, в), которые разлетаются в разные стороны с огромной скоростью и излучают при этом 2—3 нейтрона.
Получается, что часть внутренней энергии ядра переходит в кинетическую энергию разлетающихся осколков и частиц. Осколки быстро тормозятся в окружающей среде, в результате чего их кинетическая энергия преобразуется во внутреннюю энергию среды (т. е. в энергию взаимодействия и теплового движения составляющих её частиц).
При одновременном делении большого количества ядер урана внутренняя энергия окружающей уран среды и соответственно её температура заметно возрастают (т. е. среда нагревается).
Таким образом, реакция деления ядер урана идёт с выделением энергии в окружающую среду.
Энергия, заключённая в ядрах атомов, колоссальна. Например, при полном делении всех ядер, имеющихся в 1 г урана, выделилось бы столько же энергии, сколько выделяется при сгорании 2,5 т нефти.
Для преобразования внутренней энергии атомных ядер в электрическую на атомных электростанциях используют так называемые цепные реакции деления ядер.
Рассмотрим механизм протекания цепной реакции деления ядра изотопа урана 
На рисунке 163 показана схема цепной реакции, при которой общее число свободных нейтронов в куске урана лавинообразно увеличивается со временем. Соответственно резко возрастает число делений ядер и энергия, выделяющаяся в единицу времени. Поэтому такая реакция носит взрывной характер (она протекает в атомной бомбе).
Возможен другой вариант, при котором число свободных нейтронов уменьшается со временем. В этом случае цепная реакция прекращается. Следовательно, такую реакцию тоже нельзя использовать для производства электроэнергии.
В мирных целях возможно использовать энергию только такой цепной реакции, в которой число нейтронов не меняется с течением времени.
Как же добиться того, чтобы число нейтронов всё время оставалось постоянным? Для решения этой проблемы нужно знать, какие факторы влияют на увеличение и на уменьшение общего числа свободных нейтронов в куске урана, в котором протекает цепная реакция.
Одним из таких факторов является масса урана. Дело в том, что не каждый нейтрон, излучённый при делении ядра, вызывает деление других ядер (см. рис. 163). Если масса (и соответственно размеры) куска урана слишком мала, то многие нейтроны вылетят за его пределы, не успев встретить на своём пути ядро, вызвать его деление и породить таким образом новое поколение нейтронов, необходимых для продолжения реакции. В этом случае цепная реакция прекратится. Чтобы реакция не прекращалась, нужно увеличить массу урана до определённого значения, называемого критическим.
Почему при увеличении массы цепная реакция становится возможной? Чем больше масса куска, тем больше его размеры и тем длиннее путь, который проходят в нём нейтроны. При этом вероятность встречи нейтронов с ядрами возрастает. Соответственно увеличивается число делений ядер и число излучаемых нейтронов.
Если масса урана больше критической, то в результате резкого увеличения числа свободных нейтронов цепная реакция приводит к взрыву, а если меньше критической, то реакция не протекает из-за недостатка свободных нейтронов.
Уменьшить потерю нейтронов (которые вылетают из урана, не прореагировав с ядрами) можно не только за счёт увеличения массы урана, но и с помощью специальной отражающей оболочки. Для этого кусок урана помещают в оболочку, сделанную из вещества, хорошо отражающего нейтроны (например, из бериллия). Отражаясь от этой оболочки, нейтроны возвращаются в уран и могут принять участие в делении ядер.
Существует ещё несколько факторов, от которых зависит возможность протекания цепной реакции. Например, если кусок урана содержит слишком много примесей других химических элементов, то они поглощают большую часть нейтронов и реакция прекращается.
Наличие в уране так называемого замедлителя нейтронов также влияет на ход реакции. Дело в том, что ядра урана-235 с наибольшей вероятностью делятся под действием медленных нейтронов. А при делении ядер образуются быстрые нейтроны. Если быстрые нейтроны замедлить, то большая их часть захватится ядрами урана-235 с последующим делением этих ядер. В качестве замедлителей используются такие вещества, как графит, вода, тяжёлая вода (в состав которой входит дейтерий — изотоп водорода с массовым числом 2), и некоторые другие. Эти вещества только замедляют нейтроны, почти не поглощая их.
Таким образом, возможность протекания цепной реакции определяется массой урана, количеством примесей в нём, наличием оболочки и замедлителя и некоторыми другими факторами.
Критическая масса шарообразного куска урана-235 приблизительно равна 50 кг. При этом его радиус составляет всего 9 см, поскольку уран имеет очень большую плотность. Применяя замедлитель и отражающую оболочку и уменьшая количество примесей, удаётся снизить критическую массу урана до 0,8 кг.
Вопросы
1. Почему деление ядра может начаться только тогда, когда оно деформируется под действием поглощённого им нейтрона?
2 Что образуется в результате деления ядра?
3. В какую энергию переходит часть внутренней энергии ядра при его делении; кинетическая энергия осколков ядра урана при их торможении в окружающей среде?
4. Как идёт реакция деления ядер урана — с выделением энергии в окружающую среду или, наоборот, с поглощением энергии?
5. Расскажите о механизме протекания цепной реакции, используя рисунок 163.
6. Что называется критической массой урана?
7. Возможно ли протекание цепной реакции, если масса урана меньше критической; больше критической? Почему?
Ядерные реакции
теория по физике 🧲 квантовая физика
Ядерная реакция — процесс взаимодействия атомного
Осуществление ядерной реакции возможно только при сближении ядер атомов вещества вплотную и их попадании в радиус действия ядерных сил. Но
Первая реакция с использованием ускорителей была проведена в 1932 году. Во время нее удалось расщепить атом лития на две α-частицы :
7 3 L i + 1 1 H → 4 2 H e + 4 2 H e
На фотографии треков в камере Вильсона (см. рисунок выше) видно, что
Внимание! Количество нуклонов до и после реакции есть число постоянное.
Составим схему реакции:
Количество нуклонов до и после реакции постоянно. Поэтому зарядовое число нового элемента будет равно разнице суммы зарядов бора и протона и заряда бериллия:
Массовое число нового элемента будет равно разнице суммы массовых чисел бора и протона и массового числа бериллия:
Вещество с зарядовым числом 2 и массовым числом 4 — гелий. Следовательно, схема получает
Энергетический выход ядерных реакций
В ядерной реакции по распаду лития при столкновении с быстрым протоном кинетическая энергия двух образующихся ядер гелия оказалась больше кинетической энергии протона, который вступил в реакцию. И разница между ними составила 7,3 МэВ. Это говорит о том, что превращение ядер сопровождается изменением их внутренней энергии, т. е. изменение энергии связи. В рассмотренной реакции удельная энергия связи в ядрах гелия больше удельной энергии связи в ядре лития. Поэтому часть внутренней энергии
Изменение энергии связи ядер означает, что суммарная энергия покоя участвующих в реакциях ядер и частиц не остается постоянной. Ведь энергия покоя
Энергетический выход ядерной реакции — разность энергий покоя ядер и частиц до реакции и после реакции.
где MA и MB – массы исходных продуктов, MC и MD – массы конечных продуктов реакции.
Энергетический выход ядерной реакции равен изменению кинетической энергии частиц, участвующих в реакции. Причем:
Выделяющаяся при ядерных реакциях энергия может быть колоссальной. Но использовать ее при столкновениях ускоренных частиц (или ядер) с неподвижными ядрами мишени практически нельзя. Это связано с тем, что основная часть ускоренных частиц пролетает мимо ядер мишени, не приводя к возникновению реакции.
Пример №2. В результате деления
Составим схему реакции:
Из условия задачи известно, сколько энергии имеет каждый нуклон. Нуклон — это 1 протон или нейтрон. Каждый элемент до и после реакции имеет определенные массовые числа:
Следовательно, чтобы найти выделившуюся энергию, нужно умножить количество нуклонов на их энергии, а затем найти разность энергий до и после реакции:
Q = E с в U A U − E с в B a A B a − E с в K r A K r
Отрицательное число получилось в связи с тем, что суммарная энергия связи ядер образовавшихся элементов больше энергии связи
Ядерные реакции на нейтронах
Нейтроны не имеют заряда. Поэтому они беспрепятственно проникают в атомные
2 7 1 3 A l + 1 0 n → 2 4 11 N a + 4 2 H e
Итальянский физик Энрико Ферми, изучавший ядерные реакции на нейтронах, обнаружил, что ядерные превращения вызываются, как быстрыми, так и медленными нейтронами. Причем применение медленных нейтронов часто дает лучшие результаты. Поэтому быстрые нейтроны стали замедлять в воде. После соударения с ядрами водорода, которые по массе примерно равны массе нейтрона, эти нейтроны замедлялись. Их скорость становилась равной скорости теплового движения молекул воды.
Деление ядер урана
В отличие от радиоактивного распада ядер, сопровождающегося испусканием α- или β-частиц, реакции деления —процесс, при котором нестабильное
Наибольший интерес для ученых представила реакция деления
Кинетическая энергия, выделяющаяся при делении одного
Цепные ядерные реакции
Схема цепной реакции урана-235 выглядит так:
Для осуществления цепной реакции необязательно каждый выделенный нейтрон должен вызывать распад другого
Коэффициент размножения нейтронов — отношение числа нейтронов в каком-либо «поколении» к числу нейтронов предшествующего поколения.
Коэффициент размножения определяется не только числом нейтронов, образующихся в каждом элементарном акте, но и условиями, в которых протекает реакция – часть нейтронов может поглощаться другими ядрами или выходить из зоны реакции. Нейтроны, освободившиеся при делении ядер урана-235, способны вызвать деление лишь ядер этого же урана, на долю которого в природном уране приходится всего лишь 0,7 %. Такая концентрация оказывается недостаточной для начала цепной реакции. Изотоп урана-238 также может поглощать нейтроны, но при этом не возникает цепной реакции.
Ядерный реактор
Ядерный реактор — устройство, в котором осуществляется и поддерживается управляемая цепная реакция деления некоторых тяжелых ядер.
Ядерные энергетические реакторы используются для выработки электроэнергии на атомных электростанциях, в судовых энергетических установках, атомных теплоэлектроцентралях, а также на атомных станциях теплоснабжения.
Основные элементами ядерного реактора:
Цепная реакция, как известно, может протекать только при коэффициенте размножения нейтронов k ≥ 1 . Но он может поддерживаться в этом значении только при условии, что масса урана превышает некоторое критическое значение.
Критическая масса — наименьшая масса делящегося вещества, при которой может протекать цепная реакция.
Для чистого урана-235 критическая масса равна 50 кг. При такой массе шар из урана имеет радиус всего 9 см. Если в реакторе использовать оболочку, которая отражает уран, то критическую массу можно снизить до 250 г.
§ 58. Деление ядер урана. Цепная реакция
Деление ядер урана при бомбардировке их нейтронами было открыто в 1939 г. немецкими учёными Отто Ганом и Фрицем Штрассманом.
Oттo Ган (1879-1968)
Немецкий физик, учёный-новатор в области радиохимии. Открыл расщепление урана, ряд радиоактивных элементов
Фриц Штрассман (1902—1980)
Немецкий физик и химик. Работы относятся к ядерной химии, ядерному делению. Дал химическое доказательство процессу деления
Рассмотрим механизм этого явления. На рисунке 162, а условно изображено ядро атома урана 
Рис. 162. Процесс деления ядра урана под воздействием попавшего в него нейтрона
Вы уже знаете, что в ядре действует два вида сил: электростатические силы отталкивания между протонами, стремящиеся разорвать ядро, и ядерные силы притяжения между всеми нуклонами, благодаря которым ядро не распадается. Но ядерные силы — короткодействующие, поэтому в вытянутом ядре они уже не могут удержать сильно удалённые друг от друга части ядра. Под действием электростатических сил отталкивания ядро разрывается на две части (рис. 162, в), которые разлетаются в разные стороны с огромной скоростью и излучают при этом 2—3 нейтрона.
Получается, что часть внутренней энергии ядра переходит в кинетическую энергию разлетающихся осколков и частиц. Осколки быстро тормозятся в окружающей среде, в результате чего их кинетическая энергия преобразуется во внутреннюю энергию среды (т. е. в энергию взаимодействия и теплового движения составляющих её частиц).
При одновременном делении большого количества ядер урана внутренняя энергия окружающей уран среды и соответственно её температура заметно возрастают (т. е. среда нагревается).
Таким образом, реакция деления ядер урана идёт с выделением энергии в окружающую среду.
Энергия, заключённая в ядрах атомов, колоссальна. Например, при полном делении всех ядер, имеющихся в 1 г урана, выделилось бы столько же энергии, сколько выделяется при сгорании 2,5 т нефти. Для преобразования внутренней энергии атомных ядер в электрическую на атомных электростанциях используют так называемые цепные реакции деления ядер.
Рассмотрим механизм протекания цепной реакции деления ядра изотопа урана 
Цепная реакция возможна благодаря тому, что при делении каждого ядра образуется 2—3 нейтрона, которые могут принять участие в делении других ядер.
На рисунке 163 показана схема цепной реакции, при которой общее число свободных нейтронов в куске урана лавинообразно увеличивается со временем. Соответственно резко возрастает число делений ядер и энергия, выделяющаяся в единицу времени. Поэтому такая реакция носит взрывной характер (она протекает в атомной бомбе).
Рис. 163. Цепная реакция деления ядер урана
Возможен другой вариант, при котором число свободных нейтронов уменьшается со временем. В этом случае цепная реакция прекращается. Следовательно, такую реакцию тоже нельзя использовать для производства электроэнергии.
В мирных целях возможно использовать энергию только такой цепной реакции, в которой число нейтронов не меняется с течением времени.
Как же добиться того, чтобы число нейтронов всё время оставалось постоянным? Для решения этой проблемы нужно знать, какие факторы влияют на увеличение и на уменьшение общего числа свободных нейтронов в куске урана, в котором протекает цепная реакция.
Одним из таких факторов является масса урана. Дело в том, что не каждый нейтрон, излучённый при делении ядра, вызывает деление других ядер (см. рис. 163). Если масса (и соответственно размеры) куска урана слишком мала, то многие нейтроны вылетят за его пределы, не успев встретить на своём пути ядро, вызвать его деление и породить таким образом новое поколение нейтронов, необходимых для продолжения реакции. В этом случае цепная реакция прекратится. Чтобы реакция не прекращалась, нужно увеличить массу урана до определённого значения, называемого критическим.
Почему при увеличении массы цепная реакция становится возможной? Чем больше масса куска, тем больше его размеры и тем длиннее путь, который проходят в нём нейтроны. При этом вероятность встречи нейтронов с ядрами возрастает. Соответственно увеличивается число делений ядер и число излучаемых нейтронов.
При критической массе урана число нейтронов, появившихся при делении ядер, становится равным числу потерянных нейтронов (т. е. захваченных ядрами без деления и вылетевших за пределы куска).
Если масса урана больше критической, то в результате резкого увеличения числа свободных нейтронов цепная реакция приводит к взрыву, а если меньше критической, то реакция не протекает из-за недостатка свободных нейтронов.
Уменьшить потерю нейтронов (которые вылетают из урана, не прореагировав с ядрами) можно не только за счет увеличения массы урана, но и с помощью специальной отражающей оболочки. Для этого кусок урана помещают в оболочку, сделанную из вещества, хорошо отражающего нейтроны (например, из бериллия). Отражаясь от этой оболочки, нейтроны возвращаются в уран и могут принять участие в делении ядер.
Существует ещё несколько факторов, от которых зависит возможность протекания цепной реакции. Например, если кусок урана содержит слишком много примесей других химических элементов, то они поглощают большую часть нейтронов и реакция прекращается.
Наличие в уране так называемого замедлителя нейтронов также влияет на ход реакции. Дело в том, что ядра урана-235 с наибольшей вероятностью делятся под действием медленных нейтронов. А при делении ядер образуются быстрые нейтроны. Если быстрые нейтроны замедлить, то большая их часть захватится ядрами урана-235 с последующим делением этих ядер. В качестве замедлителей используются такие вещества, как графит, вода, тяжёлая вода (в состав которой входит дейтерий — изотоп водорода с массовым числом 2), и некоторые другие. Эти вещества только замедляют нейтроны, почти не поглощая их.
Таким образом, возможность протекания цепной реакции определяется массой урана, количеством примесей в нём, наличием оболочки и замедлителя и некоторыми другими факторами.
Критическая масса шарообразного куска урана-235 приблизительно равна 50 кг. При этом его радиус составляет всего 9 см, поскольку уран имеет очень большую плотность.
Применяя замедлитель и отражающую оболочку и уменьшая количество примесей, удаётся снизить критическую массу урана до 0,8 кг.












