в какую фазу деления клетки происходит расхождение хромосом
В какую фазу деления клетки происходит расхождение хромосом
Мейоз — уникальный для половых клеток процесс, в котором диплоидные клетки порождают гаплоидные гаметы. Мейоз состоит из одного цикла синтеза ДНК и двух циклов расхождения хромосом и деления клетки. Способные к мейозу половые клетки — первичные сперматоциты или первичные овоциты — до наступления мейоза проходят через длинную серию митозов, начиная от зиготы.
Мужские и женские гаметы имеют разные истории; и хотя последовательность событий одинаковая, синхронизация весьма различна. Два последовательных мейотических деления называются мейозом I и мейозом II. Мейоз I так же известен как редукционное деление, поскольку число хромосом уменьшается наполовину вследствие спаривания гомологов в профазе и их расхождения в разные клетки в анафазе. Х- и Y-хромосомы не являются гомологами в строгом смысле, однако имеют гомологичные сегменты на концах коротких и длинных плеч, которыми они конъюгируют в ходе мейоза I.
Мейоз I также примечателен тем, что в нем происходит генетическая рекомбинация, называемая мейотическим кроссинговером.
В ходе этого процесса обмениваются гомологичные сегменты ДНК между разными, несестринскими хроматидами пары гомологичных хромосом. Это приводит к тому, что ни одна из гамет, полученных в результате мейоза, не идентична другой. Рекомбинация — фундаментальное понятие для процесса распределения генов, ответственных за наследственные болезни.
Поскольку рекомбинация предполагает физическое взаимодействие двух гомологичных хромосом в соответствующей точке в течение мейоза I, она также определяет правильность расхождения хромосом в мейозе. Нарушения в процессе рекомбинации могут вызвать нерасхождение хромосом в ходе мейоза I, самую частую причину хромосомных аномалий типа синдрома Дауна.
Мейоз II следует за мейозом I без промежуточного удвоения ДНК. Как и при обычном митозе, хроматиды расходятся и одна хроматида каждой хромосомы переходит в дочернюю клетку.
Первое мейотическое деление (мейоз I)
Профаза I мейоза. Профаза мейоза I — сложный процесс, который серьезно отличается от митотической профазы, с важными генетическими последствиями. Выделяют несколько этапов профазы. На всех этапах хромосомы непрерывно конденсируются и становятся короче и толще.
• Лептотена. Хромосомы, уже скопированные в ходе предыдущей S фазы, становятся видимыми как нити, начинается конденсация хроматина. Две однотипных хроматиды каждой хромосомы так тесно сближаются, что их невозможно выделить.
• Зиготена. Гомологичные хромосомы начинают выстраиваться и соединяться вдоль оси. Процесс спаривания, или синапсис, обычно очень точный, так что последовательности ДНК соответствуют друг другу на протяжении всей хромосомы. Хотя молекулярная основа синапсиса не до конца понятна, электронная микроскопия показывает, что хромосомы удерживаются вместе синаптонемальным комплексом — лентообразной белоксодержащей структурой. Синаптонемальный комплекс необходим для процесса рекомбинации.
• Пахитена. Хромосомы становятся более толстыми. Синапсис завершен, и каждая пара гомологов видна как бивалент (иногда называемый тетрадой, поскольку он содержит четыре хроматиды). Пахитена — этап, в котором происходит мейотический кроссинговер.
• Диплотена. После рекомбинации синаптонемальный комплекс начинает разрушаться, и два компонента каждого бивалента начинают отделиться друг от друга. В конце концов два гомолога каждого бивалента касаются друг друга только в точках, называемых хиазмами (пересечениями). Полагают, что они обозначают точки обмена. Среднее число хиазм, наблюдаемых в сперматоцитах, — около 50, т.е. несколько на каждый бивалент.
Этот процесс называют расхождением. Таким образом, число хромосом уменьшается вдвое, и каждая клетка, полученная в результате первого деления мейоза, получает гаплоидное число хромосом. Разные биваленты расходятся независимо друг от друга и в результате исходные отцовский и материнский хромосомные комплекты сортируются в произвольных комбинациях. Возможное количество комбинаций 23 хромосом, которое может образоваться в гаметах, — 223 (более 8 млн). Фактически же вариабельность генетического материала, передающегося от родителей ребенку, значительно больше, что обеспечивается кроссинговером.
В результате этого процесса каждая хроматида обычно содержит сегменты, производные от каждой родительской хромосомной пары; на этом этапе, например, типичная хромосома 1 формируется из трех-пяти сегментов, поочередно отцовского и материнского происхождения. В процессе деления клетки может происходить много ошибок. Некоторые заканчиваются остановкой мейоза и гибелью клетки, другие ведут к неправильному расхождению хромосом в анафазе. Например, оба гомолога хромосомной пары могут переместиться к одному и тому же, а не противоположным полюсам в анафазе мейоза I. Этот патологический процесс называется нерасхождением. Телофаза I мейоза. В телофазе гаплоидные комплекты хромосом группируются в противоположных полюсах клетки.
Цитокинез. После телофазы I клетка делится на две гаплоидные дочерние клетки и входит в мейотическую интерфазу. При сперматогенезе цитоплазма более или менее одинаково делится между двумя дочерними клетками; но при овогенезе одна (вторичный овоцит) получает почти всю цитоплазму, а вторая клетка становится первым полярным тельцем. В отличие от митоза, интерфаза очень короткая, и сразу начинается второе мейотическое деление. Следует обратить внимание на существенное различие между мейотической и митотической интерфазами — отсутствие S-фазы (т.е. синтеза ДНК) между первым и вторым мейотическими делениями.
Второе мейотическое деление (мейоз II)
Второе мейотическое деление подобно обычному митозу, за исключением того, что набор хромосом, получаемый в результате мейоза II, — гаплоидный. Конечный результат мейоза — две дочерних клетки мейоза I — делятся, формируя четыре гаплоидных клетки, каждая из которых содержит 23 хромосомы. Как уже упоминалось, из-за кроссинговера в мейозе I хромосомы результирующих гамет неидентичны.
Подобно тому, как каждая родительская хромосома в паре произвольно и независимо переходит к дочерним клеткам в мейозе I, в ходе мейоза также произвольно распределяются отцовские и материнские аллели каждого гена. Тем не менее от того, в первом или втором делении мейоза произошло разделение аллелей, зависит, участвовали ли они в процессе кроссинговера в ходе первого мейотического деления.
Генетические последствия мейоза:
• Уменьшение числа хромосом от диплоидного до гаплоидного, необходимое для образования гамет.
• Сегрегация аллелей в первом и втором делении мейоза в соответствии с первым законом Менделя.
• Случайное перераспределение генетического материала в гомологичных хромосомах в соответствии со вторым законом Менделя.
• Дополнительное перераспределение генетического материала с помощью кроссинговера, значительно увеличивающее число генетических вариантов, а также играющее важную роль в процессе нормального расхождения хромосом.
Учебное видео: мейоз и его фазы
Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021
Митоз и мейоз: понятие, фазы, отличия
Наши клетки постоянно растут и воспроизводят самих себя. Репродуктивная функция может осуществляться двумя способами, о которых мы расскажем в этой статье. Вы узнаете, как возникают новые клетки в процессе митоза и мейоза.
Что такое митоз
Первый способ деления соматической клетки — митоз. Материнская клетка разделяется на дочерние клетки, которые практически идентичны родительским с точки зрения генетической информации. Наследственная информация и количество хромосом у дочерних клеток такие же, как у родительской.
Митоз — это одна из фаз жизненного цикла клетки и механизм нормального роста тканей. Большую часть клеточного цикла занимает интерфаза, в течение которой протекает повседневная клеточная деятельность. Во время интерфазы происходит:
Во время интерфазы идёт активный синтез и накопление необходимых для деления клетки веществ. Интерфаза делится на три подфазы:
После стадии G2 клетка вступает в следующую фазу деления, а именно — сам митоз. Тут есть четыре подфазы: профаза, метафаза, анафаза, телофаза.
В схемах деления гаплоидный набор хромосом обозначают буквой n, а набор молекул ДНК (то есть хроматид) — буквой с. Перед буквами указывают число гаплоидных наборов: 1n2с — гаплоидный набор удвоенных хромосом, 2n2с — диплоидный набор одиночных хромосом, 2n4с — диплоидный набор удвоенных хромосом.
Пример. В клетках человека гаплоидный набор составляют 23 хромосомы. Значит, запись 2n2с означает 46 хромосом и 46 хроматид, а 2n4с — 46 хромосом и 92 хроматиды.
Рассмотрим подробнее фазы митоза:
Многие клетки вступают в фазу G0 после митоза и находятся в ней всю жизнь до гибели. Обычно это высокоспециализированные клетки, которые не могут совмещать эффективное выполнение своих функций и размножение. Например, в фазе G0 находится большинство нейронов головного мозга.
Биологическое значение митоза — образование генетически одинаковых дочерних клеток с тем же набором хромосом, что был у материнской клетки. Сохраняется преемственность в ряду клеточных поколений.
Что такое мейоз
Второй способ деления эукариотической клетки — мейоз. Это процесс деления клетки, во время которого получаются дочерние клетки — гаметы. У мужчин это сперматозоид, а у женщин яйцеклетка. Гаметы получают только половину генетической информации родительской клетки. Число хромосом уменьшается в два раза.
Затем гаметы могут объединяться, образуя новую клетку, сочетающую генетическую информацию обеих клеток-родителей — зиготу. Процесс слияния половых клеток называется оплодотворением. Если зигота совершит цепь митозов, сформируется новый организм.
По промокоду BIO92021 вы получите бесплатный доступ к курсу биологии 9 класса, по промокоду BIO10112021 бесплатный доступ к курсу биологии 10 класса. Выберите нужный раздел и изучайте биологию вместе с домашней онлайн-школой «Фоксфорда»!
Каждая гамета человека содержит 23 хромосомы — гаплоидный набор (n). Когда гаметы объединяются, получается зигота с 46 хромосомами — диплоидный набор (2n).
Во время мейоза одна клетка с 46 хромосомами делится дважды. Первое деление называется мейоз I, второе деление называется мейоз II. Интерфаза между двумя этапами деления мейоза настолько кратковременна, что практически незаметна, и в ней не происходит удвоение ДНК. В результате образуются четыре дочерние клетки, каждая с 23 хромосомами.
Мейоз I подразделяется на четыре фазы, аналогичные фазам митоза:
Мейоз II подразделяется на четыре такие же фазы:
Биологическое значение мейоза — образование гаплоидных клеток, отличающихся генетически друг от друга: половых клеток (гамет) у животных и спор у растений.
Жизненный цикл клетки: интерфаза и митоз
Содержание:
Жизненный цикл клетки: интерфаза и митоз. Митоз – деление соматических клеток. Мейоз. Фазы митоза и мейоза
Жизненный цикл клетки
Жизненный цикл клетки – это время существованя клетки с момента первого деления до следующего деления, или до последнего деления (смерти клетки).
Клетки делятся несколькими способами:
Интерфаза
Митотический цикл состоит из двух последовательных стадий.
Непосредственно перед делением клетка проходит интерфазу, или стадию покоя, функциональное значение которой в том, что во время неё синтезируется ДНК. Длительность стадии покоя составляет 90% и более в течение всего цикла клеточного деления.
Интерфаза представлена тремя периодами:
| Период | Характеристика |
| Пресинтетический, или постмитотический | Обозначается G1 или q1. Продолжительность этого периода 10 часов и более. Осуществляется сразу после деления клетки. Содержание генетического набора в клетке – 2n2c, диплоидный набор хромосом, каждая из которых имеет одну хроматиду. Здесь происходит восстановление структуры интерфазной клетки: окончательно формируется ядрышко; масса клетки увеличивается за счёт синтеза белка; происходит образование ферментов, участвующих в катализе реакции репликации; синтезируется белок; увеличивается количество различных видов рибонуклеиновой кислоты (РНК). Хромосомы представлены тонкими хроматиновыми нитями, каждая нить состоит из одной хромосомы. |
| Синтетический | Обозначается как S. Продолжительность 6 – 10 часов. В данном периоде происходит удвоение (репликация, дупликация) ДНК, хромосомы становятся двухроматидными. Это необходимо для последующего митотического деления клетки. Также, на этом этапе продолжается рост клетки, начавшийся в пресинтетичском периоде, синтезируется РНК, белки – гистоны, в последующем соединяющиеся с ДНК. Генетический материал – 2n4c. |
| Постсинтетический или премитотический | Обозначение: G2 (q2).Содержание генетической информации – 2n4c. В этом периоде осуществляется подготовка к митозу, продолжается он 2 – 5 часов. Происходит усиленное образование энергии АТФ; синтезируются белки, которые необходимы для обеспечения процесса деления и образования веретена деления; начинается спирализация хромосом; значительно увеличивается объём ядра, а, следовательно, и масса цитоплазмы. Далее клетка непосредственно переходит к стадии митоза. |
Митоз – деление соматических клеток
Митоз – это непрерывный процесс деления клеток, который подразделяется на 4 последовательных стадий: профаза, метафаза, анафаза и телофаза.
Мейоз
Мейоз – это процесс деления клетки, при котором число хромосом уменьшается вдвое, происходит образование гаплоидных клеток.
Данный процесс проходит в двух последовательных деления, первое из которых принято называть редукционным (мейоз I), а второе эквационным (мейоз II). Эквационное деление также можно назвать уравнительным, оно позволяет сохранить гаплоидный набор хромосом. Второе деление по механизму протекания схоже с митозом, однако здесь к полюсам расходятся сестринские хроматиды.
Так же, как и митоз, мейоз начинается после интерфазы. Количество ДНК перед первым делением составляет 2n4c, где n – хромосомы, с – молекулы ДНК. Это обозначает, что каждая хромосома состоит из двух хроматид и имеет гомологичную пару. После первого деления, перед вторым, количество ДНК в каждой дочерней клетке уменьшается до 1n2c. Результатом мейоза после второго деления является образование четырёх гаплоидных клеток. Мейоз представлен такими же четырьмя фазами, как и митоз, однако протекающие процессы в двух этих делениях существенно отличаются.
Мейоз I
Мейоз II
Перед эквационным делением интерфаза называется интеркинезом, так как удвоения наследственного материала (ДНК) не происходит.
Урок Бесплатно Жизненный цикл клетки: интерфаза и митоз. Мейоз. Фазы митоза и мейоза
Введение
Когда вы только родились, ваш вес составлял в среднем от 3 до 4кг, а рост всего около 50-60 см, но с каждым днем вы становились больше и выше..
А какой рост и вес у вас сегодня и почему произошло увеличение этих показателей по сравнению с прошлыми годами?
Всё это благодаря способности клеток к размножению, в основе которого лежит процесс деления.
Рост и развитие всех многоклеточных организмов всегда связаны с делением клеток.
У человека и животных во взрослом состоянии в некоторых тканях клетки постоянно отмирают и заменяются новыми, которые образуются как раз путем деления.
Следовательно, деление клеток является тем процессом, благодаря которому поддерживается жизнь всего организма и обеспечивается непрерывность жизни клетки.
Наряду с непрерывностью жизни клетки происходит и преемственность наследственных свойств от родительской клетки к дочерней.
То есть в процессе деления каждая вновь образующаяся клетка должна получить точную копию генетического материала, чтобы обладать общей наследственной программой, специализироваться и выполнять функции, какие и выполняла материнская клетка.
Клеточный цикл
Для начала рассмотрим жизнь одной клетки нашего организма.
Весь период существования клетки от момента её образования до собственного деления или гибели называется клеточным циклом или жизненным циклом клетки.
Длительность жизненного цикла у разных клеток разная, но у большинства активно делящихся клеток, она составляет примерно от 10 до 24 часов.
У меня есть дополнительная информация к этой части урока!
Примеры длительности жизни клеток:
· у амебы жизненный цикл клетки равен 36 часам
· бактериальные клетки могут делиться каждые 20 минут
· у клеток кишечного эпителия грызунов цикл между делениями в среднем 15 часов
· нервные клетки перестают делиться ещё во время внутриутробного развития, их жизнь зависит от времени жизни ткани или органа, в состав которых они входят
Ученые выделяют следующие периоды в этом жизненном цикле клетки у эукариот:
· интерфаза— период клеточного роста, во время которого идет синтез ДНК и белков и осуществляется подготовка к делению клетки.
Интерфаза подразделяется на период G1-фазы, период S-фазы, период G2-фазы, период G0-фазы
· период клеточного деления, обозначается как М- фаза
Посмотрите на схему жизненного цикла клетки:
Периоды интерфазы:
Название периода
Процессы, происходящие в клетке
Пресинтетический период- G1—фаза или фаза начального роста
2n- набор хромосом (двойной),
синтез всех РНК, ферментов, белков, образование рибосом, синтез АТФ, образование одномембранных органелл клетки, рост клетки, создание запаса питательных веществ
Синтетический период- S-фаза
2n4c- количество хромосом осталось прежним, а количество ДНК увеличилось вдвое
происходит репликация ДНК клеточного ядра, построение второй хроматиды и формирование двухроматидных хромосом
Постсинтетический период- G2-фаза
происходит подготовка к митозу, интенсивный синтез белков, РНК, деление митохондрий и пропластид (предшественники всех типов пластид) у растений, синтез АТФ, удвоение массы цитоплазмы, увеличение массы ядра
Период функционирования клеток- фаза покоя G0
период клеточного цикла, в течение которого клетки находятся в состоянии покоя и не делятся, клетка как бы находится вне клеточного цикла.
Примеры: нервные клетки или клетки сердечной мышцы. Они вступают в состояние покоя при достижении зрелости (то есть когда закончена их дифференцировка).
Некоторые клетки могут выйти из этого состояния и начать вновь деление.
У меня есть дополнительная информация к этой части урока!
Прохождение клеткой фаз клеточного цикла регулируется специальными белками- циклинами.
Циклины получили своё название от того, что их концентрация в клетке периодически изменяется по мере прохождения клеток через клеточный цикл, достигая максимума на его определенных стадиях
Период деления клетки.
Деление клетки- процесс образования из родительской клетки двух и более дочерних клеток.
У эукариот есть два различных типа деления клетки:
1) непрямое деление:
· митоз- вегетативное деление, при котором каждая дочерняя клетка генетически идентична родительской клетке
· мейоз— репродуктивное клеточное деление, при котором количество хромосом в дочерней клетке снижается вдвое для производства половых клеток
2) прямое деление- амитоз, встречается относительно редко и проявляется в отмирающих тканях, а также в клетках опухолей
Для того чтобы понять, как происходят процессы деления клеток, необходимо знать строение хромосом, ведь именно они играют важнейшую роль в передаче наследственной информации от клетки к клетке.
Пройти тест и получить оценку можно после входа или регистрации
Строение хромосом в различные периоды клеточного цикла
Хромосомы- это структуры, в которых сосредоточена большая часть наследственной информации.
Они располагаются в ядре эукариотической клетки, состоят из молекулы ДНК, которая связана с белками-гистонами.
Хромосомы состоят из 2 сестринских хроматид (удвоенных молекул ДНК), соединенных друг с другом в области первичной перетяжки- центромеров.
Центромера- специализированный участок ДНК, в районе которого в стадии профазы и метафазы деления клетки соединяются две сестринские хроматиды в митозе, а в мейозе гомологичные хромосомы в профазе и метафазе первого деления.
• центромера играет важную роль при расположении хромосом в виде метафазной пластинки в процессе расхождения дочерних хромосом к полюсам клетки, так как при помощи центромеры каждая хроматида соединяется с нитями веретена деления
• каждая центромера разделяет хромосому на два плеча
Строение хромосомы:
В жизненном цикле клетки, а конкретно в синтетический период происходит репликация ДНК (удвоение), именно с этого момента каждая хромосома состоит уже не из одной хроматиды, а из двух хроматид.
Типы хромосом (морфологические типы):
• акроцентрические (центромера расположена близко к концу хромосомы, и одно плечо значительно короче другого)
• субметацентрические (центромера смещена от середины хромосом, и одно плечо короче другого)
• метацентрические (центромера расположена в середине хромосомы, и плечи ее равны)
· телоцентрическая хромосома— хромосома, состоящая только из одного плеча и имеющая центромеру на самом краю; считается, что истинных телоцентрических хромосом не существует, т.к. даже маленькое второе плечо (визуально на хромосомных препаратах не выявляемое), по-видимому, всегда присутствует; часто такой вид хромосом используется в качестве синонима термина «акроцентрическая хромосома»
Гомологичные хромосомы (от греч. «гомос»- одинаковый).
Гомологичные хромосомы— парные хромосомы, одинаковые по форме, размерам и набору генов.
Их гены в соответствующих (идентичных) участках представляют собой аллельные гены.
Аллельные гены— различные формы одного и того же гена, расположенные в одинаковых участках (локусах) гомологичных хромосом.
Но следует отметить, что гомологичные хромосомы не идентичны друг другу по следующим причинам:
• хотя гомологичные хромосомы имеют один и тот же набор генов, но этот набор может быть представлен различными формами одного и того же гена.
К примеру, у вас в гомологичных хромосомах есть участок с аллельными генами, которые определяют цвет ваших глаз. От матери в вашу гомологичную хромосому попал ген, отвечающий за карий цвет глаз- доминантный (сильный) признак, а от отца в хромосому попал ген, отвечающий за серый цвет глаз- это рецессивный (слабый) признак. Таким образом, аллельные гены отвечают за один признак- цвет глаз, но этот ген представлен в данном случае различными формами (доминантный и рецессивный, серый и карий).
То есть ген один, а проявление его разное, поэтому мы говорим о гомологии, а не о идентичности.
• также в результате некоторых мутаций (удвоение хромосом, утраты ее частей и других причин) могут возникать гомологичные хромосомы, различающиеся наборами или расположением генов
Для каждого эукариотического организма характерен свой набор хромосом.
Количество, формы размеры хромосом у каждого организма различны.
К примеру, у человека всего 46 хромосом с 20-25 тыс. активных генов, а у коровы 60 хромосом с 22 тыс. активных генов.
А для проведения анализа и исследования всех хромосом клетки, ученые выделили такое понятие как кариотип.
Такой анализ имеет большое значение в медицинской практике, позволяя диагностировать ряд хромосомных заболеваний, вызванных как грубыми нарушениями кариотипов (нарушение числа хромосом), так и нарушением хромосомной структуры.
Кариотип— совокупность признаков полного набора хромосом, присущая клеткам данного биологического вида данного организма (индивидуальный кариотип).
В комплекс характеристик кариотипа входят:
• число хромосом, характерное для данного вида
• положение центромеры каждой хромосомы
• рисунок дифференциального окрашивания хромосом (специальный метод окрашивания, который позволяет по рисунку чередующихся поперечных темных и светлых полос на хромосоме идентифицировать конкретную хромосому или ее участок)
Рассмотрим кариотип человека:
По рисунку мы видим кариотип здорового человека, который включает 22 пары неполовых хромосом (аутосом) и пару половых хромосом (ХХ (женский пол) или ХY (мужской пол).
Хромосомы в кариотипе различаются размерами, формой, положением центромеры, рисунком окрашивания.
Хромосомы также нумеруют: самая большая хромосома- первая, и далее, чем меньше хромосома, тем больший номер она получает.
На рисунке вы видите, что каждая хромосома состоит из двух сестринских хроматид (не забывайте, что каждая хроматида содержит 1 молекулу ДНК).
Поэтому получается, что хромосома одна, но она содержит 2 молекулы ДНК.
Помимо этого у диплоидного организма имеется двойной набор хромосом.
То есть у каждой хромосомы есть гомологичная ей хромосома, это тоже вы можете разглядеть на рисунке.
У человека имеются 22 пары гомологичных хромосом (плюс пара половых хромосом, которые негомологичны друг другу).
Один набор хромосом человек получает от матери, другой от отца.
Объединение этих наборов происходит при оплодотворении.
Половые клетки, образовавшиеся в результате мейоза, содержат только одну из двух гомологичных хромосом. Такой набор хромосом называется гаплоидный или одинарный (от греч. haploos- одиночный, простой и eidos- вид).
У человека путем мейоза образуются половые клетки (гаметы), каждая из них несет 23 хромосомы, а не 46, как в обычной соматической клетке.
В биологии обычно количество хромосом в клетке обозначается буквой n:
1n или просто одной буквой n- гаплоидный (одинарный) набор хромосом
2 n- диплоидный (двойной) набор хромосом
с— количество ДНК в хромосоме.
Количество хромосом в жизненном цикле разных организмов может быть разным.
У животных хромосомный набор диплоидный, а гаплоидны только гаметы.
Например, у хламидомонады, наоборот, гаплоидный набор хромосом на протяжении всего жизненного цикла, а диплоидна лишь зигота, которая сразу вступает в мейоз.
У некоторых растений наблюдаются сразу две фазы:
• у папоротников взрослого растения спорофита, наоборот, основная жизненная стадия представлена диплоидным набором хромосом
На спорофите путем митоза образуются клетки спорангия- органы, производящие споры, клетки которого имеют также диплоидный набор хромосом.
Сами споры имеют гаплоидный набор хромосом, благодаря мейозу.
У семенных растений самостоятельной гаплоидной стадии не существует.
Нарушение структуры хромосом.
Нарушение структуры хромосом происходит в результате спонтанных или спровоцированных изменений:
• генные мутации (изменения на молекулярном уровне)
• делеции- хромосомная перестройка, при которой происходит потеря участка хромосомы
• дупликации или удвоение- структурная хромосомная мутация, заключающаяся в удвоении участка хромосомы
• транслокации- тип хромосомных мутаций, при которых происходит перенос участка хромосомы на негомологичную хромосому, приводят к развитию лимфом, сарком, лейкемии, шизофрении
• инверсии- это поворот определенного участка хромосомы на 180°; является следствием двух одновременных разрывов в одной хромосоме
Пройти тест и получить оценку можно после входа или регистрации


















