в какую сторону работает диод
Инфа о светодиодах и их подключении
Информация рассчитана на дилетантов в электронике, простым языком объясняя основные её понятия, необходимые для осмысленного подключения светодиодов к различным источникам питания.
Терминология русским языком
Последовательное включение радиодеталей — это когда детали соединены между собой только одной стороной, т.е. последовательно:
Параллельное включение радиодеталей — это когда детали соединены между собой в двух точках — в начале и в конце.
Напряжение — сила, с которой электричество «вдавливается» в провод, чтобы создать его ток.
Аналогична разности давления в начале и конце трубопровода, зависящей от силы насоса, загоняющего воду в трубу.
Измеряется в вольтах (В).
Ток — «количество электричества», проходящее по проводу в единицу времени.
Аналогичен количеству проходящей воды в трубе.
Измеряется в Амперах (А).
Сопротивление — сила, препятствующая прохождению электричества.
Аналогично сужению трубы, препятствующему свободному протоку воды.
Измеряется в омах (Ом).
Мощность — характеристика, отражающая способность, например, резистора без вреда для себя (перегрева или разрушения) пропускать электрический ток.
Аналогична толщине стенок места сужения трубы.
Постоянный ток — это когда электричество течёт постоянно в одну сторону, от плюса к минусу.
Это батарейки, аккумуляторы, ток после выпрямителей.
Аналогичен потоку воды, гоняемой насосом по закольцованной трубе в одну сторону.
Падение напряжения — разность потенциалов до и после детали, дающей сопротивление электрическому току, то есть напряжение, замеренное на контактах этой детали.
Аналогично разности давления воды, гоняемой насосом по кругу, до и после одного из сужений трубы.
Переменный ток — это когда электричество течёт то вперёд, то назад, меняя направление движения на противоположное с определённой частотой, например 50 раз в секунду.
Это электрическая сеть освещения, розетки. В них один провод (ноль) является общим, относительно которого а другом проводе (фазе) напряжение то положительное, то отрицательное. В результате при включении в розетку, например, электрочайника, ток в нём течёт то в одну, то в другую сторону.
Аналогичен движению воды, которую насос через трубу (фазу), опущенную сверху, то выдавливает в бак (ноль), то всасывает из него.
Частота переменного тока — число полных циклов (периодов) изменения направления тока (туда-обратно) за секунду.
Измеряется в герцах (Гц). Один период за секунду равен частоте в 1 герц.
Переменный ток имеет прямой и обратный (т.е. положительный и отрицательный) полупериод.
В Российских бытовых электросетях (в розетках и в лампочках) частота равна 50 герцам.
Важнейшие характеристики светодиодов
1. Полярность.
Светодиод — это полупроводник. Он пропускает через себя ток только в одном направлении (также, как и обычный диод). В этот момент он и зажигается. Поэтому при подключении светодиода важна полярность его подключения. Если же светодиод подключается к переменному току (полярность которого меняется, например, 50 раз в секунду, как в розетке), то светодиод будет пропускать ток в одном полупериоде и не пропускать в другом, то есть быстро мигать, что, впрочем, практически незаметно для глаза.
Замечу, что при подключении светодиода к переменному току необходимо обезопасить его от действия напряжения обратного полупериода, поскольку максимально допустимое обратное напряжение большинства индикаторных светодиодов лежит в пределах единиц вольт. Для этого параллельно светодиоду, но с обратной полярностью нужно включить любой кремниевый диод, который даст току течь в обратном направлении и организует на себе падение напряжения, не превышающее максимально допустимое обратное напряжение светодиода.
Минус (катод) светодиода помечается более коротким выводом. При отсутствии указанных меток полярность можно определить и опытным путём, кратковременно подключая светодиод к питающему напряжению через соответствующий резистор. Однако это не самый удачный способ определения полярности. Кроме того, во избежание теплового пробоя светодиода или резкого сокращения срока его службы, нельзя определять полярность «методом тыка» без соответствующего резистора!
2. Напряжение питания и падение напряжения.
Напряжение питания — параметр для светодиода неприменимый. Нет у светодиодов такой характеристики, потому что нельзя подключать светодиоды к источнику питания напрямую. Главное, чтобы напряжение, от которого (через резистор) питается светодиод, было выше прямого падения напряжения светодиода (прямое падение напряжения указывается в характеристике вместо напряжения питания и у обычных индикаторных светодиодов колеблется в среднем от 1,8 до 3,6 вольт).
3. Ток.
Номинальный ток большинства светодиодов соответствует 10-30 миллиамперам и регулируется он индивидуально для каждого светодиода сопротивлением последовательно включенного резистора. Кроме того, мощность резистора не должна быть ниже расчётного уровня, иначе он может перегреться. Местоположение резистора (со стороны плюса светодиода или со стороны минуса) безразлично.
Поскольку светодиоду важно, чтобы его ток соответствовал номинальному, становится ясно, почему его нельзя подключать к напряжению питания напрямую. Если, например, при напряжении 1,9 вольта ток равен 20 миллиамперам, то при напряжении 2 вольта ток будет равен уже 30 миллиамперам. Напряжение изменилось всего на десятую часть вольта, а величина тока подскочила на 50% и существенно сократила жизнь светодиоду. А если включить в цепь последовательно со светодиодом даже приблизительно рассчитанный резистор, то он произведёт гораздо более тонкую регулировку тока.
Расчет ограничивающего ток резистора
Сопротивление резистора:
R = (Uпит.-Uпад.) / (I * 0,75)
* R — сопротивление резистора в омах.
* Uпит. — напряжение источника питания в вольтах.
* Uпад.— прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются.
* I — максимальный прямой ток светодиода в амперах (указывается в характернистиках и составляет обычно либо 10, либо 20 миллиамперам, т.е. 0,01 или 0,02 ампера). При последовательном соединении нескольких светодиодов прямой ток не увеличивается.
* 0,75 — коэффициент надёжности для светодиода.
Минимальная мощность резистора:
P = (Uпит. — Uпад.)2 / R
Ограничение обратного напряжения при подключении светодиода к переменному току
При подключении светодиода к переменному току необходимо ограничить влияние опасного для него напряжения обратного полупериода. У большинства светодиодов предельно допустимое обратное напряжение составляет всего около 2 вольт, а поскольку светодиод в обратном направлении заперт и ток по нему практически не течёт, то падение напряжения на нём становится полным, то есть равным напряжению питания. В результате на выводах диода оказывается полное напряжение питания обратного полупериода.
Для того, чтобы создать на светодиоде приемлемое падение напряжения для обратного полупериода, надо пропустить «через него» обратный ток. Для этого параллельно светодиоду, но с обратной полярностью, надо включить любой кремниевый диод, который рассчитан на прямой ток не менее того, что течёт в цепи (напр. 10 мА).
Диод пропустит проблемный полупериод и создаст на себе падение напряжения, являющегося обратным для светодиода. В результате обратное напряжение светодиода станет равным прямому падению напряжения диода (для кремниевых диодов это примерно в 0,5–0,7 В), что ниже ограничения большинства светодиодов в 2 вольта. Обратное же максимально допустимое напряжение для диода значительно выше 2 вольт, и в свою очередь с успехом снижается прямым падением напряжения светодиода. В результате все довольны.
Исходя из соображения экономии места, предпочтение следует отдать малогабаритным диодам. Вместо кремниевого диода можно также поставить второй светодиод с аналогичным или более высоким максимальным прямым током, но при условии, что для обоих светодиодов падение напряжения одного светодиода не будет превышать максимально допустимое обратное напряжение другого.
Примечание: Некоторые радиолюбители не защищают светодиод от обратного напряжения, аргументируя это тем, что светодиод и так не перегорает. Тем не менее такой режим опасен. При обратном напряжении свыше указанного в характеристиках светодиода (обычно 2 В) при каждом обратном полупериоде в результате воздействия сильного электрического поля в р-n-переходе, происходит электрический пробой светодиода и через него проходит ток в обратном направлении.
Сам по себе электрический пробой обратим, т. е. он не приводит к повреждению диода, и при снижении обратного напряжения свойства диода восстанавливаются. Для стабилитронов, например, это вообще рабочий режим. Тем не менее этот дополнительный ток, хоть он и ограничен резистором, может вызвать перегрев р-n-перехода светодиода, в результате чего произойдёт необратимый тепловой пробой и дальнейшее разрушение кристалла. Поэтому не стоит лениться ставить шунтирующий диод. Тем более для этого подходит практически любой кремниевый диод, поскольку у них (в отличие от германиевых) малый обратный ток, а следовательно он не будет забирать его на себя, снижая яркость шунтируемого светодиода.
Наиболее распространённые ошибки при подключении светодиодов
1. Подключение светодиода напрямую к источнику питания без ограничителя тока (резистора или специальной микросхемы-драйвера). Обсуждалось выше. Светодиод быстро выходит из строя из-за плохо контролируемой
2. Подключение параллельно включенных светодиодов к общему резистору. Во-первых, из-за возможного разброса параметров, светодиоды будут гореть с разной яркостью. Во-вторых, что более существенно, при выходе из строя одного из светодиодов, ток второго возрастёт вдвое, и он может тоже сгореть. В случае использования одного резистора целесообразнее подключать светодиоды последовательно. Тогда при расчёте резистора ток оставляем прежним (напр. 10 мА), а прямое падение напряжения светодиодов складываем (напр. 1,8 В + 2,1 В = 3,9 В).
3. Включение последовательно светодиодов, рассчитанных на разный ток. В этом случае один из светодиодов будет либо работать на износ, либо тускло светиться — в зависимости от настройки тока ограничивающим резистором.
4. Установка резистора недостаточного сопротивления. В результате текущий через светодиод ток оказывается слишком большим. Поскольку часть энергии из-за дефектов кристаллической решётки превращается в тепло, то при завышенных токах его становится слишком много. Кристалл перегревается, в результате чего значительно снижается срок его службы. При ещё большем завышении тока из-за разогрева области p-n-перехода снижается внутренний квантовый выход, яркость светодиода падает (это особенно заметно у красных светодиодов) и кристалл начинает катастрофически разрушаться.
5. Подключение светодиода к сети переменного тока (напр. 220 В) без принятия мер по ограничению обратного напряжения. У большинства светодиодов предельно допустимое обратное напряжение составляет около 2 вольт, тогда как напряжение обратного полупериода при запертом светодиоде создаёт на нём падение напряжения, равное напряжению питания. Существует много различных схем, исключающих разрушающее воздействие обратного напряжение. Простейшая рассмотрена выше.
6. Установка резистора недостаточной мощности. В результате резистор сильно нагревается и начинает плавить изоляцию касающихся его проводов. Потом на нём обгорает краска, и в конце концов он разрушается под воздействием высокой температуры. Резистор может безболезненно рассеять не более той мощности, на которую он рассчитан.
Если нет нужного резистора
Нужное сопротивление ® и мощность (P) резистора можно получить, комбинируя в последовательно-параллельном порядке резисторы других номиналов и мощностей.
Формула сопротивления для последовательного соединения резисторов
R = R1 + R2
Формула сопротивления для параллельного соединения резисторов
двух:
R = (R1 * R2) / (R1 + R2) или R = 1 / (1 / R1 + 1 / R2)
неограниченного количества:
R = 1 / (1 / R1 + 1 / R2 + … + 1 / Rn)
Мощности резисторов
Мощности резисторов в сборке рассчитываются исходя из тех-же формул, что и одиночные резисторы. При последовательном включении в формулу вычисления мощности подставляется напряжение источника питания за вычетом падения напряжения на других последовательно стоящих резисторах и светодиоде.
Полярность диода
Диоды – это электронные приборы, работа которых зависит от правильности их подключения в схему. Включение должно осуществляться с соблюдением полярности самого устройства.
Важно! При подключении двухполюсника в неверной полярности возможны возникновение короткого замыкания, выход из строя всего оборудования схемы.
Особенности функционирования
Диоды, при подаче на них напряжения, имеют свойство проводить ток только в одном направлении. При обратном его включении постоянный ток протекать не будет.
Чтобы не ошибиться, впаивая двухполюсник в схему, необходимо узнать, где у диода плюс, а где минус. Это несложно сделать, если на устройстве существуют соответствующие маркировки. Часто на корпусе нет очевидных признаков обозначения полюсов. В таких случаях определение катода и анода осуществляется другими способами.
Способы определения полярности
Каждый из приёмов определения положительного и отрицательного полюсов отличается друг от друга и используется в различных конкретных ситуациях. Условно способы можно разделить на четыре группы:
Как определить полярность тестером (мультиметром)
Один из самых простых и надёжных способов определять полюсы – посредством мультиметра (тестера). Для этого необходимо:
При осуществлении режима проверки диодов эти показатели находятся в диапазоне 500-1200 мВ. В режиме измерения они будут примерно такими, как показано на рисунке выше. Единица означает предельное превышение или бесконечность.
Обратите внимание! Выпускается большое количество двухполюсников специального назначения, итоги измерений которых могут иметь необычный результат. К ним относятся, например, стабилитроны, варикапы, диоды Шоттка.
Кроме этого, с помощью тестера полярность светодиода может определяться в режиме Hfe. Для этого необходимо:
Дополнительная информация. Способ Hfe можно также использовать, если нужно проверить светодиод в виде smd. Для этого достаточно вставить в Е и С портняжные иголки и прикоснуться к ним контактами двухполюсника.
Как определить полярность по внешнему виду
Полярность можно расшифровать при визуальном осмотре устройства. При изготовлении двухполюсников производители наносят на них специальную маркировку, позволяющую в дальнейшем правильно их идентифицировать.
Это могут быть:
Внешний вид DIP-элементов поможет определить положительный и отрицательный полюсы по следующим признакам:
Обратите внимание! Если светодиод уже был использован в схеме, то размеры ножек могут не соответствовать заданным изначально параметрам.
У СМД-светодиодов:
Дополнительная информация. Существуют производители, не соблюдающие общепринятые стандарты изготовления SMD. В таких моделях обязательно обозначение полюсов знаками «+», «−».
Место расположения катода в СМД может быть указано в виде среза угла корпуса.
Подобные маркировки катодов применяются в светодиодных лентах SMD 3528. В SMD 5630 срез корпуса аналогично указывает на катод.
Где у мощного диода плюс и минус, поможет понять внимательное рассматривание внешнего вида устройства.
На рисунке красным обведён положительный полюс – анод устройства, мощностью 10 ватт.
Как можно определить полярность диода при необходимости его замены в существующей схеме? Распайка световых двухполюсников в лампах (прожекторах) осуществляется на пластине из алюминия, сверху которой наносится слой диэлектрика с токоведущими дорожками. Сверху обычно имеет место белый слой, на котором указываются характеристики ресурса питания, распиновка.
Определение полярности путем подачи питания
Когда по внешнему виду не удается определить расположение выводов двухполюсника, и нет под рукой тестера, следует использовать метод подключения устройства в простейшую схему, состоящую из источника питания (батарейки 3 В) и лампочки.
Если при включении лампочка загорается, то «+» батарейки соединили с положительным полюсом – анодом. В этом случае устройство пропускает через себя ток. Если источник света не загорается, то соединение произвели с катодом – отрицательным полюсом. В этом случае ток протекать не будет.
Определить полюсы светодиода еще проще. Присоединяя попеременно выводы устройства к батарейке на 3 В, по свечению определяют расположение анода и катода.
Используя обычную батарейку и резистор, можно самостоятельно соорудить простейший тестер. Применение в этом случае резистора обязательно, иначе при обратном включении световой двухполюсник может выйти из строя или значительно сократить срок своей службы.
Важно! Напряжение источника питания не должно превышать допустимого напряжения светодиода.
Определение полярности по технической документации
Завод-производитель обеспечивает свою продукцию полной информацией, прописанной в сопроводительных технических документах, откуда можно получить все данные, касающиеся параметров приборов. Если при покупке такие документы предоставлены не были, зная марку двухполюсника, можно найти нужную информацию в справочной литературе или в сети интернет.
Полярность диода определяется множеством способов. Какой метод лучше, зависит от условий проведения исследования и возможностей исследователя.
Видео
Диоды. For dummies
Введение
Диод — двухэлектродный электронный прибор, обладает различной проводимостью в зависимости от направления электрического тока. Электрод диода, подключённый к положительному полюсу источника тока, когда диод открыт (то есть имеет маленькое сопротивление), называют анодом, подключённый к отрицательному полюсу — катодом. (wikipedia)
Все диоды можно разделить на две большие группы: полупроводниковые и неполупроводниковые. Здесь я буду рассматривать только первую из них.
В основе полупроводникового диода лежит такая известная штука, как p-n переход. Думаю, что большинству читателей о нем рассказывали на уроках физики в школе, а кому-то более подробно еще и в институте. Однако, на всякий случай приведу общий принцип его работы.
Два слова о зонной теории проводимости твердых тел
Прежде, чем начать разговор о p-n переходе, стоит обговорить некоторые теоретические моменты.
Считается, что электроны в атоме расположены на различном расстоянии от ядра. Соответственно, чем ближе электрон к ядру, тем сильнее связь между ними и тем большую энергию надо приложить, чтобы отправить его «в свободное плаванье». Говорят, что электроны расположены на различных энергетических уровнях. Заполнение этих уровней электронами происходит снизу вверх и на каждом из них может находиться не больше строго определенного числа электронов (атом Бора). Таким образом, если уровень заполнен, то новый электрон не может на него попасть, пока для него не освободится место. Чтобы электрон мог перейти на уровень выше, ему нужно сообщить дополнительную энергию. А если электрон «падает» вниз, то излишек энергии освобождается в виде излучения. Электроны могут занимать в атоме только сторого определенные орбиты с определенными энергиями. Орбиты эти называются разрешенными. Соответственно, запрещенными называют те орбиты (зоны), в которых электрон находиться не может. Подробнее об этом можно почитать по ссылке на атом Бора выше, здесь же примем это как аксиому.
Самый верхний энергетический уровень называется валентным. У большинства веществ он заполнен только частично, поэтому электроны внешних подуровней других атомов всегда могут найти на нем себе место. И они действительно хаотично мигрируют от атома к атому, осуществляя таким образом связь между ними. Нижний слой, в котором могут перемещаться свободные электроны, называют зоной проводимости. Если валентная зона частично заполнена и электроны в ней могут перемещаться от атома к атому, то она совпадает с зоной проводимости. Такая картина наблюдается у проводников. У полупроводников валентная зона заполнена целиком, но разница энергий между валентным и проводящим уровнями у них мала. Поэтому электроны могут преодолевать ее просто за счет теплового движения. А у изоляторов эта разница велика, и чтобы получить пробой, нужно приложить значительную энергию.
Такова общая картина энергетического строения атома. Можно переходить непосредственно к p-n переходу.
p-n переход
Начнем с того, что полупроводники бывают n-типа и p-типа. Первые получают легированием четырехвалентного полупроводника (чаще всего кремния) пятивалентным полупроводником (например, мышьяком). Эту пятивалентную примесь называют донором. Ее атомы образуют четыре химических связи с атомами кремния, а пятый валентный электрон остается свободным и может выйти из валентной зоны в зону проводимости, если, например, незначительно повысить температуру вещества. Таким образом, в проводнике n-типа возникает избыток электронов.
Полупроводники p-типа тоже получаются путем легирования кремния, но уже трехвалентной примесью (например, бором). Эта примесь носит название акцептора. Он может образовывать только три из четырех возможных химических связей. А оставшуюся незаполненной валентную связь принято называть дыркой. Т.е. дырка — это не реальная частица, а абстракция, принятая для более удобного описания процессов, происходящих в полупроводнике. Ее заряд полагают положительным и равным заряду электрона. Итак, в полупроводнике p-типа у нас получается избыток положительных зарядов.
В полупроводниках обоих типов кроме основных носителей заряда (электроны для n-типа, дырки для p-типа) в наибольшом количестве присутствуют неосновные носители заряда: дырки для n-области и электроны для p-области.
Если расположить рядом p- и n-полупроводники, то на границе между ними возникнет диффузный ток. Произойдет это потому, что с одной стороны у нас чересчур много отрицательных зарядов (электронов), а с другой — положительных (дырок). Соответственно, электроны будут перетекать в приграничную область p-полупроводника. А поскольку дырка — место отсутствия электрона, то возникнет ощущение, будто дырки перемещаются в противоположную сторону — к границе n-полупроводника. Попадая в p- и n-области, электроны и дырки рекомбинируют, что приводит к снижению количества подвижных носителей заряда. На этом фоне становятся ясно видны неподвижные положительно и отрицательно заряженные ионы на границах полупроводников (от которых «ушли» рекомбинировавшие дырки и электроны). В итоге получим две узкие заряженные области на границе веществ. Это и есть p-n переход, который также называют обедненным слоем из-за малой концентрации в нем подвижных носителей заряда. Естественно, что здесь возникнет электрическое поле, направление которого препятствует дальнейшей диффузии электронов и дырок. Возникает потенциальный барьер, преодолеть который основные носители заряда смогут только обладая достаточной для этого энергией. А вот неосновным носителям возникшее электрическое поле наоборот помогает. Соответственно, через переход потечет ток, в противоположном диффузному направлении. Этот ток называют дрейфовым. При отсутствии внешнего воздействия диффузный и дрейфовый ток уравновешивают друг друга и перетекание зарядов прекращается.
Ширина обедненной области и контактная разность потенциалов границ перехода (потенциальный барьер) являются важными характеристиками p-n перехода.
Если приложить внешнее напряжение так, чтобы его электрическое поле «поддерживало» диффузный ток, то произойдет снижение потенциального барьера и сужение обедненной области. Соответственно, ток будет легче течь через переход. Такое подключение внешнего напряжения называют прямым смещением.
Но можно подключиться и наоборот, чтобы внешнее электрическое поле поддерживало дрейфовый ток. Однако, в этом случае ширина обедненной зоны увеличится, а потенциальный барьер возрастет. Переход «закроется». Такое подключение называют обратным смещением. Если величина приложенного напряжения превысит некоторое предельное значение, то произойдет пробой перехода, и через него потечет ток (электроны разгонятся до такой степени, что смогут проскочить через потенциальный барьер). Эта граничная величина называется напряжением пробоя.
Все, конец теории, пора перейти к ее практическому применению.
Диоды, наконец-то
Диод, по сути, одиночный p-n переход. Если он подключен с прямым смещением, то ток через него течет, а если с обратным — не течет (на самом деле, небольшой дрейфовый ток все равно остается, но этим можно пренебречь). Этот принцип показан в условном обозначении диода: если ток направлен по стрелке треугольника, то ему ничего не мешает, а если наоборот — то он «натыкается» на вертикальную линию. Эта вертикальная линия на диодах-радиоэлементах обозначается широкой полосой у края.
Помню, когда я была глупой студенткой и впервые пришла работать в цех набивки печатных плат, то сначала ставила диоды как бог на душу положит. Только потом я узнала, что правильное расположение этого элемента играет весьма и весьма значительную роль. Но это так, лирическое отступление.
Диоды имеют нелинейную вольт-амперную характеристику.
Области применения диодов
Немного экзотики
Не стоит забывать о том, что p-n переход — одно из явлений микромира, где правит балом квантовая физика и становятся возможными странные вещи. Например, туннельный эффект — когда частица может пройти через потенциальный барьер, обладая меньшей энергией. Это становится возможным благодаря неопределенности соотношения между импульсом и координатами частицы (привет, Гейзенберг!). Этот эффект лежит в основе туннельных диодов.
Чтобы обеспечить возможность «просачивания» зарядов, их делают из вырожденных полупроводников (содержащих высокую концентрацию примесей). В результате получают резкий p-n переход с тонким запирающим слоем. Такие диоды маломощные и низкоинерционные, поэтому их можно применять в СВЧ-диапазоне.
Есть еще одна необычная разновидность полупроводниковых диодов — диоды Шоттки.
В них используется не традиционный p-n переход, а переход металл-полупроводник в качестве барьера Шоттки. Барьер этот возникает в том случае, когда разнятся величины работы выхода электронов из металла и полупроводника. Если n-полупроводник имеет работу выхода меньше, чем контактирующий с ним металл, то приграничный слой металла будет заряжен отрицательно, а полупроводника — положительно (электронам проще перейти из полупроводника в металл, чем наоборот). Если же у нас контакт металл/p-полупроводник, причем работа выхода для второго выше, чем для первого, то получим положительно заряженный приграничный слой металла и отрицательно заряженный слой полупроводника. В любом случае, у нас возникнет разность потенциалов, с помощью которой работы выхода из обоих контактирующих веществ сравняются. Это приведет к возникновению равновесного состояния и формированию потенциального барьера между металлом и полупроводником. И так же, как и в случае p-n перехода, к переходу металл/полупроводник можно прикладывать прямое и обратное смещение с аналогичным результатом.
Диоды Шоттки отличаются от p-n собратьев низким падением напряжения при прямом включении и меньшей электрической емкостью перехода. Таким образом, повышается их рабочая частота и понижается уровень помех.
Заключение
Само собой, здесь рассмотрены далеко не все существующие виды диодов. Но надеюсь, что по написанному выше можно составить достаточно полное суждение об этих электронных компонетах.

