в методике выделяются две группы математических действий какие

Вопрос 2

Содержание математического развития дошкольников

Под содержанием обучения понимаются объем и характер знаний, умений и навыков, которыми должны овладеть дети в процессе организации разных видов деятельности.

Содержание математического развития отражено в Программе обучения детей математике, и условно можно его разделить на три направления (Щербакова Е.И.):

1) представления и понятия;

2) зависимости и отношения;

3) математические действия.

Отобрать познавательный материал для изучения с учетом его значимости и в соответствии с возможностями детей — дело весьма непростое. Содержание обучения, т.е. программа по формированию элементов математики, отрабатывалось на протяжении многих лет. В последние 50 лет этот процесс осуществлялся на базе экспериментальных исследований (А.М. Леушина, В.В. Данилова, Т.В. Тарунтаева, РЛ. Березина, Г.А. Корнеева, Н.И. Непомнящая и др.).

Математическое понятие. Анализ различных (вариативных) программ по математике в детском саду позволяет заключить, что основным в их содержании является достаточно разнообразный круг представлений и понятий: количество, число, множество, подмножество, величина, мера, форма предмета и геометрические фигуры; представления и понятия о пространстве (направление, расстояние, взаимное расположение предметов в пространстве) и времени (единицы измерения времени, некоторые его особенности).

При этом важно подчеркнуть, что каждое математическое понятие формируется постепенно, поэтапно, по линейно-концентрическому принципу. Разные математические понятия тесно связаны между собой. В дошкольном возрасте основные математические понятия вводятся описательно и наглядно – путем созерцания конкретных предметов, реальных и нарисованных или практического оперирования ими (считают девочек и мальчиков, зайчиков и лисичек, круги и квадраты).

Другим направлением в обучении дошкольников математике является ознакомление их с рядом математических зависимостей и отношений. Например, дети осознают некоторые отношения между предметными множествами (равночисленность — неравночисленность), отношение порядка в натуральном ряду, временные отношения; зависимости меж­ду свойствами геометрических фигур, между величиной, мерой и результатом измерения и др.

Особо следует выделить требования к формированию у детей определенных математических действий: накладывание, прикладывание, пересчитывание, отсчитывание, измерение и т.д. Именно овладение действиями оказывает наибольшее влияние на развитие.

В методике выделяются две группы математических действий:

1) основные: счет, измерение, вычисления;

2) дополнительные: пропедевтические, сконструированные в дидактических целях; практическое сравнение, наложение, приложение (А.М. Леушина); уравнивание и комплектование; сопоставление (В.В. Давыдов, Н.И. Непомнящая).

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

В методике выделяются две группы математических действий какие

У старших дошкольников познавательная деятельность в процессе дидактических игр выходила за рамки лишь непосредственного обслуживания практических задач, теряя сугубо эмпирический характер, и выступала уже в форме развернутой содержательной деятельности с характерными специфическими способами осуществления. В результате формируемые у детей представления и понятия достаточно полно и адекватно отражали определенный круг явлений.

Вторым направлением в обучении дошкольников математике является ознакомление детей с рядом математических зависимостей и отношений. Так, дети осознают некоторые отношения между предметными множествами (равно-численность — неравночисленность), отношение порядка в натуральном ряду, временные отношения; зависимости между свойствами геометрических фигур, между величиной, мерой и результатом измерения и др.

Особо следует выделить требования к формированию у детей определенных математических действий: накладывания, прикладывания, пересчитывания, отсчитывания, измерения и т. д. Именно овладение действиями оказывает наибольшее влияние на развитие.

В методике выделяются две группы математических действий:

§ основные (счет, измерение, вычисления);

§ дополнительные, пропедевтические, сконструированные в дидактических целях (практическое сравнение, наложение, приложение (А. М. Леушина); уравнивание и комплектование (В. В. Давыдов); сопоставление (Н. И. Непомнящая)).

Как видим, содержание «предматематической» подготовки (А. А. Столяр) в детском саду имеет свои особенности. Они объясняются:

§ спецификой математических понятий;

§ традициями в обучении дошкольников;

§ требованиями современной школы к математическому развитию детей.

Учебный материал запрограммирован так, чтобы на основе уже усвоенных более простых знаний и способов деятельности у детей формировались новые, которые, в свою очередь, будут выступать предпосылкой становления сложных знаний и умений и т. д.

Источник

СОДЕРЖАНИЕ МАТЕМАТИЧЕСКОГО РАЗВИТИЯ ДОШКОЛЬНИКОВ

в методике выделяются две группы математических действий какие. Смотреть фото в методике выделяются две группы математических действий какие. Смотреть картинку в методике выделяются две группы математических действий какие. Картинка про в методике выделяются две группы математических действий какие. Фото в методике выделяются две группы математических действий какие в методике выделяются две группы математических действий какие. Смотреть фото в методике выделяются две группы математических действий какие. Смотреть картинку в методике выделяются две группы математических действий какие. Картинка про в методике выделяются две группы математических действий какие. Фото в методике выделяются две группы математических действий какие в методике выделяются две группы математических действий какие. Смотреть фото в методике выделяются две группы математических действий какие. Смотреть картинку в методике выделяются две группы математических действий какие. Картинка про в методике выделяются две группы математических действий какие. Фото в методике выделяются две группы математических действий какие в методике выделяются две группы математических действий какие. Смотреть фото в методике выделяются две группы математических действий какие. Смотреть картинку в методике выделяются две группы математических действий какие. Картинка про в методике выделяются две группы математических действий какие. Фото в методике выделяются две группы математических действий какие

в методике выделяются две группы математических действий какие. Смотреть фото в методике выделяются две группы математических действий какие. Смотреть картинку в методике выделяются две группы математических действий какие. Картинка про в методике выделяются две группы математических действий какие. Фото в методике выделяются две группы математических действий какие

в методике выделяются две группы математических действий какие. Смотреть фото в методике выделяются две группы математических действий какие. Смотреть картинку в методике выделяются две группы математических действий какие. Картинка про в методике выделяются две группы математических действий какие. Фото в методике выделяются две группы математических действий какие

Содержание математического развития дошкольников отражено в разделе программы «Формирование элементарных математических представлений», который относится к образовательной области «Познавательное развитие».

Содержание математического развития дошкольников условно можно разделить на три таких направления

-представления и понятия;

-зависимости и отношения;

-математические действия.

Анализ различных программ по математическому развитию детей позволяет заключить, что основным в их содержании является достаточно разнообразный кругпредставлений и понятий:«количество», «число», «множество», «подмножество», «величина», «мера», «форма предмета», «геометрические фигуры»; представления о пространстве и времени.

Каждое математическое понятие формируется поэтапно, по линейно-концентрическому принципу. Разные математические понятия тесно связаны между собой. В дошкольном возрасте основные математические понятия вводятся описательно, без всяких определений и даже описания этих понятий.

Каждое понятие вводится наглядно, путем созерцания конкретных предметов или практического оперирования ими.

Вторым направлением в формировании математических представлений у дошкольников является ознакомление детей с рядом математических зависимостей и отношений. Так, дети осваивают некоторые отношения между предметными множествами (равночисленность – неравночисленность), отношение порядка в натуральном ряду, пространственные отношения, временные отношения; зависимости между свойствами геометрических фигур, между величиной, мерой и результатом измерения и др.

Третьим направлением в формировании математических представлений у дошкольников является освоение определенных математических действий: накладывание, прикладывания, пересчитывания, отсчитывания, измерения и т.д.

Именно овладение действиями оказывает наибольшее влияние на развитие.

В методике выделяются две группыматематических действий:

основные(счет, измерение, вычисления);

дополнительные, пропедевтические, сконструированные в дидактических целях (практическое сравнение, наложение, приложение; уравнивание и комплектование; сопоставление.

Весь процесс формирования математических представлений у дошкольников непосредственно связан с усвоением специальной терминологии.

Содержание математического развития детей представлено в программных документах «От рождения до школы», «Радуга», «Детство» и др.

Проведем краткий анализ раздела «Формированиеэлементарных математических представлений» наиболее распространенных комплексных программ дошкольного образования.

1. Основная общеобразовательная программа дошкольного образования«От рождения до школы». /Под редакцией Н.Е Вераксы, Т.С. Комаровой, М.А. Васильевой.

Цель программы (см.стр.67)по элементарной математике — формирование элементарных математических представлений, первичных представлений об основных свойствах и отношениях объектов окружающего мира: форме, цвете, размере, количестве, числе, части и целом, пространстве и времени.

Программа предполагает формирование математических представлений у детей, начиная со второй группы раннего возраста (от 2 до 3 лет). Однако на первом и втором году жизни программа предусматривает создание развивающей среды, позволяющей создавать базовые математические представления. (см.стр.45)

В программе выделяются разделы «Количество и счет», Величина», «Форма», «Ориентировка в пространстве», «Ориентировка во времени».

Источник

В методике выделяются две группы математических действий какие

1.4.1 Формирование умения группировать предметы (2- 6 лет)

1 этап. Выделение, нахождение и называние признаков предметов.

Сначала учат группировать по одному признаку, при этом все остальные признаки должны отсутствовать или быть несущественными для детей. Признак, по которому предлагается группировка предметов, усложняется с возрастом (цвет–название–величина–форма–количество–характерные функции). Например:

— у детей геометрические фигуры одного цвета, но разной формы, надо построить башенки из кубиков (или цилиндров).

При этом предметы должны отличаться только по этим признакам или другие признаки должны быть несущественны. Например:

— взять для постройки красные большие кубики (а фигуры отличаются по форме, цвету, величине),

— построить цепочку так, чтобы фигура отличалась по величине и форме.

3 этап. Группировка предметов по образцу.

Признаки словесно не указываются, предметы должны отличаться по нескольким признакам, дети должны сами найти общие признаки и провести группировку.

Например: принести на стол вот такие игрушки.

4 этап. Группировка по заданному признаку.

Предметы отличаются по нескольким признакам, но указывается лишь один.

Наиболее легкие признаки – цвет и название. Наиболее сложные – функции предмета. Например:

— Назвать предметы формы круга.

— Собрать и положить в тазик игрушки, которые можно мыть.

1.4.2 Формирование представлений о множественности и единичности предметов (с 3 до 5 лет)

С детьми проводятся упражнения или игры, в которых показывается, что множество состоит из отдельных элементов. Детям показывают, как образуется множество и как множество разбивается на отдельные элементы.

Для начала берется множество однородных предметов. Акцентируется внимание на словах: «Сколько?», «Много», «Один», «Ни одного».

Источник

Щербакова Е. И. Методика обучения математике в детском саду: Учеб. пособие для студ. дошк. отд-ний и фак. сред. пед. учеб. заведений (стр. 5 )

в методике выделяются две группы математических действий какие. Смотреть фото в методике выделяются две группы математических действий какие. Смотреть картинку в методике выделяются две группы математических действий какие. Картинка про в методике выделяются две группы математических действий какие. Фото в методике выделяются две группы математических действий какиеИз за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

В обучении весьма важен элемент новизны, он вызывает заинтересованность. Например, с арифметическими задачами детей знакомят постепенно, на каждом занятии предусматри­вают повторение и обязательное сообщение новых знаний. Так, на первом занятии воспитатель ставит цели: ознакомить детей с сущностью и структурой арифметической задачи (условие и вопрос), учит решать задачи на нахождение суммы и ос­татка путем сложения и вычитания. На втором занятии по­вторяются, уточняются знания детей об арифметической за­даче; их учат самостоятельно составлять задачи, опираясь на конкретные действия или изображения конкретных множеств (задачи-драматизации и задачи-иллюстрации). На третьем занятии можно предложить детям решение текстовых (уст­ных) задач. При этом дети выкладывают числовые данные карточками с цифрами и знаками.

Исходя из теории поэтапного формирования умственных действий, воспитатель создает условия сначала для форми­рования практических, а затем и логических операций. Это можно проследить на примере ориентировки в пространстве.

На первых занятиях (подготовительная к школе группа) детей обучают практически ориентироваться в определен­ном пространстве. Дети должны определить, откуда исходит звук (игра «Угадай, где звенит») или найти по инструкции воспитателя свое место относительно других объектов (уп­ражнение «Стань на место»). Вследствие этого у детей фор­мируются ориентировочные умения, понимание простран­ственного размещения предметов: справа, слева, впереди, сза­ди, между и др. Это значительно легче, чем словесное описание своего местоположения и относительного разме­щения предметов.

Ориентировка в пространстве тесно связана с умением выделять и оценивать расстояния. Поэтому на занятии дети тренируются в оценке расстояния от самого ребенка до ка­кого-либо предмета (объекта) или расстояния между ними; для понимания перспективы <далеко—близко, дальше—бли­же, на переднемзаднем плане картины и т. д.) они рассмат-риивают сюжетные картинки, карточки, иллюстрации.

На следующем этапе решаются задачи, связанные с ори­ентировкой на площади стола, листе бумаги, экране, фла-нелеграфе, т. е. в двухмерном пространстве. На занятиях ис­пользуются упражнения — зрительный и слуховой диктант. Несколько позднее можно провести с детьми словесные ди­дактические игры: «Что изменилось?», «Скажи наоборот», «Куда пойдешь, что найдешь?»

Кроме того, в системе работы следует предусматривать закрепление знаний на других занятиях и в разных видах деятельности детей (игра, труд, конструирование).

Важное значение в обучении детей дошкольного возрас­та имеет принцип наглядности. Это объясняется прежде всего тем, что мышление ребенка имеет преимущественно на­глядно-образный характер. Я. А.Коменского справедливо счи­тают первым, кто на уровне современной ему передовой педагогической практики обосновал принцип наглядности. Использование наглядности в обучении Я. А.Коменский называл «золотым правилом дидактики». Он рекомендовал все, что только можно, представить ощущениями, а имен­но: видимое для восприятия зрением, слышимое — слухом, запахи — обонянием, вкусовое — вкусом, осязаемое — ося­занием. Если какие-нибудь объекты одновременно можно

воспринять несколькими чувствами, то они должны вос­приниматься несколькими чувствами. Познание всегда, как указывал Я. А.Коменский, начинается с ощущений, ибо ни­чего нет в сознании, чего ранее не было в ощущениях.

Классическая педагогика выделила принцип наглядно­сти, исходя из обобщения педагогической практики. Наибо­лее результативно то обучение, которое начинается с рас­сматривания предметов, наблюдения явлений, процессов, действий с окружающими предметами. Ссылаясь на особен­ности психического развития детей дошкольного возраста, К. Д.Ушинский утверждал, что «детская природа требует на­глядности», что ребенок долго и напрасно будет мучиться над пятью незнакомыми ему словами, а связав с картинка­ми двадцать таких же слов, он усвоит их на лету. Можно пояснять ребенку очень простую мысль и он ее не поймет, а если этому же ребенку объяснить трудную картинку, то он ее поймет быстрее.

В методике обучения детей математике принцип нагляд­ности тесно связывается с активностью ребенка. Осознан­ное овладение элементами математических знаний возмож­но лишь при наличии у детей некоторого чувственного по­знавательного опыта, приобретение которого всегда связано с непосредственным восприятием окружающей действитель­ности или познанием этой действительности через изобра­зительные и технические средства.

Использование наглядности в обучении имеет большое значение при условии единства первой и второй сигнальных систем. Демонстрация любого наглядного средства сопровож­дается словом, которое направляет внимание ребенка на глав­ное (обследование геометрической фигуры и др.). И. П.Пав­лов говорил, что нормальный человек пользуется второй сигнальной системой эффективно до тех пор, пока она пра­вильно соотносится с первой, т. е. с предметами окружаю­щей действительности или их образами. Слово, что утрачи­вает связь с реальными предметами и явлениями, обознача­ющими их, перестает быть сигналом действительности, утрачивает свое познавательное значение.

Для того чтобы знания, приобретаемые детьми, были отображением действительности, ее настоящей сущностью, а не словесными формулировками, которые сохраняются в па­мяти и не имеют никакого познавательного смысла, необхо­димо, чтобы они опирались на ощущения.

Система дидактических принципов, определившихся в современной педагогике, может быть представлена в схеме:

На схеме представлены связь и взаимообусловленность прин­ципов. В учебном процессе вся система дидактических прин­ципов реализуется одновременно, широким фронтом. При этом следует помнить, что основным, главным является принцип развивающего и воспитывающего обучения. Орга­низация обучения в соответствии с этими принципами обес­печивает осознанное овладение детьми элементами матема­тических знаний и умений, развитие у них познавательных сил и возможностей.

Упражнения для самопроверки

Формирование начальных. представ­лений у детей всех. групп детского сада осуществляется на общедидактических.

Сами дидактические принципы пред­ставляют собой определенную. Основ­ным принципом обучения является прин­цип. и воспитывающего обучения.

Результат обучения детей. зависит от построения учебного процесса в соответ­ствии с основными. принципами. (Математических, возрастных, принципах, систему, развивающего,,математике, дидактическими )

в методике выделяются две группы математических действий какие. Смотреть фото в методике выделяются две группы математических действий какие. Смотреть картинку в методике выделяются две группы математических действий какие. Картинка про в методике выделяются две группы математических действий какие. Фото в методике выделяются две группы математических действий какие
§ 2. Содержание математического развития дошкольников

Математическое развитие детей дошкольного возраста осу­ществляется как в результате приобретения ребенком зна­ний в повседневной жизни (прежде всего в результате обще­ния со взрослым), так и путем целенаправленного обучения на занятиях по формированию элементарных математичес­ких знаний. Именно элементарные математические знания и умения детей следует рассматривать как главное средство математического развития.

Г. С.Костюк доказал, что в процессе обучения у детей развивается способность точнее и полнее воспринимать ок­ружающий мир, выделять признаки предметов и явлений, раскрывать их связи, замечать свойства, интерпретировать наблюдаемое; формируются мыслительные действия, при­емы умственной деятельности, создаются внутренние усло­вия для перехода к новым формам памяти, мышления и воображения.

Психологические экспериментальные исследования и пе­дагогический опыт свидетельствуют о том, что благодаря систематическому обучению дошкольников математике у них формируются сенсорные, перцептивные, мыслительные, вербальные, мнемические и другие компоненты общих и специальных способностей. В исследованиях В. В.Давыдова, Л. В.Занкова и других доказано, что задатки индивида пре­вращаются в конкретные способности посредством учения. Разница в уровнях развития детей, как показывает опыт, выражается главным образом в том, какими темпами и с какими успехами они овладевают знаниями.

Однако при всем важном значении обучения в психичес­ком развитии личности последнее нельзя сводить к учению. Развитие не исчерпывается теми изменениями личности, которые являются прямым следствием обучения (Г. С.Кос­тюк). Оно характеризуется теми «умственными поворотами», которые происходят в голове ребенка, когда он научается искусству говорить, читать, считать, усваивает социальный опыт, передаваемый ему взрослым (И. И.Сеченов).

Как показывают исследования (А. В.Запорожец, Д. Б.Эль-конин, В. В.Давыдов и др.), развитие идет далее того, что усваивается в тот или иной момент обучения. В процессе обу­чения и под влиянием обучения происходит целостное, про­грессирующее изменение личности, ее взглядов, чувств, спо­собностей. Благодаря обучению расширяются возможности

дальнейшего усвоения нового, более сложного материала, создаются новые резервы обучения.

Между обучением и развитием существует взаимная связь. Обучение активно содействует развитию ребенка, но и само значительно опирается на его уровень развития. В этом про­цессе многое зависит от того, насколько обучение нацелено на развитие.

Обучение может по-разному развивать ребенка в зависи­мости от его содержания и методов. Именно содержание и его структура являются гарантами математического развития ребенка.

В методике вопрос «чему учить?» всегда был и остается одним из основных вопросов. Давать ли детям основы науч­ных знаний, вооружать ли их только набором конкретных умений, при помощи которых они имели бы некоторую прак­тическую ориентировку, — это важная проблема дидактики детского сада.

Содержание математического развития отражено в Про­грамме обучения детей математике, и условно можно его разделить на три направления: представления и понятия; за­висимости и отношения; математические действия.

Отобрать познавательный материал для изучения с уче­том его значимости и в соответствии с возможностями де­тей — дело весьма непростое. Содержание обучения, т. е. про­грамма по формированию элементов математики, отрабаты­валось на протяжении многих лет, В последние 50 лет этот процесс осуществлялся на базе экспериментальных исследо­ваний (А. МЛеушина, В. В.Даншгова, Т. В.Тарунтаева, РЛ. Бе-резина, Г. А.Корнеева, Н. И.Непомнящаяидр.).

Под содержанием обучения понимаются объем и характер знаний, умений и навыков, которыми должны овладеть дети в процессе организации разных видов дея­тельности.

Анализ различных (вариативных) программ по математи­ке в детском саду позволяет заключить, что основным в их содержании является достаточно разнообразный круг пред­ставлений и понятий: количество, число, множество, под­множество, величина, мера, форма предмета и геометричес­кие фигуры; представления и понятия о пространстве (на­правление, расстояние, взаимное расположение предметов в пространстве) и времени (единицы измерения времени, не­которые его особенности).

При этом важно подчеркнуть, что каждое математичес­кое понятие формируется постепенно, поэтапно, по линей-

но-концентрическому принципу. Разные математические по­нятия тесно связаны между собой. Так, в работе с детьми четвертого года жизни основное внимание уделяется форми­рованию знаний о множестве. Дети учатся сравнивать «кон­трастные» и «смежные» множества (много и один; больше (меньше) на один). В дальнейшем, в группах пятого, шесто­го, седьмого годов жизни, знания о множестве углубляют­ся: дети сравнивают множество элементов по количеству со­ставляющих, делят множество на подмножества, устанавли­вая зависимости между целым и его частями, и т. п.

На основе представлений о множестве у детей формиру­ются представления и понятия о числах и величинах и т. д. Усваивая понятия о числах, ребенок учится абстрагировать количественные отношения от всех других особенностей эле­ментов множества (величина, цвет, форма). Это требует от ребенка умения выделять отдельные свойства предметов, срав­нивать, обобщать, делать выводы.

Формирование понятий о величине тесно связано с раз­витием у детей числовых представлений. Сформированность оценок величины, знаний о числе позитивно влияет на фор­мирование знаний о форме предметов (у квадрата 4 сторо­ны, все стороны равны, а у прямоугольника — только про­тивоположные и т. д.).

В дошкольном возрасте основные математические поня­тия вводятся описательно. Так, при ознакомлении с числом дети упражняются в счете конкретных предметов, реальных и нарисованных (считают девочек и мальчиков, зайчиков и лисичек, круги и квадраты), попутно знакомятся с про­стейшими геометрическими фигурами, без всяких определе­ний и даже описаний этих понятий. Точно так же дети усва­ивают понятия: больше, меньше; один, два, три; первый, вто­рой, последний и т. д.

Каждое понятие вводится наглядно, путем созерцания конкретных предметов или практического оперирования ими.

В период дошкольного детства, как отмечают Н. Н.Поддья-ков, А. А.Столяр и другие, имеется достаточно обширная об­ласть «предпонятийных», «житейских» понятий. Содержание «житейских» понятий очень расплывчато, диффузно, оно ох­ватывает самые различные формы, предшествующие настоя­щим понятиям. Тем не менее «житейские понятия» важны для математического развития ребенка.

Специфическая особенность «житейских понятий» тако­ва, что они построены на основе обобщения признаков пред­метов, существенных с точки зрения каких-либо нужд че-

ловека, выполнения им различных видов практической дея­тельности.

Интересные данные в этом плане были получены З. М.Бо­гуславской (1955), изучавшей особенности формирования обобщений у детей различных дошкольных возрастов в про­цессе дидактической игры. У младших дошкольников позна­вательная деятельность была подчинена решению той или иной конкретной игровой задаче и обслуживала ее. Дети ус­ваивали лишь те сообщаемые им сведения, которые были необходимы для достижения определенного практического эффекта в игре. Усвоение знаний носило утилитарный ха­рактер. Приобретаемые знания тут же применялись для вы­полнения заданной группировки картинок.

У старших дошкольников познавательная деятельность в процессе дидактических игр выходила за рамки лишь не­посредственного обслуживания практических задач, теряя сугубо эмпирический характер, и выступала уже в форме развернутой содержательной деятельности с характерными специфическими способами осуществления. В результате фор­мируемые у детей представления и понятия достаточно полно и адекватно отражали определенный круг явлений.

Другим направлением в обучении дошкольников матема­тике является ознакомление их с рядом математических за­висимостей и отношений. Например, дети осознают некото­рые отношения между предметными множествами (равно-численность — неравночисленность), отношение порядка в натуральном ряду, временные отношения; зависимости меж­ду свойствами геометрических фигур, между величиной, ме­рой и результатом измерения и др.

Особо следует выделить требования к формированию у детей определенных математических действий: накладыва­ние, прикладывание, пересчитывание, отсчитывание, изме­рение и т. д. Именно овладение действиями оказывает наи­большее влияние на развитие.

В методике выделяются две группы математических дей­ствий:

основные: счет, измерение, вычисления;

дополнительные: пропедевтические, сконструиро­ванные в дидактических целях; практическое сравнение, на­ложение, приложение (А. М.Леушина); уравнивание и комп­лектование; сопоставление (В. ВДавыдов, Н. И.Непомнящая).

Как видим, содержание «предматематической» подготовки в детском саду имеет свои особенности. Они объясняются: спецификой математических понятий;

традициями в обучении дошкольников; требованиями современной школы к ма­тематическому развитию детей (А. А.Столяр).

Учебный материал запрограммирован так, чтобы на ос­нове уже усвоенных более простых знаний и способов дея­тельности у детей формировались новые, которые в свою очередь будут выступать предпосылкой становления слож­ных знаний и умений, и т. д.

В процессе обучения наряду с формированием у детей прак­тических действий формируются также познавательные (ум­ственные) действия, которыми без помощи взрослых ребе­нок овладеть не может. Именно умственным действиям при­надлежит ведущая роль, так как объектом познания в математике являются скрытые количественные отношения, алгоритмы, взаимосвязи.

Весь процесс формирования элементов математики не­посредственно связан с усвоением специальной терминоло­гии. Слово делает понятие осмысленным, подводит к обоб­щениям, к абстрагированию.

Особое место в реализации содержания обучения (про­граммных задач) занимает планирование учебно-воспитатель­ной работы на занятиях и вне их в форме перспективного и календарного плана. Значительную помощь в работе воспи­тателя могут оказать ориентировочные перспективные пла­ны; планы-конспекты занятий по математике. Эти планы и конспекты воспитатель должен использовать именно как ориентировочные, при этом следует постоянно сопоставлять их содержание с уровнем математического развития детей данной группы.

План-конспект занятий по математике включает следую­щие структурные компоненты: тема занятия; программные задачи (цели); активизация словаря детей; дидактический материал; ход занятия (методические приемы, использова­ние их в разных частях занятия), итог.

Воспитатель проводит занятия в соответствии с планом. Каждое занятие независимо от его длительности и формы проведения — это организационно, логически и психоло­гически завершенное целое. Организационная целостность и завершенность занятия заключаются в том, что оно на­чинается и заканчивается в четко отведенное для этого время.

Логическая целостность заключается в содержании за­нятия, в логических переходах от одной части занятия к другой.

Психологическая целостность характеризуется достижени­ем цели, чувством удовлетворения, желанием продолжать ра­боту дальше.

Упражнения для самопроверки

В дошкольный период дети овладевают достаточно большим объемом. понятий, приобретают практические и. умения.

§ 3. Формы организации обучения детей элементам математики

Одним из существенных компонентов процесса обучения являются формы его организации. В дидактике «форма» (уст­ройство, строй, система организации, внутренняя структу­ра) рассматривается как способ построения учебной дея­тельности. Организационные формы обучения должны на­дежно обеспечивать осуществление задач учебного процесса, конечная цель которого — содействие всестороннему и в первую очередь интеллектуальному развитию детей.

Разнообразие форм обучения определяется количеством обучающихся, местом и временем проведения занятий, спо­собами деятельности детей, а также способами руководства этой деятельностью со стороны педагога. Исходя из особен­ностей организации обучения, определяемой количеством обучающихся, различают индивидуальную, коллективную и групповую (дифференцированную) формы обучения.

Самая древняя форма организации обучения — инди­видуальное обучение. Эта форма в воспитании

детей дошкольного возраста использовалась и используется во все времена в семейном воспитании. Впоследствии в свя­зи с организацией общественного дошкольного воспитания она также используется, но все более в сочетании с коллек­тивной. Индивидуальная форма обучения заключается в том, что ребенок приобретает знания, выполняет различные за­дания, имея возможность получения при этом непосредствен­ной или косвенной помощи со стороны взрослого. Особое место индивидуальная форма обучения приобрела в системе М. Монтессори. Распространена была и в системе обществен­ного дошкольного воспитания СССР, особенно в 20—30-е годы (системы Е. И.Тихеевой, Ф. Н.Блехер и др.). Однако объективные условия (главным образом экономические) на первый план выдвигают коллективные и групповые занятия с детьми.

У индивидуальной формы обучения есть как положитель­ные, так и отрицательные моменты. Положительным следует считать тот факт, что индивидуальное обучение обеспечива­ет накопление личного опыта, развитие самостоятельности и активности ребенка, переживание положительных эмоций от общения непосредственно с педагогом (или с тем взрос­лым, который организует этот процесс). Оно, как правило, более результативно, нежели коллективное обучение. Имен­но при индивидуальном обучении сотрудничество ребенка со взрослым позволяет достигать цели. Это связано с тем, что, обучая одного ребенка, взрослый легко может увидеть (определить) его «зону ближайшего развития». А затем это новое образование входит в фонд его «актуального разви­тия» (Л. С.Выготский). Следует отметить, что индивидуаль­ное обучение весьма экономически невыгодно. Даже если обучение организуется не с одним, а с двумя-тремя детьми одного уровня развития, К тому же в индивидуальном обу­чении недостаточно реализуются возможности сотрудниче­ства и соперничества со сверстниками, которые являются важным эмоциональным фоном учения.

Возможно, именно поэтому в альтернативу индивиду­альной возникла другая форма обучения — коллектив­на я, естественно, более экономически выгодная. При кол­лективной форме обучения один педагог работает одновре­менно с целой группой. Здесь налицо взаимная помощь и взаимное обучение. Но значительным недостатком коллек­тивной формы обучения является то, что недостаточно учи­тываются так называемые индивидуальные различия. У раз­ных детей, естественно, разный темп работы, разный уро-

вень способностей, разное отношение к деятельности и т. п. Если педагог не учитывает этого, пытается выравнять всех, подтягивая до среднего уровня одних и сдерживая, замедляя развитие других, наиболее способных, одаренных детей, то проигрывают в таком случае и первые, и вторые. Следует отметить, к сожалению, что коллективная форма обучения в детском саду с начала 50-х годов и до настоящего времени занимает ведущее место, в форме занятий со всей группой детей. Традиционно обучение детей осуществляется по еди­ным программам и единым учебным пособиям. Дети внутри одного возраста имеют значительные индивидуальные раз­личия, поэтому организация обучения должна строиться с учетом этих различий.

Когда в настоящее время обсуждается проблема перестрой­ки дошкольного воспитания, то прежде всего речь идет об обновлении форм организации обучения и воспитания де­тей, о рациональном сочетании индивидуального и коллек­тивного обучения.

Учебно-воспитательный процесс, для которого характе­рен учет типичных и индивидуальных различий уровней раз­вития детей, принято называть дифференцирован­ным. В педагогической практике такое обучение называют «групповым», «индивидуально-групповым» или «коллектив­но-групповым» обучением.

Дифференциация обучения осуществляется по следующим критериям: по способностям или не способностям к обуче­нию, по интересам, по объему материала и степени его слож­ности, по степени самостоятельности и темпу продвижения в обучении.

Проблема дифференцированного обучения в нашей стране остро встала под влиянием решения важных вопросов разви­вающего обучения (Л. С.Выготский, Л. В.Занков, Ю. К.Бабан-ский и др.). В школьной дидактике обоснованы некоторые прин­ципы развивающего обучения: обучение на высоком уровне трудности; продвижение в обучении быстрым темпом; обес­печение ведущей роли теории и др.

Проблема индивидуализации и дифференциации в обуче­нии и воспитании детей дошкольного возраста исследова­лась прежде всего под углом зрения развития способностей детей. Так, система индивидуального подхода в работах Л. П.Князевой, Г. МДикопольской, Я. И.Ковальчук и других включает главным образом варьирование заданий, вопро­сов, указаний, установок с учетом отдельных качеств лич­ности ребенка.

Если в массовой педагогической практике редко, то в эк­спериментальных исследованиях проблем обучения в основ­ном всегда организуется дифференцированная работа с под­группами детей, обладающих одинаковым уровнем возмож­ностей, способностей. На основе оптимальной диагностики определяются уровни обучаемости, разрабатываются специ­фичные программы, соответствующие уровню развития де­тей, что и позволяет авторам достигать более высоких ре­зультатов обучения.

В исследовании Т. М.Степановой (Одесса, 1995) доказано преимущество рационального сочетания разных форм орга­низации обучения детей математике. Автором разработаны разноуровневая программа по математике и модель учебного процесса по формированию элементарных математических представлений (табл. 1).

Деление на подгруппы (дифференцированное обучение) позволяет регулировать объем и сложность изучаемого мате­риала, корректировать количество занятий в неделю (месяц). Подгруппа детей с более низким уровнем возможностей (низ­кий уровень развития внимания, мышления, памяти, вооб­ражения) занимается 2—3 раза в неделю, но занятия не­сколько короче и количество программных познавательных задач меньше.

Как видим, большая часть занятий организуется со всей группой детей, однако итоговые занятия предполагают диф­ференцированную (с подгруппами) форму организации.

В современной практике дошкольных учреждений наблю­даются две тенденции в организации обучения. Часть педа­гогов предлагает совершенно отказаться от коллективных за­нятий по математике, заменив их играми, индивидуальны­ми беседами и другими формами работы. Причем иногда наблюдается вообще спонтанное, исходя из интересов и по­требностей детей, решение дидактических задач. При таком подходе программные требования реализуются в оснозном в небольших подгруппах при самостоятельной деятельности де­тей. Такой подход к организации учебного процесса может иметь положительный результат только у грамотного, твор­ческого педагога. Другая часть педагогов отдает предпочте­ние коллективной форме как одной из ведущих форм учеб­ной деятельности детей.

При этом индивидуальное и дифференцированное обуче­ние используется как дополнение к основной — коллектив­ной. Они могут осуществляться в различных повседневных учебных ситуациях, т. е. в процессе организации разных ре-

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *