в основе каких реакций обмена лежит матричный синтез

Транскрипция и трансляция

в основе каких реакций обмена лежит матричный синтез. Смотреть фото в основе каких реакций обмена лежит матричный синтез. Смотреть картинку в основе каких реакций обмена лежит матричный синтез. Картинка про в основе каких реакций обмена лежит матричный синтез. Фото в основе каких реакций обмена лежит матричный синтез

в основе каких реакций обмена лежит матричный синтез. Смотреть фото в основе каких реакций обмена лежит матричный синтез. Смотреть картинку в основе каких реакций обмена лежит матричный синтез. Картинка про в основе каких реакций обмена лежит матричный синтез. Фото в основе каких реакций обмена лежит матричный синтез

Удвоение ДНК происходит в синтетическом периоде интерфазы. При этом общее число хромосом не меняется, однако каждая из них содержит к началу деления две молекулы ДНК: это необходимо для равномерного распределения генетического материала между дочерними клетками.

Транскрпиция (лат. transcriptio — переписывание)

в основе каких реакций обмена лежит матричный синтез. Смотреть фото в основе каких реакций обмена лежит матричный синтез. Смотреть картинку в основе каких реакций обмена лежит матричный синтез. Картинка про в основе каких реакций обмена лежит матричный синтез. Фото в основе каких реакций обмена лежит матричный синтез

Образуется несколько начальных кодонов иРНК.

Нити ДНК последовательно расплетаются, освобождая место для передвигающейся РНК-полимеразы. Молекула иРНК быстро растет.

в основе каких реакций обмена лежит матричный синтез. Смотреть фото в основе каких реакций обмена лежит матричный синтез. Смотреть картинку в основе каких реакций обмена лежит матричный синтез. Картинка про в основе каких реакций обмена лежит матричный синтез. Фото в основе каких реакций обмена лежит матричный синтез

Трансляция (от лат. translatio — перенос, перемещение)

в основе каких реакций обмена лежит матричный синтез. Смотреть фото в основе каких реакций обмена лежит матричный синтез. Смотреть картинку в основе каких реакций обмена лежит матричный синтез. Картинка про в основе каких реакций обмена лежит матричный синтез. Фото в основе каких реакций обмена лежит матричный синтез

Рибосома делает шаг, и иРНК продвигается на один кодон: такое в фазу элонгации происходит десятки тысяч раз. Молекулы тРНК приносят новые аминокислоты, соответствующие кодонам иРНК. Аминокислоты соединяются друг с другом: между ними образуются пептидные связи, молекула белка растет.

в основе каких реакций обмена лежит матричный синтез. Смотреть фото в основе каких реакций обмена лежит матричный синтез. Смотреть картинку в основе каких реакций обмена лежит матричный синтез. Картинка про в основе каких реакций обмена лежит матричный синтез. Фото в основе каких реакций обмена лежит матричный синтез

в основе каких реакций обмена лежит матричный синтез. Смотреть фото в основе каких реакций обмена лежит матричный синтез. Смотреть картинку в основе каких реакций обмена лежит матричный синтез. Картинка про в основе каких реакций обмена лежит матричный синтез. Фото в основе каких реакций обмена лежит матричный синтез

в основе каких реакций обмена лежит матричный синтез. Смотреть фото в основе каких реакций обмена лежит матричный синтез. Смотреть картинку в основе каких реакций обмена лежит матричный синтез. Картинка про в основе каких реакций обмена лежит матричный синтез. Фото в основе каких реакций обмена лежит матричный синтез

Примеры решения задачи №1

Без практики теория мертва, так что скорее решим задачи! В первых двух задачах будем пользоваться таблицей генетического кода (по иРНК), приведенной вверху.

«Фрагмент цепи ДНК имеет следующую последовательность нуклеотидов: ЦГА-ТГГ-ТЦЦ-ГАЦ. Определите последовательность нуклеотидов во второй цепочке ДНК, последовательность нуклеотидов на иРНК, антикодоны соответствующих тРНК и аминокислотную последовательность соответствующего фрагмента молекулы белка, используя таблицу генетического кода»

в основе каких реакций обмена лежит матричный синтез. Смотреть фото в основе каких реакций обмена лежит матричный синтез. Смотреть картинку в основе каких реакций обмена лежит матричный синтез. Картинка про в основе каких реакций обмена лежит матричный синтез. Фото в основе каких реакций обмена лежит матричный синтез

По принципу комплементарности мы нашли вторую цепочку ДНК: ГЦТ-АЦЦ-АГГ-ЦТГ. Мы использовали следующие правила при нахождении второй нити ДНК: А-Т, Т-А, Г-Ц, Ц-Г.

Вернемся к первой цепочке, и именно от нее пойдем к иРНК: ГЦУ-АЦЦ-АГГ-ЦУГ. Мы использовали следующие правила при переводе ДНК в иРНК: А-У, Т-А, Г-Ц, Ц-Г.

Зная последовательность нуклеотидов иРНК, легко найдем тРНК: ЦГА, УГГ, УЦЦ, ГАЦ. Мы использовали следующие правила перевода иРНК в тРНК: А-У, У-А, Г-Ц, Ц-Г. Обратите внимание, что антикодоны тРНК мы разделяем запятыми, в отличие кодонов иРНК. Это связано с тем, что тРНК представляют собой отдельные молекулы (в виде клеверного листа), а не линейную структуру (как ДНК, иРНК).

Пример решения задачи №2

«Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент цепи ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов: ТАГ-ЦАА-АЦГ-ГЦТ-АЦЦ. Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответствует антикодону тРНК»

в основе каких реакций обмена лежит матричный синтез. Смотреть фото в основе каких реакций обмена лежит матричный синтез. Смотреть картинку в основе каких реакций обмена лежит матричный синтез. Картинка про в основе каких реакций обмена лежит матричный синтез. Фото в основе каких реакций обмена лежит матричный синтез

Пример решения задачи №3

Длина фрагмента молекулы ДНК составляет 150 нуклеотидов. Найдите число триплетов ДНК, кодонов иРНК, антикодонов тРНК и аминокислот, соответствующих данному фрагменту. Известно, что аденин составляет 20% в данном фрагменте (двухцепочечной молекуле ДНК), найдите содержание в процентах остальных нуклеотидов.

в основе каких реакций обмена лежит матричный синтез. Смотреть фото в основе каких реакций обмена лежит матричный синтез. Смотреть картинку в основе каких реакций обмена лежит матричный синтез. Картинка про в основе каких реакций обмена лежит матричный синтез. Фото в основе каких реакций обмена лежит матричный синтез

Теперь мы украсили теорию практикой. Что может быть лучше при изучении новой темы? 🙂

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

В основе каких реакций обмена лежит матричный синтез

В основе каких реакций обмена лежит матричный принцип

Все реакции синтеза органических веществ в клетке происходят с

В чем проявляется взаимосвязь пластического и энергетического обмена

Реакции биосинтеза белка, в которых последовательность триплетов в иРНК обеспечивает последовательность аминокислот в молекуле белка, называют

Какая последовательность правильно отражает путь реализации генетической информации

В процессе пластического обмена в клетках синтезируются молекулы

Всю совокупность химических реакций в клетке называют

Первичная структура молекулы белка, заданная последовательностью нуклеотидов иРНК, формируется в процессе

Пластический обмен в клетке характеризуется

Какой антикодон транспортной РНК соответствует триплету ТГА в молекуле ДНК

Какой триплет в молекуле информационной РНК соответствует кодовому триплету ААТ в молекуле ДНК

Какой триплет в тРНК комплементарен кодону ГЦУ на иРНК

Какой триплет на ДНК соответствует кодону УГЦ на и-РНК?

Новые белки растительного организма синтезируются

Синтез белка на рибосомах прекращается в момент, когда

В молекуле ДНК количество нуклеотидов с тимином составляет 20% от общего числа. Какой процент нуклеотидов с цитозином в этой молекуле?

Роль транспортной РНК в клетке эукариот заключается в

Биологический смысл гетеротрофного питания заключается в

На рисунке изображена схема

Определите последовательность антикодонов т-РНК, если и-РНК сняла информацию с фрагмента ДНК, имеющего последовательность нуклеотидов АГЦ-ТТА-ГЦТ.

Одной и той же аминокислоте соответствует антикодон АУУ транспортной РНК и триплет на ДНК —

К пластическому обмену относят процесс

В результате какого процесса в клетке синтезируются липиды?

Последовательность триплетов в иРНК определяет

Выберите правильное утверждение: клетки любого организма

Триплеты на иРНК, не определяющие положения аминокислот в молекуле белка, обеспечивают

Определите последовательность кодонов иРНК, если тРНК была синтезирована на фрагменте ДНК, имеющем следующую последовательность нуклеотидов: АГЦ−ТТА−ГЦТ

Хемосинтезирующие бактерии могут использовать для синтеза органических веществ энергию, выделяемую при окислении

Сколько нуклеотидов содержит участок гена, в котором закодирована последовательность 20 аминокислот?

Значение пластического обмена — снабжение организма

Одной и той же аминокислоте соответствует антикодон ЦАА на транспортной РНК и триплет на ДНК

В чём проявляется вырожденность генетического кода?

Одна молекула белка кодируется

Какова функция шероховатой эндоплазматической сети?

1) синтез и транспорт белков

2) синтез и модификация липидов

3) накопление пищеварительных ферментов

4) окисление жиров и углеводов

Какова функция гладкой эндоплазматической сети?

1) синтез и транспорт белков

2) синтез и модификация липидов

3) накопление пищеварительных ферментов

4) окисление белков и углеводов

Однозначность генетического кода проявляется в том, что

1) каждый кодон кодирует несколько аминокислот

2) один триплет кодирует одну аминокислоту

3) одинаковые нуклеотиды не могут входить в состав соседних триплетов

4) все организмы на земле имеют один генетический код

Вырожденность генетического кода проявляется в том, что

1) каждый кодон кодирует несколько аминокислот

2) большинство аминокислот кодируется более чем одним кодоном

3) одинаковые нуклеотиды не могут входить в состав соседних триплетов

4) все организмы на земле имеют один генетический код

Источник

Задания части 2 ЕГЭ по теме «Биосинтез белка. Генетический код»

1. Почему реакции биосинтеза белка называют матричными?

В основе реакций матричного синтеза лежит комплементарное взаимодействие между нуклеотидами. Образуются полимеры, строение которых полностью определяется строением исходного вещества – матрицы. ДНК является матрицей для синтеза иРНК, а иРНК является матрицей для синтеза белка.

2. В каких случаях изменение последовательности нуклеотидов ДНК не влияет на структуру и функции соответствующего белка?

1) Если изменился третий нуклеотид триплета и получился триплет, кодирующий ту же самую аминокислоту.
2) Если изменения произошли в участке ДНК, который не кодирует белок.

3. Какова роль нуклеиновых кислот в биосинтезе белка?

ДНК содержит информацию для синтеза белка, иРНК переносит эту информацию к рибосоме, рРНК входит в состав рибосом, тРНК доставляет к рибосоме аминокислоты.

4. Чем объясняется огромное разнообразие белков, образующихся в живых организмах? Укажите не менее трех причин.

1) В состав белков входит 20 видов аминокислот. Количество вариантов белка, состоящего из ста аминокислот, составляет 20 в степени 100.
2) В состав белков могут входить разнообразные небелковые компоненты, например, углеводы в гликопротеинах, гем в гемоглобине.
3) Генные мутации, постоянно происходящие в организмах, приводят к изменению структуры белка, кодируемого данным геном.

в основе каких реакций обмена лежит матричный синтез. Смотреть фото в основе каких реакций обмена лежит матричный синтез. Смотреть картинку в основе каких реакций обмена лежит матричный синтез. Картинка про в основе каких реакций обмена лежит матричный синтез. Фото в основе каких реакций обмена лежит матричный синтез

5. Рассмотрите предложенную схему классификации реакций матричного синтеза. Запишите в ответе пропущенный термин, обозначенный на схеме вопросительным знаком.

6. Белок состоит из 220 аминокислотных звеньев (остатков). Установите число нуклеотидов участков молекул иРНК и ДНК, кодирующих данный белок, и число молекул тРНК, необходимых для переноса аминокислот к месту синтеза. Ответ поясните.

1) одну аминокислоту кодируют три нуклеотида, число нуклеотидов на иРНК: 220 х 3 = 660;
2) число нуклеотидов на иРНК соответствует числу нуклеотидов на одной нити ДНК (660 нуклеотидов);
3) каждую аминокислоту переносит к месту синтеза одна тРНК, следовательно, число тРНК, участвующих в синтезе, равно 220

7. Найдите три ошибки в приведённом тексте. Укажите номера предложений, в которых они сделаны. (1) При биосинтезе белка протекают реакции матричного синтеза. (2) К реакциям матричного синтеза относят только реакции репликации и транскрипции. (3) В результате транскрипции синтезируется иРНК, матрицей для которой служит вся молекула ДНК. (4) Пройдя через поры ядра, иРНК поступает в цитоплазму. (5) Информационная РНК участвует в синтезе тРНК. (6) Транспортная РНК обеспечивает доставку аминокислот для сборки белка. (7) На соединение каждой из аминокислот с тРНК расходуется энергия молекул АТФ.

8. Лекарственный препарат рекомендуется принимать при инфекционно-воспалительных процессах в организме человека, вызванных патогенными бактериями. Препарат блокирует действие бактериальных белков-ферментов, регулирующих реакции с участием ДНК, что уменьшает рост и деление клеток бактерий, приводит к их гибели. На какие процессы в клетке бактерий воздействует этот препарат? Почему прекращается рост, деление и наблюдается гибель бактериальных клеток?

1) Препарат воздействует на процессы репликации и транскрипции.
2) Блокирование репликации не дает бактериальной клетке делиться.
3) Блокирование транскрипции не дает бактериальной клетке синтезировать белки, это приводит к гибели клетки.

в основе каких реакций обмена лежит матричный синтез. Смотреть фото в основе каких реакций обмена лежит матричный синтез. Смотреть картинку в основе каких реакций обмена лежит матричный синтез. Картинка про в основе каких реакций обмена лежит матричный синтез. Фото в основе каких реакций обмена лежит матричный синтез

9. Рассмотрите предложенную схему классификации реакций матричного синтеза. Запишите в ответе пропущенный термин, обозначенный на схеме вопросительным знаком.

в основе каких реакций обмена лежит матричный синтез. Смотреть фото в основе каких реакций обмена лежит матричный синтез. Смотреть картинку в основе каких реакций обмена лежит матричный синтез. Картинка про в основе каких реакций обмена лежит матричный синтез. Фото в основе каких реакций обмена лежит матричный синтез

10. Рассмотрите предложенную схему классификации нуклеиновых кислот, участвующих в процессе биосинтеза белка. Запишите в ответе пропущенный термин, обозначенный на схеме вопросительным знаком.

11. Как вы понимаете фразу: «Код ДНК триплетен, однозначен, вырожден»?

1) Код «триплетен» означает, что каждая из аминокислот кодируется тремя нуклеотидами.
2) Код «однозначен» — каждый триплет (кодон) кодирует только одну аминокислоту.
3) Код «вырожден» означает, что каждая аминокислота
может кодироваться более чем одним кодоном.

Источник

Что такое биосинтез белка в клетке

В статье мы дадим опре­де­ле­ние био­син­те­зу и рас­смот­рим ос­нов­ные этапы син­те­за белков. Разберёмся, чем трансляция отличается от транскрипции.

в основе каких реакций обмена лежит матричный синтез. Смотреть фото в основе каких реакций обмена лежит матричный синтез. Смотреть картинку в основе каких реакций обмена лежит матричный синтез. Картинка про в основе каких реакций обмена лежит матричный синтез. Фото в основе каких реакций обмена лежит матричный синтез

В клетках непрерывно идут процессы обмена веществ — процессы синтеза и распада веществ. Каж­дая клет­ка син­те­зи­ру­ет необ­хо­ди­мые ей ве­ще­ства. Этот про­цесс на­зы­ва­ет­ся био­син­те­зом.

Био­син­тез — это про­цесс со­зда­ния слож­ных ор­га­ни­че­ских ве­ществ в ходе био­хи­ми­че­ских ре­ак­ций, про­те­ка­ю­щих с по­мо­щью фер­мен­тов. Биосинтез необходим для выживания — без него клетка умрёт.

Одним из важнейших процессов биосинтеза в клетке является процесс биосинтеза белков, который включает в себя особые реакции, встречающиеся только в живой клетке — это реакции матричного синтеза. Матричный синтез — это синтез новых молекул в соответствии с планом, заложенным в других уже существующих молекулах.

в основе каких реакций обмена лежит матричный синтез. Смотреть фото в основе каких реакций обмена лежит матричный синтез. Смотреть картинку в основе каких реакций обмена лежит матричный синтез. Картинка про в основе каких реакций обмена лежит матричный синтез. Фото в основе каких реакций обмена лежит матричный синтез

Синтез белка в клетке протекает при участии специальных органелл — рибосом. Это немембранные органеллы, состоящие из рРНК и рибосомальных белков.

Последовательность аминокислот в каждом белке определяется последовательностью нуклеотидов в гене — участке ДНК, кодирующем именно этот белок. Соответствие между последовательностью аминокислот в белке и последовательностью нуклеотидов в кодирующих его ДНК и иРНК определяется универсальным правилом — генетическим кодом.

Информация о белке может быть записана в нуклеиновой кислоте только одним способом — в виде последовательности нуклеотидов. ДНК построена из 4 видов нуклеотидов: аденина (А), тимина (Т), гуанина (Г), цитозина (Ц), а белки — из 20 видов аминокислот. Таким образом, возникает проблема перевода четырёхбуквенной записи информации в ДНК в двадцатибуквенную запись белков. Генетический код — соотношения нуклеотидных последовательностей и аминокислот, на основе которых осуществляется такой перевод.

Процесс синтеза белка в клетке можно разделить на два этапа: транскрипция и трансляция.

в основе каких реакций обмена лежит матричный синтез. Смотреть фото в основе каких реакций обмена лежит матричный синтез. Смотреть картинку в основе каких реакций обмена лежит матричный синтез. Картинка про в основе каких реакций обмена лежит матричный синтез. Фото в основе каких реакций обмена лежит матричный синтез

Транскрипция — первый этап биосинтеза белка

Транскрипция — это процесс синтеза молекулы иРНК на участке молекулы ДНК.

Транскрипция (с лат. transcription — переписывание) происходит в ядре клетки с участием ферментов, основную работу из которых осуществляет транскриптаза. В этом процессе матрицей является молекула ДНК.

в основе каких реакций обмена лежит матричный синтез. Смотреть фото в основе каких реакций обмена лежит матричный синтез. Смотреть картинку в основе каких реакций обмена лежит матричный синтез. Картинка про в основе каких реакций обмена лежит матричный синтез. Фото в основе каких реакций обмена лежит матричный синтез

Спе­ци­аль­ный фер­мент на­хо­дит ген и рас­кру­чи­ва­ет уча­сток двой­ной спи­ра­ли ДНК. Фер­мент пе­ре­ме­ща­ет­ся вдоль цепи ДНК и стро­ит цепь ин­фор­ма­ци­он­ной РНК в со­от­вет­ствии с прин­ци­пом ком­пле­мен­тар­но­сти. По мере дви­же­ния фер­мен­та рас­ту­щая цепь РНК мат­ри­цы от­хо­дит от мо­ле­ку­лы, а двой­ная цепь ДНК вос­ста­нав­ли­ва­ет­ся. Когда фер­мент до­сти­га­ет конца ко­пи­ро­ва­ния участ­ка, то есть до­хо­дит до участ­ка, на­зы­ва­е­мо­го стоп-ко­до­ном, мо­ле­ку­ла РНК от­де­ля­ет­ся от мат­ри­цы, то есть от мо­ле­ку­лы ДНК. Таким об­ра­зом, тран­скрип­ция — это пер­вый этап био­син­те­за белка. На этом этапе про­ис­хо­дит счи­ты­ва­ние ин­фор­ма­ции путём син­те­за ин­фор­ма­ци­он­ной РНК.

Копировать информацию, хотя она уже содержится в молекуле ДНК, необходимо по следующим причинам: синтез белка происходит в цитоплазме, а молекула ДНК слишком большая и не может пройти через ядерные поры в цитоплазму. А маленькая копия её участка — иРНК — может транспортироваться в цитоплазму.

После транскрипции громоздкая молекула ДНК остаётся в ядре, а молекула иРНК подвергается «созреванию» — происходит процессинг иРНК. На её 5’ конец подвешивается КЭП для защиты этого конца иРНК от РНКаз — ферментов, разрушающих молекулы РНК. На 3’ конце достраивается поли(А)-хвост, который также служит для защиты молекулы. После этого проходит сплайсинг — вырезание интронов (некодирующих участков) и сшивание экзонов (информационных участков). После процессинга подготовленная молекула транспортируется из ядра в цитоплазму через ядерные поры.

Транскрипция пошагово:

Проверьте себя: помните ли вы принцип комплементарности? Молекула ДНК состоит из двух спирально закрученных цепей. Цепи в молекуле ДНК противоположно направлены. Остов цепей ДНК образован сахарофосфатными остатками, а азотистые основания одной цепи располагаются в строго определённом порядке напротив азотистых оснований другой — это и есть правило комплементарности.

Трансляция — второй этап биосинтеза белка

Трансляция — это перевод информации с языка нуклеотидов на язык аминокислот.

Что же происходит в клетке? Трансляция представляет собой непосредственно процесс построения белковой молекулы из аминокислот. Трансляция происходит в цитоплазме клетки. В трансляции участвуют рибосомы, ферменты и три вида РНК: иРНК, тРНК и рРНК. Глав­ным по­став­щи­ком энер­гии при трансляции слу­жит мо­ле­ку­ла АТФ — аде­но­з­ин­три­фос­фор­ная кис­ло­та.

в основе каких реакций обмена лежит матричный синтез. Смотреть фото в основе каких реакций обмена лежит матричный синтез. Смотреть картинку в основе каких реакций обмена лежит матричный синтез. Картинка про в основе каких реакций обмена лежит матричный синтез. Фото в основе каких реакций обмена лежит матричный синтез

Во время транс­ля­ции нук­лео­тид­ные по­сле­до­ва­тель­но­сти ин­фор­ма­ци­он­ной РНК пе­ре­во­дят­ся в по­сле­до­ва­тель­ность ами­но­кис­лот в мо­ле­ку­ле по­ли­пеп­тид­ной цепи. Этот про­цесс идёт в ци­то­плаз­ме на ри­бо­со­мах. Об­ра­зо­вав­ши­е­ся ин­фор­ма­ци­он­ные РНК вы­хо­дят из ядра через поры и от­прав­ля­ют­ся к ри­бо­со­мам. Ри­бо­со­мы — уни­каль­ный сбо­роч­ный ап­па­рат. Ри­бо­со­ма сколь­зит по иРНК и вы­стра­и­ва­ет из опре­де­лён­ных ами­но­кис­лот длин­ную по­ли­мер­ную цепь белка. Ами­но­кис­ло­ты до­став­ля­ют­ся к ри­бо­со­мам с по­мо­щью транс­порт­ных РНК. Для каж­дой ами­но­кис­ло­ты тре­бу­ет­ся своя транс­порт­ная РНК, ко­то­рая имеет форму три­лист­ни­ка. У неё есть уча­сток, к ко­то­рому при­со­еди­ня­ет­ся ами­но­кис­ло­та и дру­гой три­плет­ный ан­ти­ко­дон, ко­то­рый свя­зы­ва­ет­ся с ком­пле­мен­тар­ным ко­до­ном в мо­ле­ку­ле иРНК.

Це­поч­ка ин­фор­ма­ци­он­ной РНК обес­пе­чи­ва­ет опре­де­лён­ную по­сле­до­ва­тель­ность ами­но­кис­лот в це­поч­ке мо­ле­ку­лы белка. Время жизни ин­фор­ма­ци­он­ной РНК ко­леб­лет­ся от двух минут (как у неко­то­рых бак­те­рий) до несколь­ких дней (как, на­при­мер, у выс­ших мле­ко­пи­та­ю­щих). Затем ин­фор­ма­ци­он­ная РНК раз­ру­ша­ет­ся под дей­стви­ем фер­мен­тов, а нук­лео­ти­ды ис­поль­зу­ют­ся для син­те­за новой мо­ле­ку­лы ин­фор­ма­ци­он­ной РНК. Таким об­ра­зом, клет­ка кон­тро­ли­ру­ет ко­ли­че­ство син­те­зи­ру­е­мых бел­ков и их тип.

Трансляция пошагово:

По промокоду BIO92021 вы получите бесплатный доступ к курсу биологии 9 класса. Выберите нужный раздел и изучайте биологию вместе с домашней онлайн-школой «Фоксфорда»!

Резюме

Теперь вы знаете, что биосинтез необходим для выживания — без него клетка умрёт. Процесс биосинтеза белков включает в себя особые реакции, встречающиеся только в живой клетке, — это реакции матричного синтеза.

Син­тез белка со­сто­ит из двух эта­пов: тран­скрип­ции (об­ра­зо­ва­ние ин­фор­ма­ци­он­ной РНК по мат­ри­це ДНК, про­те­ка­ет в ядре клет­ки) и транс­ля­ции (эта ста­дия про­хо­дит в ци­то­плаз­ме клет­ки на ри­бо­со­мах). Эти этапы сменяют друг друга и состоят из последовательных процессов.

Источник

2.6. Биосинтез белка и нуклеиновых кислот. Гены, генетический код

В обмене веществ организма ведущая роль принадлежит белкам и нуклеиновым кислотам.

Белковые вещества составляют основу всех жизненно важных структур клетки, обладают необычайно высокой реакционной способностью, наделены каталитическими функциями.

Нуклеиновые кислоты входят в состав важнейшего органа клетки — ядра, а также цитоплазмы, рибосом, митохондрий и т. д. Нуклеиновые кислоты играют важную, первостепенную роль в наследственности, изменчивости организма, в синтезе белка.

План синтеза белка хранится в ядре клетки, а непосредственно синтез происходит вне ядра, поэтому необходима помощь для доставки закодированного плана из ядра к месту синтеза. Такую помощь оказывают молекулы РНК.

Процесс начинается в ядре клетки: раскручивается и открывается часть «лестницы» ДНК. Благодаря этому буквы РНК образуют связи с открытыми буквами ДНК одной из нитей ДНК. Фермент переносит буквы РНК, чтобы соединить их в нить. Так буквы ДНК «переписываются» в буквы РНК. Новообразованная цепочка РНК отделяется, и «лестница» ДНК снова закручивается.

После дальнейших изменений этот вид закодированной РНК готов.

РНК выходит из ядра и направляется к месту синтеза белка, где буквы РНК расшифровываются. Каждый набор из трех букв РНК образует «слово», обозначающее одну конкретную аминокислоту.

Другой вид РНК отыскивает эту аминокислоту, захватывает ее с помощью фермента и доставляет к месту синтеза белка. По мере прочтения и перевода сообщения РНК цепочка аминокислот растет. Эта цепочка закручивается и укладывается в уникальную форму, создавая один вид белка.
Примечателен даже процесс укладки белка: на то, чтобы с помощью компьютера просчитать все возможности укладки белка среднего размера, состоящего из 100 аминокислот, потребовалось бы 10 27 лет. А для образования в организме цепочки из 20 аминокислот требуется не более одной секунды — и этот процесс происходит непрерывно во всех клетках тела.

Гены, генетический код и его свойства.

На Земле живет около 7 млрд людей. Если не считать 25—30 млн пар однояйцовых близнецов, то генетически все люди разные: каждый уникален, обладает неповторимыми наследственными особенностями, свойствами характера, способностями, темпераментом.

Такие различия объясняются различиями в генотипах—наборах генов организма; у каждого он уникален. Генетические признаки конкретного организма воплощаются в белках — следовательно, и строение белка одного человека отличается, хотя и совсем немного, от белка другого человека.

Это не означает, что у людей не встречается совершенно одинаковых белков. Белки, выполняющие одни и те же функции, могут быть одинаковыми или совсем незначительно отличаться одной-двумя аминокислотами друг от друга. Но не существует на Земле людей (за исключением однояйцовых близнецов), у которых все белки были бы одинаковы.

Информация о первичной структуре белка закодирована в виде последовательности нуклеотидов в участке молекулы ДНК – гене – единице наследственной информации организма. Каждая молекула ДНК содержит множество генов. Совокупность всех генов организма составляет его генотип.

Кодирование наследственной информации происходит с помощью генетического кода, который универсален для всех организмов и отличается лишь чередованием нуклеотидов, образующих гены, и кодирующих белки конкретных организмов.

Генетический код состоит из троек (триплетов) нуклеотидов ДНК, комбинирующихся в разной последовательности (ААТ, ГЦА, АЦГ, ТГЦ и т.д.), каждый из которых кодирует определенную аминокислоту (которая будет встроена в полипептидную цепь).

Аминокислот 20, а возможностей для комбинаций четырех нуклеотидов в группы по три – 64 четырех нуклеотидов вполне достаточно, чтобы кодировать 20 аминокислот

поэтому одна аминокислота может кодироваться несколькими триплетами.

Часть триплетов вовсе не кодирует аминокислоты, а запускает или останавливает биосинтез белка.

Собственно кодом считается последовательность нуклеотидов в молекуле и-РНК, т.к. она снимает информацию с ДНК (процесс транскрипции) и переводит ее в последовательность аминокислот в молекулах синтезируемых белков (процесс трансляции).

В состав и-РНК входят нуклеотиды АЦГУ, триплеты которых называются кодонами: триплет на ДНК ЦГТ на и-РНК станет триплетом ГЦА, а триплет ДНК ААГ станет триплетом УУЦ.

Именно кодонами и-РНК отражается генетический код в записи.

Таким образом, генетический код — единая система записи наследственной ин­формации в молекулах нуклеиновых кислот в виде последова­тельности нуклеотидов. Генетический код основан на использо­вании алфавита, состоящего всего из четырех букв-нуклеотидов, отличающихся азотистыми основаниями: А, Т, Г, Ц.

Основные свойства генетического кода:

1. Генетический код триплетен. Триплет (кодон) — последовательность трех нуклеотидов, кодирующая одну аминокислоту. Поскольку в состав бел­ков входит 20 аминокислот, то очевидно, что каждая из них не может кодироваться одним нуклеотидом (поскольку в ДНК всего четыре типа нуклеотидов, то в этом случае 16 аминокислот оста­ются незакодированными). Двух нуклеотидов для кодирования аминокислот также не хватает, поскольку в этом случае могут быть закодированы только 16 аминокислот. Значит, наименьшее число нуклеотидов, кодирующих одну аминокислоту, оказыва­ется равным трем. (В этом случае число возможных триплетов нуклеотидов составляет 4 3 = 64).

2. Избыточность (вырожденность) кода является следствием его триплетности и означает то, что одна аминокислота может кодироваться несколькими трип­летами (поскольку аминокислот 20, а триплетов — 64), за исключением метионина и триптофана, которые кодируются только одним триплетом. Кроме того, некоторые триплеты вы­полняют специфические функции: в молекуле иРНК триплеты УАА, УАГ, УГА — являются терминирующими кодонами, т. е. стоп-сигналами, прекращающими синтез полипептидной цепи. Триплет, соответствующий метионину (АУГ), стоящий в начале цепи ДНК, не кодирует аминокислоту, а выполняет функцию инициирования (возбуждения) считывания.

3. Одно­временно с избыточностью коду присуще свойство однозначнос­ти: каждому кодону соответствует только одна определенная аминокислота.

4. Код коллинеарен, т.е. по­следовательность нуклеотидов в гене точно соответствует после­довательности аминокислот в белке.

5. Генетический код непере­крываем и компактен, т. е. не содержит «знаков препинания». Это значит, что процесс считывания не допускает возможности перекрывания колонов (триплетов), и, начавшись на определенном кодоне, считывание идет непрерывно триплет за триплетом вплоть до стоп-сигналов ( терминирующих кодонов ).

6. Генетический код универсален, т. е. ядер­ные гены всех организмов одинаковым образом кодируют инфор­мацию о белках вне зависимости от уровня организации и систематического положения этих организмов.

Существуют таблицы генетического кода для расшифровки кодонов и-РНК и построения цепочек белковых молекул.

в основе каких реакций обмена лежит матричный синтез. Смотреть фото в основе каких реакций обмена лежит матричный синтез. Смотреть картинку в основе каких реакций обмена лежит матричный синтез. Картинка про в основе каких реакций обмена лежит матричный синтез. Фото в основе каких реакций обмена лежит матричный синтез

в основе каких реакций обмена лежит матричный синтез. Смотреть фото в основе каких реакций обмена лежит матричный синтез. Смотреть картинку в основе каких реакций обмена лежит матричный синтез. Картинка про в основе каких реакций обмена лежит матричный синтез. Фото в основе каких реакций обмена лежит матричный синтез

Реакции матричного синтеза.

В живых системах встречается реакции, неизвестные в неживой природе — реакции матричного синтеза.

Термином «матрица» в технике обозначают форму, употребляемую для отливки монет, медалей, типографского шрифта: затвердевший металл в точности воспроизводит все детали формы, служившей для отливки. Матричный синтез напоминает отливку на матрице: новые молекулы синтезируются в точном соответствии с планом, заложенным в структуре уже существующих молекул.

Матричный принцип лежит в основе важнейших синтетических реакций клетки, таких, как синтез нуклеиновых кислот и белков. В этих реакциях обеспечивается точная, строго специфичная последовательность мономерных звеньев в синтезируемых полимерах.

Здесь происходит направленное стягивание мономеров в определенное место клетки — на молекулы, служащие матрицей, где реакция протекает. Если бы такие реакции происходили в результате случайного столкновения молекул, они протекали бы бесконечно медленно. Синтез сложных молекул на основе матричного принципа осуществляется быстро и точно.

Роль матрицы в матричных реакциях играют макромолекулы нуклеиновых кислот ДНК или РНК.

Мономерные молекулы, из которых синтезируется полимер, — нуклеотиды или аминокислоты — в соответствии с принципом комплементарности располагаются и фиксируются на матрице в строго определенном, заданном порядке.

Затем происходит «сшивание» мономерных звеньев в полимерную цепь, и готовый полимер сбрасывается с матрицы.

После этого матрица готова к сборке новой полимерной молекулы. Понятно, что как на данной форме может производиться отливка только какой-то одной монеты, одной буквы, так и на данной матричной молекуле может идти «сборка» только какого-то одного полимера.

Матричный тип реакций — специфическая особенность химизма живых систем. Они являются основой фундаментального свойства всего живого — его способности к воспроизведению себе подобного.

К реакциям матричного синтеза относят:

1. репликацию ДНК— процесс самоудвоения молекулы ДНК, осуществляемый под контролем ферментов. На каждой из цепей ДНК, образовавшихся после разрыва водородных связей, при участии фермента ДНК-полимеразы синтезируется дочерняя цепь ДНК. Материалом для синтеза служат свободные нуклеотиды, имеющиеся в цитоплазме клеток.

Биологический смысл репликации заключается в точной передаче наследственной информации от материнской молекулы к дочерним, что в норме и происходит при делении соматических клеток.

Молекула ДНК состоит из двух комплементарных цепей. Эти цепи удерживаются слабыми водородными связями, способными разрываться под действием ферментов.

Молекула способна к самоудвоению (репликации), причем на каждой старой половине молекулы синтезируется новая ее половина.

Кроме того, на молекуле ДНК может синтезироваться молекула и-РНК, которая затем переносит полученную от ДНК информацию к месту синтеза белка.

Передача информации и синтез белка идут по матричному принципу, сравнимому с работой печатного станка в типографии. Информация от ДНК многократно копируется. Если при копировании произойдут ошибки, то они повторятся во всех последующих копиях.

Правда, некоторые ошибки при копировании информации молекулой ДНК могут исправляться — процесс устранения ошибок называется репарацией. Первой из реакций в процессе передачи информации является репликация молекулы ДНК и синтез новых цепей ДНК.

2. транскрипцию – синтез и-РНК на ДНК, процесс снятия информации с молекулы ДНК, синтезируемой на ней молекулой и-РНК.

И-РНК состоит из одной цепи и синтезируется на ДНК в соответствии с правилом комплементарности при участии фермента, который активирует начало и конец синтеза молекулы и-РНК.

Готовая молекула и-РНК выходит в цитоплазму на рибосомы, где происходит синтез полипептидных цепей.

3. трансляцию— синтез белка на и-РНК; процесс перевода информации, содержащейся в последовательности нуклеотидов и-РНК, в последовательность аминокислот в полипептиде.

4. синтез РНК или ДНК на РНК вирусов

Последовательность матричных реакций при биосинтезе белков можно представить в виде схемы:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *