в процессе участвуют митохондрии какой обмен

В процессе участвуют митохондрии какой обмен

Установите соответствие между признаками обмена веществ и его этапами.

А) Вещества окисляются

Б) Вещества синтезируются

В) Энергия запасается в молекулах АТФ

Г) Энергия расходуется

Д) В процессе участвуют рибосомы

Е) В процессе участвуют митохондрии

1) Пластический обмен

2) Энергетический обмен

ПРИЗНАКИ ОБМЕНА ВЕЩЕСТВЭТАПЫ

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

Пластический обмен идет на рибосомах, образуются сложные вещества и идет затраты энергии.

вещества окисляются в пластическом обмене и синтезируются во время энергетического. правильный ответ должен выглядеть так: 122112

Мария, учите тему:( К сожалению, Вы категорически не правы.

Метаболизм обычно делят на две стадии: в ходе катаболизма (энергетического обмена) сложные органические вещества расщепляются до более простых с запасом энергии в виде АТФ; в процессах анаболизма (пластического обмена) с затратами энергии синтезируются такие вещества, как белки, сахара, липиды и нуклеиновые кислоты.

разве энергия не расходуется в энергетическом а в пластическом она же сохраняется в атф

В энергетическом обмене образуется и накапливается АТФ

Источник

В процессе участвуют митохондрии какой обмен

Установите соответствие между признаками обмена веществ и его этапами.

А) Вещества окисляются

Б) Вещества синтезируются

В) Энергия запасается в молекулах АТФ

Г) Энергия расходуется

Д) В процессе участвуют рибосомы

Е) В процессе участвуют митохондрии

1) Пластический обмен

2) Энергетический обмен

ПРИЗНАКИ ОБМЕНА ВЕЩЕСТВЭТАПЫ

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

Пластический обмен идет на рибосомах, образуются сложные вещества и идет затраты энергии.

вещества окисляются в пластическом обмене и синтезируются во время энергетического. правильный ответ должен выглядеть так: 122112

Мария, учите тему:( К сожалению, Вы категорически не правы.

Метаболизм обычно делят на две стадии: в ходе катаболизма (энергетического обмена) сложные органические вещества расщепляются до более простых с запасом энергии в виде АТФ; в процессах анаболизма (пластического обмена) с затратами энергии синтезируются такие вещества, как белки, сахара, липиды и нуклеиновые кислоты.

разве энергия не расходуется в энергетическом а в пластическом она же сохраняется в атф

В энергетическом обмене образуется и накапливается АТФ

Установите соответствие между процессом обмена в клетке и его видом.

А) переписывание информации с ДНК на иРНК

Б) передача информации о первичной структуре полипептидной цепи из ядра к рибосоме

В) расщепление глюкозы до пировиноградной кислоты и синтез двух молекул АТФ

Г) присоединение к иРНК в рибосоме тРНК с аминокислотой

Д) окисление пировиноградной кислоты до углекислого газа и воды, сопровождаемое синтезом 36 молекул АТФ

2) энергетический обмен

ПРОЦЕСС ОБМЕНА В КЛЕТКЕВИД

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

В биосинтезе белка идут реакции матричного синтеза на ДНК и РНК, участвуют рибосомы. В энергетическом обмене расщепляется глюкоза до пировиноградной кислоты, а затем до углекислого газа и воды с образованием 36 молекул АТФ.

Установите соответствие между характеристикой обмена и его видом.

А) окисление органических веществ

Б) образование полимеров из мономеров

Г) запасание энергии в клетке

Е) окислительное фосфорилирование

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

При энергетическом обмене окисляются органические вещества с выделением энергии в форме АТФ (запасание энергии в клетке) во время стадии окислительного фосфорилирования. При пластическом обмене образуются полимерные молекулы из мономеров, энергия АТФ при этом растрачивается на биосинтез.

Расщепление АТФ — это пластический обмен. При отделении одного остатка фосфорной кислоты высвобождается энергия, которая необходима для биосинтеза.

Рас­щеп­ле­ние АТФ — это пла­сти­че­ский обмен. При от­де­ле­нии од­но­го остат­ка фос­фор­ной кис­ло­ты вы­сво­бож­да­ет­ся энер­гия, ко­то­рая не­об­хо­ди­ма для био­син­те­за. Запасание энергии — это образование АТФ в процессе окислительного фосфолирирования в митохондриях

Установите соответствие между процессами обмена веществ и его видом.

ХАРАКТЕРИСТИКАВИД ОБМЕНА

Б) образование 36 молекул АТФ

B) синтез иРНК на ДНК

Е) расщепление питательных веществ

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

При энергетическом процессе идет гликолиз, расщепляются полимеры до простых веществ, образуется ПВК и АТФ. При пластическом обмене идут процессы транскрипции и трансляции.

Установите соответствие между признаками обмена веществ и его видом.

ПРОЦЕССВИД ОБМЕНА

A) синтез углеводов в хлоропластах

B) синтез 38 молекул АТФ

Г) спиртовое брожение

Д) окислительное фосфорилирование

Е) образование белков из аминокислот на рибосомах

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

Под буквами А и Е — пластический обмен — совокупность всех процессов синтеза сложных органических веществ. Эти вещества идут на построение клетки. Пластический обмен всегда сопровождается поглощением энергии. Под буквами Б, В, Г, Д — энергетический обмен (распад, дыхание) — это когда сложные вещества распадаются (окисляются) до более простых, и при этом выделяется энергия, необходимая для жизнедеятельности.

Разве окислительное фосфолирование это энергетический обмен?

У меня в тетради написано:

-Синтез АТФ(Окислительное фосфолирование, синтез АТФ из АДФ)

Это должен быть пластический, а не энергетический!

не могу комментировать, что написано у Вас в тетради.

НО в фотосинтезе происходит

ФОТОСИНТЕТИЧЕСКОЕ (нециклическое) ФОСФОРИЛИРОВАНИЕ, синтез аденозинтрифосфата (АТФ) из аденозиндифосфата (АДФ) и неорганического фосфора (Фн) в хлоропластах, сопряженный с транспортом электронов, индуцируемым светом. Открыто Д. Арноном в 1954.

Физиология растений / под ред. проф. Ермакова И. П. — М.: Академия, 2007

Энергетический обмен (катаболизм, диссимиляция) — совокупность реакций расщепления органических веществ, сопровождающихся выделением энергии. Энергия, освобождающаяся при распаде органических веществ, запасается в форме АТФ и других высокоэнергетических соединений. АТФ — универсальный источник энергообеспечения клетки. Синтез АТФ происходит в клетках всех организмов в процессе окислительного фосфорилирования

Суммарная реакция расщепления глюкозы до углекислого газа и воды выглядит следующим образом:

Источник

В процессе участвуют митохондрии какой обмен

Установите соответствие между признаком и видом обмена веществ, для которого этот признак характерен. Для этого к каждому элементу первого столбца подберите позицию из второго столбца. Впишите в таблицу цифры выбранных ответов.

ПРИЗНАК ОБМЕНАВИД ОБМЕНА
&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbspПРИЗНАК&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbspВИД ОБМЕНА ВЕЩЕСТВ
A) совокупность реакций синтеза органических веществ &nbsp &nbsp1) пластический
Б) в процессе реакций энергия поглощается &nbsp &nbsp2) энергетический
В) в процессе реакций энергия освобождается
Г) участвуют рибосомы
Д) реакции осуществляются в митохондриях
E) энергия запасается в молекулах АТФ

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

Обмен веществ (метаболизм) — это совокупность всех химических реакций, которые происходят в организме.

Пластический обмен (биосинтез) — это когда из простых веществ с затратой энергии образуются (синтезируются) более сложные. Пример: при фотосинтезе из углекислого газа и воды синтезируется глюкоза; при биосинтезе белка из аминокислот образуются белки.

Энергетический обмен (распад, дыхание) — это когда сложные вещества распадаются (окисляются) до более простых, и при этом выделяется энергия, необходимая для жизнедеятельности. Пример:в митохондриях глюкоза, аминокислоты и жирные кислоты окисляются кислородом до углекислого газа и воды, при этом образуется энергия (клеточное дыхание).

Взаимосвязь пластического и энергетического обмена. Пластический обмен обеспечивает клетку сложными органическими веществами (белками, жирами, углеводами, нуклеиновыми кислотами), в том числе белками-ферментами для энергетического обмена. Энергетический обмен обеспечивает клетку энергией. При выполнении работы (умственной, мышечной и т. п.) энергетический обмен усиливается.

Источник

Энергетический обмен

Обмен веществ

в процессе участвуют митохондрии какой обмен. Смотреть фото в процессе участвуют митохондрии какой обмен. Смотреть картинку в процессе участвуют митохондрии какой обмен. Картинка про в процессе участвуют митохондрии какой обмен. Фото в процессе участвуют митохондрии какой обмен

Энергетический обмен

Возможно три этапа диссимиляции: подготовительный, анаэробный и аэробный. Среда обитания определяет количество этапов диссимиляции. Их может быть три, если организм обитает в кислородной среде, и два, если речь идет об организме, обитающем в бескислородной среде (к примеру, в кишечнике).

Подготовительный этап осуществляется ферментами в ЖКТ. В результате действия ферментов сложные вещества превращаются в более простые: полимеры распадаются на мономеры. Это сопровождается разрывом химических связей и выделением энергии, большая часть которой рассеивается в виде тепла.

в процессе участвуют митохондрии какой обмен. Смотреть фото в процессе участвуют митохондрии какой обмен. Смотреть картинку в процессе участвуют митохондрии какой обмен. Картинка про в процессе участвуют митохондрии какой обмен. Фото в процессе участвуют митохондрии какой обмен

Этот этап является последним для организмов-анаэробов, обитающих в условиях, где кислород отсутствует. На этапе гликолиза происходит расщепление молекулы глюкозы: образуется 2 молекулы АТФ и 2 молекулы пировиноградной кислоты (ПВК). Происходит данный этап в цитоплазме клеток.

Таким образом, суммарно с одной молекулы глюкозы можно получить 38 АТФ (гликолиз + кислородный этап).

Кислородный этап протекает на кристах митохондрий (складках, выпячиваниях внутренней мембраны), где наибольшая концентрация окислительных ферментов. Главную роль в этом процессе играет так называемый цикл Кребса, который подробно изучает биохимия.

в процессе участвуют митохондрии какой обмен. Смотреть фото в процессе участвуют митохондрии какой обмен. Смотреть картинку в процессе участвуют митохондрии какой обмен. Картинка про в процессе участвуют митохондрии какой обмен. Фото в процессе участвуют митохондрии какой обмен

в процессе участвуют митохондрии какой обмен. Смотреть фото в процессе участвуют митохондрии какой обмен. Смотреть картинку в процессе участвуют митохондрии какой обмен. Картинка про в процессе участвуют митохондрии какой обмен. Фото в процессе участвуют митохондрии какой обмен

Пластический обмен

АТФ является универсальным источником энергии в клетке: энергия макроэргических связей АТФ используется для реакций пластического обмена (ассимиляции), протекающих с затратой энергии: синтеза белка на рибосоме (трансляции), удвоению ДНК (репликации) и т.д.

В результате пластического обмена в нашем организме происходит синтез белков, жиров и углеводов.

в процессе участвуют митохондрии какой обмен. Смотреть фото в процессе участвуют митохондрии какой обмен. Смотреть картинку в процессе участвуют митохондрии какой обмен. Картинка про в процессе участвуют митохондрии какой обмен. Фото в процессе участвуют митохондрии какой обмен

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

В процессе участвуют митохондрии какой обмен

Митохондрии представляют собой внутриклеточные органеллы эукариот, основной функцией которых является выработка АТФ в результате реакции окислительного фосфорилирования. (Logan, 2006)

Каждая митохондрия содержит высокоспециализированные мембраны, играющие ключевую роль в ее активности. Мембраны образуют два изолированных митохондриальных компартмента: внутренний матрикс и узкое межмембранное пространство. Каждый отдел содержит уникальный набор белков. В состав наружной мембраны входит белок порин, который образует широкие гидрофильные каналы в липидном бислое. (Максимович, 2015). В результате эта мембрана напоминает сито, проницаемое для всех молекул массой менее 10000 дальтон, в том числе низкомолекулярных. Эти молекулы могут проникать в межмембранное пространство, но большая их часть не способна проходить через непроницаемую внутреннюю мембрану. Основная функциональная часть митохондрии– матрикс и окружающая его внутренняя мембрана. Внутренняя мембрана содержит большое количество «двойного» фосфолипида кардиолипина (30%), что обеспечивает непроницаемость мембраны для ионов и отличается необычно высоким содержанием белка (около 70% от веса). Многие из белков являются компонентами электронтранспортной цепи, поддерживающей протонный градиент на мембране. Другой большой белковый комплекс–фермент АТФ-синтаза, катализирующий синтез АТФ, через который протоны возвращаются в матрикс по электрохимическому градиенту (Erazo-Oliveras,2014).

Роль митохондрий в энергетике клетки

Наиболее характерной особенностью митохондрий является содержание в них большого числа ферментов, участвующих в аэробном «дыхании». Большая часть энергии, которая освобождается при переносе электронов, аккумулируется в макроэргических фосфатных связях АТФ. (Максимович, 2015)

Окисление ацетильной группы в цикле Кребса ведет к образованию молекул восстановленного NADH и восстановленного FADH2. Вначале почти вся энергия, получаемая на ранних этапах окисления питательных веществ, аккумулируется в форме высокоэнергетических электронов NADH и FADH2. NADH, компонент NADH-дегидрогеназного комплекса, образовавшийся в цитозоле при гликолизе, передает свои электроны в дыхательную цепь. Так как NADH не способен проходить через внутреннюю мембрану, перенос электронов от него осуществляется непрямым путем при помощи одной из челночных систем, транспортирующих в митохондрию карнитин, который после окисления возвращается в цитозоль с последующим его восстановлением с помощью NADH. Другой субстрат, FADH2 передает свои электроны в дыхательную цепь непосредственно. Электроны этих субстратов восстанавливают молекулярный кислород (акцептор электронов) в дыхательной цепи с образованием метаболической воды. Так как большое количество высвобождаемой энергии используется ферментами внутренней мембраны для образования АТФ из AДФ, эти реакции называют окислительным фосфорилированием. На внутренней мембране создается электрохимический протонный градиент. Митохондриальная дыхательная цепь внутренней мембраны способна перемещать протоны Н+. При прохождении электронов по дыхательной цепи происходит их «откачивание» из матрикса. АТФ-синтаза может использовать энергию гидролиза АТФ для переноса Н+ через мембрану, а при достаточно большом протонном градиенте протоны начинают «течь» через фермент в обратном направлении, что сопровождается синтезом АТФ. Все белки-переносчики электронов группируются в 4 больших комплекса дыхательных ферментов, каждый из которых содержит трансмембранные белки, прочно закрепляющие комплекс во внутренней мембране митохондрии. Комплекс I (NADH-убихиноноксидоредуктаза; NADH-дегидрогеназа), комплекс II (сукцинатдегидрогеназа; сукцинат-убихинон оксидоредуктаза), комплекс III (комплекс цитохромов b, c1; убихинон-цитохром c оксидоредуктаза), комплекс IV (цитохром c оксидаза; цитохромоксидаза; цитохром с-O2 оксидоредуктаза). Каждый последующий комплекс обладает большим сродством к электронам, чем предыдущий. (Logan, 2006) Электроны последовательно переходят от одного комплекса на другой, пока не восстановят кислород, являющийся их акцептором.(Максимович, 2015)

Роль митохондрий в кальциевом гомеостазе

Центральным механизмом в реализации иммунного ответа является кальциевая сигнализация. Иммунореактивность лимфоцитов обеспечивается интеграцией митохондрий и механизмов кальциевой сигнализации. Митохондрии играют важную роль в гомеостазе Ca 2+ лимфоцитов, как и в других клетках. Они имеют огромный потенциал для его быстрого накопления, поэтому участвуют в модуляции пространственно-временного профиля кальциевых сигналов (Bonifaz 2015, Chandel 2014).

В последние годы все большее внимание исследователей привлекает изучение работы митохондрий как кальциевых депо клетки в процессе реализации специфических функций иммунокомпетентных клеток, так как белки компоненты этой сложной системы регуляции кальциевого гомеостаза могут рассматриваться в качестве молекул-мишеней для направленной регуляции функциональной активности лимфоцитов в норме и при патологических процессах (воспаление, аутоиммунная патология, аллергические реакции, иммунодефициты).

Стабильный уровень Ca 2+ в митохондриях сохраняется в результате равномерного накопления ионов и их высвобождении при значительном повышении уровня Ca 2+ в матриксе, за счет слаженной работы транспортной системы внешней и внутренней мембран митохондрий. Данная система включает основной канал тока Ca 2+ через наружную мембрану – потенциал-зависимый анионный канал; также систему унипорта внутренней мембраны и его молекулярные компоненты, регулирующие активность; два пути высвобождения Ca 2+ в цитозоль – H+/Ca 2+ насос и проницаемая пора мембраны митохондрий. Ток Ca2+ через потенциал – зависимый канал и систему унипорта осуществляется за счет электрохимического протонного градиента (Kaufman 2014).

Были определены белки, участвующие в контроле Ca 2+ тока сквозь внутреннюю мембрану митохондрий (Becker 2009). В частности, в 2010 г. были исследованы Na + /Ca 2+ насосы; белки – регуляторы поглощения Ca 2+ митохондриями, они получили название mitochondrial calcium uptake 1 белки –MICU1; затем были обнаружены и частично охарактеризованы потенциальные регуляторы тока Ca 2+ в митохондрии: MICUb, MICU2, MICU3, EMRE. На основании проведенных исследований сложилась более четкая картина осуществления поглощения ионов кальция митохондриями и сохранении гомеостаза Ca 2+ как внутри органеллы, так и клеточной системе, в целом (Becker 2009).

Шапероны в мембранах ЭПР и митохондрий обеспечивают физическое и функциональное взаимодействие между ЭПР и митохондриями. В формировании АММ главную роль играет глюкозо-регулирующий белок – шаперон GRP75, который содержится в большом количестве в митохондриях. Этот шаперон контролирует передачу кальциевого сигнала от ЭПР к митохондриям и индуцирует взаимодействие между фосфоинозитол3-фосфат-чувствительными рецепторами и VDAC1. В этом случае шаперон образует между мембранами ЭПР и митохондрий туннель для Ca2+, позволяя более эффективно проникать ионам из ЭПР во внешнюю мембрану митохондрий.

Роль митохондрий в апоптозе

Установлено, что основным компонентом, осуществляющим восприятие стимулов ПГК и активизирующим механизмы реализации той или иной формы ПГК, являются митохондрии. Предполагается, что на уровне митохондрий осуществляется интеграция сигналов активизирующих и подавляющих процесс ПГК, следствием чего является дальнейшая реализация программированной клеточной гибели или ее подавление.

На сегодняшний день показано существование трех основных форм программированной гибели клетки: апоптоз (I тип ПГК), аутофагия (II тип ПГК), некрозоподобная ПГК (III тип ПГК). Каждый из этих типов гибели клетки характеризуется собственными биохимическими, молекулярными и морфологическими особенностями (Бра 2005).

При апоптозе наблюдается уменьшение клетки в объеме, конденсация хроматина и фрагментация ДНК на олигонуклеосомные фрагменты. Митохондрии и рибосомы во время реализации апоптоза сохраняют в основном свою структуру и частично – функции. Заключительный этап апоптоза характеризуется разрушением цитоскелета, что приводит к сморщиванию клетки и ее фрагментации на апоптотические тельца, поглощаемые макрофагами или другими соседними клетками.

Ключевыми участниками терминальной фазы апоптотической программы являются цистеиновые протеазы – каспазы, осуществляющие деградацию белковых структур клетки и активирующие нуклеазы. (Бра 2005). Для аутофагии характерно набухание митохондрий и цистерн эндоплазматического ретикулума, увеличение аппарата Гольджи, секвестрация клеточных органелл аутофагическими вакуолями, конденсация хроматина и коллапс ядра.

Терминальным этапом аутофагии является разрушение клеточных органелл лизосомальными ферментами, следствием чего является деградация клетки. Образующийся после реализации аутофагии клеточный дебрис поглощается соседними клетками (Levine 2005). Заключительным событием в этом процессе является разрыв плазматической мембраны, способствующий излиянию содержимого клетки в межклеточное пространство, что способствует индукции воспалительной реакции.

Соотношение различных типов ПГК может варьироваться в зависимости от типа и силы воздействия стимула, активизирующего ПГК.

Важной особенностью митохондрий является способность к значительной амплификации исходящих от них стимулов, активирующих ПГК. Показано, что открытие митохондриальных пор является общим моментом в реализации механизмов всех обсуждаемых выше форм ПГК (Владимиров 2002). Образование пор в митохондриях приводит к выходу из митохондрий цитохрома С, способствующего образованию апоптосомы и активирующего каспазы. Этот процесс является основным механизмом апоптотической гибели клетки. Через открытые поры в митохондриях в цитоплазму высвобождаются также факторы, перемещающиеся в ядро и активирующие реализацию ПГК по независимым от каспаз механизмам: эндонуклеаза G и AIF, связывающий ДНК и активирующий нуклеазы и протеазы в ядре. Показано, что данные факторы принимают участие в развитии как апоптоза, так и некроза. Помимо активаторов ПГК, митохондрии также высвобождают ингибиторы белков, блокирующих ПГК (Smac/DIABLO, Omi/ HtrA2) и предшественников каспаз (прокаспаза 2, 3, 9) (Бра 2005).

К небелковым медиаторам клеточной гибели относятся ионы Ca2+, активирующие при их выходе в цитоплазму кальпаины и Ca 2+ зависимые липазы, что приводит к реализации некротической формы ПГК. Дополнительным фактором индукции ПГК является увеличение продукции компонентами дыхательной цепи митохондрий активных форм кислорода, активирующих механизмы апоптоза, аутофагии и некроза. На сегодняшний день известны митохондриальные апоптотические поры (mitochondrial apoptotic pores – MAP) и поры повышенной проницаемости или мегаканалы (permeability transition pores – РТP). Механизмом образования апоптотических пор в митохондриях является олигомеризация на митохондриальной мембране белков Bax и Bak. (Aradjomande 2005).

Существует мнение, что «выбор» клеткой активизации механизмов той или иной формы программированной гибели определяется количеством открытых пор в митохондриях. В том случае, если PTP формируются в нескольких митохондриях, в клетке активируется процесс аутофагии. Когда PTP открываются у большего числа митохондрий, в клетке инициируется апоптоз, что, вероятно, является следствием увеличения в цитоплазме количества цитохрома С и AIF. Наконец, когда в клетке практически во всех митохондриях открываются РТP, происходит разобщение окисления и фосфорилирования и интенсивный гидролиз АТФ митохондриальной АТФ-азой, активизируются механизмы некрозоподобной клеточной гибели (Guimaraes 2004). Минимальное количество открытых пор принципиально не влияет на процесс клеточной гибели, при большем количестве.

Считается, что определенное значение в реализации апоптоза и некрозоподобной ПГК имеет уровень продукции АТФ. Известно, что при низком уровне АТФ в клетке протекает процесс программированной гибели клетки по механизму некроза, достаточное энергообеспечение клетки способствует прохождению ПГК по механизму апоптоза (Buja 2005).

Установлено, что митохондрии обладают широким спектром белковых (цитохром С, эндонуклеаза G, AIF,) и небелковых факторов (ионы Ca2+, активные формы кислорода), активизирующих процесс клеточной гибели после высвобождения их в цитоплазму. В настоящее время существует аргументированная гипотеза, предполагающая, что накопление нарушений в митохондриальном геноме и прогрессирование митохондриальной дисфункции является одним из механизмов старения организма и развития различных патологических процессов.

На сегодняшний день известны митохондриальные апоптотические поры (MAP) и поры повышенной проницаемости или мегаканалы (permeability transition pores – РТP). Механизмом образования апоптотических пор в митохондриях является олигомеризация на митохондриальной мембране белков Bax и Bak. PTP формируются за счет объединения в единый комплекс АТФ –АДФ- антипортера, локализованного во внутренней митохондриальной мембране, циклофилина D, находящегося в матриксе митохондрий, и порина (voltage dependent anion channel, VDAC) – ионного канала внешней митохондриальной мембраны (Aradjomande, 2005).

Таким образом, Митохондриальный путь апоптоза предусматривает не только активацию каспаз, но и доставку в ядро клетки активных ферментов — эндонуклеазы G и апоптозиндуцирующего фактора, способных вызвать деградацию генетического материала без активации каспаз (Kaufman 2014).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *