в результате какой реакции образуется пептидная связь

Пептидная связь возникает между аминокислотами при взаимодействии аминогруппы (-NH2) и карбоксильной группы (-СООН). Две соединенные между собой аминокислоты дают дипептид, три – трипепетид и так далее. Более длинные цепи называют полипептиды и белки.

в результате какой реакции образуется пептидная связь. Смотреть фото в результате какой реакции образуется пептидная связь. Смотреть картинку в результате какой реакции образуется пептидная связь. Картинка про в результате какой реакции образуется пептидная связь. Фото в результате какой реакции образуется пептидная связь

Как образуется пептидная связь

Данный вид образуется при оттягивании электронной плотности с атома водорода аминогруппы одной и атомом кислорода карбоксильной группы другой аминокислоты.

в результате какой реакции образуется пептидная связь. Смотреть фото в результате какой реакции образуется пептидная связь. Смотреть картинку в результате какой реакции образуется пептидная связь. Картинка про в результате какой реакции образуется пептидная связь. Фото в результате какой реакции образуется пептидная связь

В результате разрываются соединение между N и Н в аминогруппе и между С и ОН в карбоксильной группе. Протон и гидроксильная группа, объединяясь, дают воду. Два аминокислотных остатка – дипептид.

Свойства пептидной связи

Пептидная связь, характерная для первичной структуры белков, не является полностью одинарной. Её длина составляет 0.132 нм. Это среднее значение между значением истинной двойной связью (C = N, 0,127 нм) и значением истинной одинарной связью (C – N, 0,149 нм).

в результате какой реакции образуется пептидная связь. Смотреть фото в результате какой реакции образуется пептидная связь. Смотреть картинку в результате какой реакции образуется пептидная связь. Картинка про в результате какой реакции образуется пептидная связь. Фото в результате какой реакции образуется пептидная связь

Атомы, непосредственно вступающие во взаимодействие (углерод, азот, кислород, водород) и два атома α-углерода расположены в общей плоскости. Радикальные группы аминокислот и водорода при α-углеродах лежат за пределами плоскости.

Водород и кислород пептидной связи и α-углероды аминокислот находятся в транс-ориентации. Во всех белковых и пептидных молекулах естественного происхождения, аминокислотные R-группы тоже ориентированы в транс-модификацию.

Резонансные формы пептидных связей

В основе феномена резонанса пептидной связи лежит то, что она на 40% является двойной.

в результате какой реакции образуется пептидная связь. Смотреть фото в результате какой реакции образуется пептидная связь. Смотреть картинку в результате какой реакции образуется пептидная связь. Картинка про в результате какой реакции образуется пептидная связь. Фото в результате какой реакции образуется пептидная связь

В результате этот вид существует в трех формах:

Кетольная (0,132 нм). Когда взаимодействие между атомами азота и углерода стабилизируется и становится полностью одиночной.

Переходная или мезомерная форма с неопределенными, промежуточными характеристиками.

Енольная (0,127 нм). В этой форме электронная плотность переходит с пептидной на связь между углеродом и кислородом, делая её полностью двойной, вследствие атом кислорода становится заряжен частично отрицательно.

Таким образом, причиной резонанса является делокализованность электронной плотности между азотом и углеродом.

Строение пептидной связи

В итоге электронная плотность пептидной группы смещается к кислороду. В результате такого сопряжения выравниваются длины связей внутри радикала.

Структура и формула отражены на картинке:

в результате какой реакции образуется пептидная связь. Смотреть фото в результате какой реакции образуется пептидная связь. Смотреть картинку в результате какой реакции образуется пептидная связь. Картинка про в результате какой реакции образуется пептидная связь. Фото в результате какой реакции образуется пептидная связь

Методы определения пептидных связей

Качественной является биуретовая реакция. Такое название она получила, так как впервые была проведена для биурета, хоть и не являющегося аминокислотой, но обладающего двумя пептидными связями.

Принцип определения сводится к тому, что аминокислоты, могущие образовать минимум две пептидные связи, в щелочной среде, при добавлении сульфата меди (II), образуют медьсодержащее комплексное соединение фиолетового цвета.

Комплекс меди с биуретом образуется по схеме:

в результате какой реакции образуется пептидная связь. Смотреть фото в результате какой реакции образуется пептидная связь. Смотреть картинку в результате какой реакции образуется пептидная связь. Картинка про в результате какой реакции образуется пептидная связь. Фото в результате какой реакции образуется пептидная связь

Заключение

Пептидная связь является основой построения белковых молекул, из которых, в конечном итоге, строятся все живые организмы. Особенности её строения и пространственной конфигурации оказали огромное влияние на саму возможность существования жизни на нашей планете.

Последовательность аминокислот в белке определяется другой важнейшей молекулой – ДНК.

Источник

Пептидная связь: образование, строение, свойства

в результате какой реакции образуется пептидная связь. Смотреть фото в результате какой реакции образуется пептидная связь. Смотреть картинку в результате какой реакции образуется пептидная связь. Картинка про в результате какой реакции образуется пептидная связь. Фото в результате какой реакции образуется пептидная связь

Содержание:

Именно пептидная связь является основой построения всех белковых молекул, из которых, в конечном счете, образуется вся живая материя. Особенности строения пептидной связи, ее структура оказали огромное влияние на саму возможность существования жизни на нашей планете. О том, что такое пептидная связь, как она образуется и какими свойствами обладает, читайте дальше.

Определение

Пептидная связь это связь, возникающая между аминокислотами при взаимодействии аминогруппы (-NH2) и карбоксильной группы (-COOH). Две соединенные одна с другой кислоты образуют дипептид, три – трипепетид и так далее. Длинные цепи подобного рода зовутся полипептидами и белками.

Также академическое определение пептидной связи звучит так: пептидная связь – это вид химической связи, возникающей вследствие взаимодействия α-аминогруппы одной аминокислоты и α-карбоксигруппы другой аминокислоты.

в результате какой реакции образуется пептидная связь. Смотреть фото в результате какой реакции образуется пептидная связь. Смотреть картинку в результате какой реакции образуется пептидная связь. Картинка про в результате какой реакции образуется пептидная связь. Фото в результате какой реакции образуется пептидная связь

Само же слово «пептид» происходит от греческого «питательный» и означает семейство веществ, молекулы которых построены из двух или более остатков аминокислот, соединенных в цепь пептидными связями —C(O)NH—.

Образование

Как образуется пептидная связь? Образование пептидной связи происходит внутри клеток на рибосомах при активном участии ферментов с затратой энергии. Аминокислоты при этом, будучи мономерами, играют роль таких себе строительных блоков белков. Для синтеза белка живыми организмами используется 20 видов различных аминокислот.

Что же касается самого процесса образования пептидной связи между аминокислотами, то она образуется при оттягивании электронной плотности с атома водорода аминогруппы одной аминокислоты и атомом кислорода карбоксильной группы другой аминокислоты.

Вот так процесс образования пептидной связи в молекуле выглядит схематически.

в результате какой реакции образуется пептидная связь. Смотреть фото в результате какой реакции образуется пептидная связь. Смотреть картинку в результате какой реакции образуется пептидная связь. Картинка про в результате какой реакции образуется пептидная связь. Фото в результате какой реакции образуется пептидная связь

Как следствие разрываются соединения между N и H в аминогруппе и между C и OH в карбоксильной группе. Соединение протона и гидроксильной группы в результате образует воду, а два аминокислотных остатка – дипептид.

Свойства

Пептидная связь, которая имеет место при первичной структуре белков, не является полностью одинарной. Длина ее равна 0,132 нм. Это среднее значение между истинной двойной и одинарной связями.

Важными свойствами пептидной связи являются копланарность и трансположение, далее подробно их поясним.

Копланарность означает, что все атомы, входящие в пептидную группу находятся на одной плоскости, а атомы H и О располагаются по разные стороны от пептидной связи. Но стоит заметить, что радикальные группы аминокислот и водорода при α-углеродах лежат за пределами плоскости.

Трансположение означает, что кислород и водород пептидной связи находятся в транс-ориентации. Также в транс-ориентации ориентированы аминокислотные R-группы во всех белковых и пептидных молекулах естественного происхождения.

Строение

Структура подобной пептидной связи и формула отражена на картинке.

в результате какой реакции образуется пептидная связь. Смотреть фото в результате какой реакции образуется пептидная связь. Смотреть картинку в результате какой реакции образуется пептидная связь. Картинка про в результате какой реакции образуется пептидная связь. Фото в результате какой реакции образуется пептидная связь

Методы определения связей

Наилучшим методом для определения пептидных связей является биуретовая реакция. Такое название она имеет потому, что впервые эта реакция была использована для получения биурета, который хотя и не является аминокислотой, но обладает при этом двумя пептидными связями.

Сам механизм определения сводится к тому, что аминокислоты, способные образовать как минимум две пептидные связи в щелочной среде при добавлении сульфата меди образуют медьсодержащее комплексное соединение фиолетового цвета.

Рекомендованная литература и полезные ссылки

Видео

Источник

Пептидная связь — характеристика, свойства и строение

Пептидная связь возникает между аминокислотами при взаимодействии аминогруппы (-NH2) и карбоксильной группы (-СООН). Две соединенные между собой аминокислоты дают дипептид, три – трипепетид и так далее. Более длинные цепи называют полипептиды и белки.

в результате какой реакции образуется пептидная связь. Смотреть фото в результате какой реакции образуется пептидная связь. Смотреть картинку в результате какой реакции образуется пептидная связь. Картинка про в результате какой реакции образуется пептидная связь. Фото в результате какой реакции образуется пептидная связь

Образование полипептидной связи внутри клеток идет на рибосомах, при участии ферментов с затратой энергии. Аминокислоты являются мономерами — строительными блоками белков. Для синтеза белка живые организмы используют 20 видов аминокислот.

Как образуется пептидная связь

Данный вид образуется при оттягивании электронной плотности с атома водорода аминогруппы одной и атомом кислорода карбоксильной группы другой аминокислоты.

в результате какой реакции образуется пептидная связь. Смотреть фото в результате какой реакции образуется пептидная связь. Смотреть картинку в результате какой реакции образуется пептидная связь. Картинка про в результате какой реакции образуется пептидная связь. Фото в результате какой реакции образуется пептидная связь

В результате разрываются соединение между N и Н в аминогруппе и между С и ОН в карбоксильной группе. Протон и гидроксильная группа, объединяясь, дают воду. Два аминокислотных остатка – дипептид.

Свойства пептидной связи

Пептидная связь, характерная для первичной структуры белков, не является полностью одинарной. Её длина составляет 0.132 нм. Это среднее значение между значением истинной двойной связью (C = N, 0,127 нм) и значением истинной одинарной связью (C – N, 0,149 нм).

в результате какой реакции образуется пептидная связь. Смотреть фото в результате какой реакции образуется пептидная связь. Смотреть картинку в результате какой реакции образуется пептидная связь. Картинка про в результате какой реакции образуется пептидная связь. Фото в результате какой реакции образуется пептидная связь

Атомы, непосредственно вступающие во взаимодействие (углерод, азот, кислород, водород) и два атома α-углерода расположены в общей плоскости. Радикальные группы аминокислот и водорода при α-углеродах лежат за пределами плоскости.

Водород и кислород пептидной связи и α-углероды аминокислот находятся в транс-ориентации. Во всех белковых и пептидных молекулах естественного происхождения, аминокислотные R-группы тоже ориентированы в транс-модификацию.

Резонансные формы пептидных связей

В основе феномена резонанса пептидной связи лежит то, что она на 40% является двойной.

в результате какой реакции образуется пептидная связь. Смотреть фото в результате какой реакции образуется пептидная связь. Смотреть картинку в результате какой реакции образуется пептидная связь. Картинка про в результате какой реакции образуется пептидная связь. Фото в результате какой реакции образуется пептидная связь

В результате этот вид существует в трех формах:

Кетольная (0,132 нм). Когда взаимодействие между атомами азота и углерода стабилизируется и становится полностью одиночной.

Переходная или мезомерная форма с неопределенными, промежуточными характеристиками.

Енольная (0,127 нм). В этой форме электронная плотность переходит с пептидной на связь между углеродом и кислородом, делая её полностью двойной, вследствие атом кислорода становится заряжен частично отрицательно.

Таким образом, причиной резонанса является делокализованность электронной плотности между азотом и углеродом.

Строение пептидной связи

В итоге электронная плотность пептидной группы смещается к кислороду. В результате такого сопряжения выравниваются длины связей внутри радикала.

Структура и формула отражены на картинке:

в результате какой реакции образуется пептидная связь. Смотреть фото в результате какой реакции образуется пептидная связь. Смотреть картинку в результате какой реакции образуется пептидная связь. Картинка про в результате какой реакции образуется пептидная связь. Фото в результате какой реакции образуется пептидная связь

Методы определения пептидных связей

Качественной является биуретовая реакция. Такое название она получила, так как впервые была проведена для биурета, хоть и не являющегося аминокислотой, но обладающего двумя пептидными связями.

Принцип определения сводится к тому, что аминокислоты, могущие образовать минимум две пептидные связи, в щелочной среде, при добавлении сульфата меди (II), образуют медьсодержащее комплексное соединение фиолетового цвета.

Комплекс меди с биуретом образуется по схеме:

в результате какой реакции образуется пептидная связь. Смотреть фото в результате какой реакции образуется пептидная связь. Смотреть картинку в результате какой реакции образуется пептидная связь. Картинка про в результате какой реакции образуется пептидная связь. Фото в результате какой реакции образуется пептидная связь

Заключение

Пептидная связь является основой построения белковых молекул, из которых, в конечном итоге, строятся все живые организмы. Особенности её строения и пространственной конфигурации оказали огромное влияние на саму возможность существования жизни на нашей планете.

Последовательность аминокислот в белке определяется другой важнейшей молекулой – ДНК.

Источник

Химия. 10 класс

Конспект урока

Урок № 12. Аминокислоты. Белки

Перечень вопросов, рассматриваемых в теме: урок посвящён аминокислотам, их строению, номенклатуре, знакомству с пептидной группой и пептидной связью, химическими свойствами аминокислот, пептидам и полипептидам, знакомству с глицином как представителем аминокислот, биологической роли аминокислот, белкам, их структуре, химическим свойствам.

Аминокислота – это азотсодержащее органическое соединение, в составе которой есть как аминогруппа, так и карбоксильная группа.

Белки – органические полимеры, в состав которых входят остатки аминокислот, соединённые пептидной связью. Количество аминокислотных остатков в белках обычно более 50.

Биуретовая реакция – качественная цветная реакция на пептидные связи. При добавлении к белку раствора щёлочи и сульфата меди (II) раствор приобретает красно-фиолетовую окраску.

Гидролиз белка – распад белка на отдельные аминокислоты в водном растворе кислот или щелочей.

Денатурация белка – разрушение вторичной, третичной и четвертичной структуры белка при нагревании, действии растворов солей тяжёлых металлов, кислот и щелочей. При денатурации белок сворачивается и выпадает в осадок.

Ксантопротеиновая реакция – качественная цветная реакция концентрированной азотной кислоты с белками, содержащими остатки ароматических аминокислот. При добавлении концентрированной азотной кислоты к белку и нагревании сначала происходит денатурация белка, а затем появляется жёлтое окрашивание.

Олигопептиды – органические соединения, состоящие из 10–20 остатков аминокислот, связанных пептидными связями.

Пептидная группа – группа атомов в составе пептидов, состоящая из атомов углерода, кислорода, азота и водорода.

Пептидная связь – связь между атомами углерода и азота в пептидной группе.

Пептиды – органические соединения, состоящие из нескольких аминокислотных остатков, соединённых пептидной связью.

Полипептиды – макромолекулы, состоящие из 20–50 аминокислотных остатков, соединенных пептидной связью.

Основная литература: Рудзитис, Г. Е., Фельдман, Ф. Г. Химия. 10 класс. Базовый уровень; учебник/ Г. Е. Рудзитис, Ф. Г, Фельдман – М.: Просвещение, 2018. – 224 с.

1. Рябов, М.А. Сборник задач, упражнений и тестов по химии. К учебникам Г.Е. Рудзитис, Ф.Г. Фельдман «Химия. 10 класс» и «Химия. 11 класс»: учебное пособие / М.А. Рябов. – М.: Экзамен. – 2013. – 256 с.

2. Рудзитис, Г.Е. Химия. 10 класс : учебное пособие для общеобразовательных организаций. Углублённый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. – М. : Просвещение. – 2018. – 352 с.

Открытые электронные ресурсы:

ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ ДЛЯ САМОСТОЯТЕЛЬНОГО ИЗУЧЕНИЯ

Аминокислоты – это азотсодержащие органические соединения, в состав которых входят как аминогруппа, так и карбоксильная группа

Простейшим представителем аминокислот является глицин – аминоуксусная (аминоэтановая) кислота

По международной номенклатуре нумерация углеродных атомов начинается от углерода карбоксильной группы.

Достаточно часто в литературе можно встретить обозначения углеродных атомов в аминокислотах с помощью букв греческого алфавита. При этом атом углерода карбонильной группы не имеет обозначения.

Для некоторых аминокислот существуют тривиальные названия.

Изомеры аминокислот различаются строением углеводородного радикала и положением аминогруппы.

Все α-аминокислоты, кроме глицина, имеют в своем составе асимметрический атом, который следует сразу за карбоксильной группой. У этого атома углерода все заместители разные.

Благодаря этому атому, для α-аминокислот характерна оптическая изомерия. В природе распространены только L-α-аминокислоты.

Биологическое значение аминокислот

Из аминокислот наибольшее значение имеют α-аминокислоты, так как они входят в состав белковых молекул, из которых построено всё живое вещество.

Растения и бактерии способны самостоятельно синтезировать все необходимые для них аминокислоты. Млекопитающие, в том числе и человек, не могут синтезировать ряд аминокислот, они должны поступать в организм с пищей. К таким незаменимым аминокислотам относятся метионин, треонин, фенилаланин, лейцин, изолейцин, валин, лизин, триптофан.

α-Аминокислоты необходимы человеку для образования белков. Большую часть аминокислот для этих целей человек получает с пищей. Некоторые аминокислоты можно синтезировать. Для регулирования обменных процессов аминокислоты применяются как лекарства (например, глицин).

В промышленности α-аминокислоты получают гидролизом белков.

Можно синтезировать аминокислоты из хлорпроизводных карбоновых кислот и аммиака.

Физические и химические свойства аминокислот

Аминокислоты – кристаллические вещества без цвета и запаха, сладковатые на вкус. Хорошо растворяются в воде.

Аминокислоты – амфотерные соединения, так как аминогруппа проявляет основные свойства, а карбоксильная группа – кислотные.

Карбоксильная группа в составе аминокислот позволяет им реагировать со спиртами. В результате реакции образуются сложные эфиры.

Ион водорода от карбоксильной группы может переходить к аминогруппе, в результате образуется биполярный ион.

Аминокислоты могут реагировать друг с другом, аминогруппа одной кислоты соединяется с карбоксильной группой другой кислоты, при этом происходит выделение воды.

Группа атомов СО-NH называется пептидной (или амидной) группой, а связь между атомами углерода и азота – пептидной (амидной) связью.

Соединения, образованные из нескольких аминокислот с помощью пептидной связи, называются пептидами.

Называют пептиды перечислением тривиальных названий аминокислот, входящих в состав пептида, начиная с аминокислотного остатка со свободной аминогруппой (N-конец), заменяя в названии аминокислот окончание «ин» на «ил». Последней называют аминокислоту со свободной карбоксильной группой (С-конец), её название не изменяется. Часто название пептида записывают с помощью трёхбуквенных латинских сокращённых наименований аминокислот.

Молекулы, в состав которых входит 10–20 остатков аминокислот, называют олигопептидами.

Макромолекулы, образованные 20–50 остатками аминокислот называют полипептидами.

Полипептиды входят в состав многих гормонов. Нейропептиды регулируют работу мозга, процессы сна, обучения, обладают обезболивающим эффектом.

Полипептиды, содержащие в своём составе более 50 остатков аминокислот, называются белками. Это природные полимеры, которые образуют клетки всех живых организмов. Без белков невозможны обмен веществ, размножение и рост живых организмов.

Белки образованы атомами углерода, водорода, кислорода и азота. Кроме этих атомов, макромолекулы белков могут содержать атомы фосфора, серы, железа и других элементов.

Относительная молекулярная масса белковых молекул может быть от нескольких десятков до сотен атомных единиц массы.

Последовательность остатков аминокислот в молекуле белка образует первичную структуру белка.

Между атомом кислорода в группе С=О и атомом водорода в амидной группе – NH – образуется водородная связь, в результате чего макромолекула белка закручивается в спираль. Образуется вторичная структура белка.

Функциональные группы, расположенные на внешней стороне спирали, могут взаимодействовать с другими функциональными группами этой же макромолекулы. Например, между атомами серы образуется сульфидный мостик, между карбоксильной и гидроксильной группами возникает сложноэфирный мостик.

В результате образуется третичная структура белка, которая определяет специфическую биологическую активность белков. Именно благодаря уникальной третичной структуре биологические катализаторы – ферменты обладают уникальной избирательностью.

Благодаря различным функциональным группам белковые молекулы могут соединяться друг с другом, в результате формируется четвертичная структура белка.

Химические свойства белков

В зависимости от молекулярной массы и функциональных групп белки могут как хорошо растворяться в воде, так и не растворяться в ней.

Под действием температуры, растворов солей тяжёлых металлов, кислот и щелочей происходит разрушение вторичной, третичной и четвертичной структуры белка, называемое денатурацией.

При нагревании в присутствии кислоты или щёлочи белки подвергаются гидролизу, распадаясь на исходные аминокислоты.

Белки в щелочной среде в присутствии сульфата меди (II) окрашивают раствор в красно-фиолетовый цвет. Это реакция на пептидную группу (биуретовая реакция).

Концентрированная азотная кислота при нагревании окрашивает белки в жёлтый цвет, если в состав белка входят остатки ароматических аминокислот, например, фенилаланина (ксантопротеиновая реакция).

Для обнаружения в составе белка атомов серы проводят реакцию с ацетатом свинца в щелочной среде при нагревании. В результате образуется чёрный осадок (цистеиновая реакция).

Превращения белков в организме

Белки являются обязательными компонентами в пищевом рационе человека. В организме человека белки, поступившие с пищей, под действием ферментов подвергаются гидролизу и разлагаются на отдельные аминокислоты. Эти аминокислоты – строительный материал для образования новых белков, необходимых человеку. Для синтеза белков необходима энергия, которую поставляет в организме АТФ. Также энергия выделяется при распаде жиров и углеводов. Кроме синтеза белков происходит их распад с образованием углекислого газа, аммиака, мочевины и воды.

Успехи в изучении и синтезе белков

В 1954 г. британский биолог Фредерик Сенгер впервые расшифровал строение белка инсулина. Каждая молекула инсулина состоит из двух полипептидов, в одном из которых 21 остаток аминокислоты, а в другом – 30 аминокислотных остатков.

В 1967 г. был создан прибор – секвенатор, позволяющий определять последовательность остатков аминокислот в макромолекуле белка.

Первый белок, синтезированный в лаборатории в 1953 г. был окситоцин.

В настоящее время развивается наука, которая занимается синтезом искусственных белков, – генная инженерия.

ПРИМЕРЫ И РАЗБОР РЕШЕНИЙ ЗАДАЧ ТРЕНИРОВОЧНОГО МОДУЛЯ

1. Решение задачи на вычисление массовой доли элемента в молекуле аминокислоты.

Условие задачи: вычислите массовую долю азота в молекуле аспаргина

в результате какой реакции образуется пептидная связь. Смотреть фото в результате какой реакции образуется пептидная связь. Смотреть картинку в результате какой реакции образуется пептидная связь. Картинка про в результате какой реакции образуется пептидная связь. Фото в результате какой реакции образуется пептидная связь. Ответ запишите с точностью до десятых долей.

Шаг первый: вычислить относительную молекулярную массу молекулы аспаргина:

М = 4·12 + 8·1 + 2·14 + 3·16 = 132 а.е.м.

Шаг второй: определить количество атомов азота в молекуле аспаргина и определить их относительную атомную массу:

Шаг третий: определить массовую долю азота как отношение относительной атомной массы азота к относительной молекулярной массе аспаргина:

2. Решение задачи на определение количества различных олигопептидов, которые можно получить из определённого набора аминокислот.

Условие задачи: Сколько ди- и трипептидов можно составить из двух молекул аланина и одной молекулы цистеина?

Шаг первый: определить количество возможных дипептидов.

Из двух молекул аланина и одной молекулы цистеина можно составить три дипептида: Ala-Ala, Ala-Cys и Cys-Ala (два последних дипептида – разные соединения, так как в молекуле Ala-Cys карбоксильная группа аланина соединяется с аминогруппой цистеина, а в молекуле Cys-Ala карбоксильная группа цистеина соединяется с аминогруппой аланина).

Шаг второй: определить количество возможных трипептидов.

Ala-Ala-Cys, Ala-Cys-Ala, Cys-Ala-Ala – возможно составить 3 трипептида.

Источник

Пептидный связь

Пептидные связи чаще всего встречаются в природе в составе пептидов и белков, они соединяют между собой остатки аминокислот. Пепдидни связи также является основой пептидной нуклеиновой кислоты (ПНА). Полиамиды, такие как нейлон и арамид, — синтетические молекулы (полимеры), которые также содержат пептидные связи.

Образование пептидной связи

Пептидный связь образуется в результате реакции конденсации между карбоксильной и аминогруппой. При этом аминогруппа играет роль нуклеофила, замещая гидроксил карбоксильной группы:

Реакция конденсации, в результате которой происходит формирование пептидной связи, требует вклада свободной энергии. Как в химическом синтезе, так и в биосинтезе белков, это обеспечивается активацией карбоксильных групп, в результате чего отхождения гироксильнои группы облегчается.

Резонансные формы пептидной группы

В 1930-1940-х годах Лайнус Полинг и Роберт Кори проводили рентгеноструктурный анализ нескольких аминокислот и дипептидов. Им удалось установить, что пептидная группа жесткую планарную структуру, шесть атомов лежат в одной плоскости: α-атом углерода и C = O группа первой аминокислоты и N-H группа и α-атом углерода второй аминокислоты. Полинг объяснил это существованием двух резонансных форм пептидной группы, на что указывала меньше длина C-N связи в пептидной группе (133 пм), чем того же связи в простых аминов (149 пм). Итак вследствие частичного разделения электронной пары между карбонильным кислорода и амидной азотом, пептидный связь на 40% имеет свойства двойного:

В пептидных группе вращения вокруг C-N связи не происходит вследствие его частичной двойственности. Вращение разрешено только вокруг связей С-С α и N-С α. В результате остов пептида может быть представлен как серия полей, разделенных совместными точками вращения (С α атомы). Такая структура ограничивает количество возможных конформаций пептидных цепей.

Кроме того, эффект резонанса стабилизирует группу добавляя энергию примерно 84 ккал / моль, что делает ее менее химически активным, чем много подобных групп (например эфиров). Эта группа незаряженная за физиологических значений pH, но вследствие существования двух резонансных форм карбонильный кислород несет частичный отрицательный заряд, а амидный азот — частичный положительный. Таким образом возникает диполь с дипольным моментом, около 3,5 Дебай (0,7 электрон-ангстрем). Эти дипольные моменты могут ориентироваться параллельно в определенных типах вторичной структуры (например α-спирали).

Стереоизомерия

Возможные конфигурации

Возможны конформации

Конформация пептида определяется тремя торсионными углами, отражающие вращения вокруг трех последовательных связей в пептидной остове: ψ (пси) — вокруг C α1-С, ω (омега) — вокруг С-N, и φ (фи) — вокруг N- С α2.

Поскольку связи N-С α2 и C α1-С по обе стороны от пептидной являются обычными одинарными связями, вращения вокруг них неограничен, в результате чего пептидные цепи могут принимать различные пространственные конформации. Однако возможны не все комбинации торсионных углов, при некоторых из них происходит пространственное столкновения атомов. Допустимые значения визуализируют на двухмерном графике, называется диаграммой Рамахандрана.

Методы определения

Пептидная группа имеет характерную полосу поглощения в диапазоне 190-230 нм.

Качественной реакцией на пептидный связь является биуретовая реакция с концентрированным раствором меди (II) сульфата (CuSO 4) в щелочной среде. Продуктом является комплекс сине-фиолетовой окраски между атомом меди и амтомамы азота.

Биуретовая реакция может быть использована для колориметрического измерения концентрации белков и пептидов, однако из-за низкой чувствительности этого метода значительно чаще используют его модификации. Одной из таких модификаций является метод Лоури, в котором биуретовая реакция сочетается с окислением остатков ароматических аминокислот.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *