в телескопе какого типа содержатся только линзы
8 различных типов телескопов
Самый ранний известный телескоп в истории появился еще в начале 1600 года в Нидерландах и предположительно был изобретен голландским производителем очков Иоанном Липперсгеем. Однако название «телескоп» не существовало до 1611 года и было придумано греческим математиком Иоаннис Димисианос.
К 1610 году итальянский эрудит Галилео Галилей уже разработал свою собственную улучшенную версию телескопа, с помощью которой он позже обнаружил четыре галилеевых спутника. Затем, примерно в конце 1660-х годов, Иссак Ньютон сконструировал первый в истории телескоп-рефлектор, который теперь известен как ньютоновский рефлектор.
В течение следующих трехсот лет или около того телескопы будут работать только на видимом спектре света, ограничивая, таким образом, объем доступной информации. Такие телескопы обычно называют оптическими. Только в середине 1900-х годов были разработаны телескопы, способные работать в различных длинах электромагнитных спектров волн.
Не все телескопы расположены на земной поверхности. Да, это так. Ряд усовершенствованных телескопов находятся на орбите вокруг Земли в космосе. Эти космические телескопы собирают свет с длинами волн, которые частично или полностью блокированы земной атмосферой.
Наземные телескопы
1. Оптические телескопы
Оптические телескопы собирают свет видимой длины волны (видимой невооруженным глазом) электромагнитного спектра. Это самые старые и наиболее часто используемые телескопы в мире. Пожалуй, самой важной особенностью оптического телескопа является его светосила, которая намного выше, чем у человеческого глаза.
Оптические телескопы можно разделить на три большие категории; рефракторные, рефлекторные и катадиоптрические оптические конструкции. Каждый из них имеет свои плюсы и минусы и имеет различное применение в астрономии.
Рефракционные телескопы
Несмотря на то, что сегодня в мире существует всего несколько преломляющих телескопов исследовательского класса, когда-то они пользовались широкой популярностью. С развитием технологии изготовления линз в конце 19 века преломляющие телескопы стали золотым стандартом в астрономических наблюдениях.
Отражающий телескоп
Отражающий телескоп или отражатель формирует изображение с помощью одного зеркала или, в некоторых случаях, группы зеркал. Первый в мире функциональный телескоп-отражатель был разработан Исааком Ньютоном в 1668 году как альтернатива «некорректному» преломлению.
Несмотря на то, что они до сих пор не могут дать «идеальное» изображение, рефлекторы используются почти во всех других исследовательских телескопах из-за их физических достоинств.
Катадиоптрические телескопы
2. Радиотелескопы
Большая миллиметровая матрица Atacama
Радиотелескопы анализируют астрономические объекты на радиочастотах. Другими словами, они обнаруживают сигналы на длинах радиоволн от удаленных астрономических объектов. Пожалуй, наиболее важным компонентом радиотелескопа является его антенна (тарелка), также известная как параболическая антенна.
Поскольку радиосигналы, которые мы получаем от большинства астрономических тел, слабые, радиотелескопам требуются большие антенны, чтобы собрать достаточно данных, чтобы астрономы могли проводить свои исследования. В некоторых случаях несколько радиотелескопов связаны друг с другом электронным способом, что значительно увеличивает область их поиска (радиоинтерферометрия).
Поскольку большинство радиочастот способно проникать в атмосферу Земли, в космических радиотелескопах нет необходимости. Однако потенциально они могут помочь наземным.
Некоторые из диапазонов частот, которые в настоящее время используются радиотелескопами: Радиолиния нейтрального водорода, 23 ГГц, 33 ГГц, 41 ГГц, 61 ГГц, 94 ГГц, 1406 МГц и 430 МГц.
Коммерческое использование этих частот запрещено во многих странах для выполнения радиоастрономических задач.
Радиоинтерферометрия
В радиоинтерферометрии радиосигналы, захваченные несколькими антеннами на большой площади, объединяются вместе, чтобы максимизировать общее разрешение. Эта техника была представлена еще в 1946 году.
3. Солнечные телескопы
Солнечные телескопы, ранее известные как фотогелиографы, специально разработаны для наблюдения за солнцем в ближнем инфракрасном и ультрафиолетовом диапазонах волн. В отличие от большинства других типов, солнечные телескопы могут работать только в дневное время и обычно располагаются на вершине высокой белой конструкции.
Солнечный телескоп МакМата-Пирса, расположенный в Аризоне (США), является крупнейшим телескопом такого типа. Голландский открытый телескоп и солнечный телескоп Даниэля К. Иноуэ являются хорошими примерами солнечных телескопов.
Космические телескопы
Космический телескоп Хаббла | Изображение предоставлено НАСА.
Все началось еще в начале 1920-х годов, когда физики Герман Оберт, Константин Циолковский и Роберт Годдард, три отца-основателя астронавтики, размышляли над идеей космического телескопа, который можно было бы отправить на орбиту Земли с помощью ракеты. Это было началом эры нового класса телескопов.
Затем в 1946 году астрофизик-теоретик Лайман Спитцер из Принстонского университета рассказал о преимуществах такого прибора и о том, как космический телескоп может полностью исключить из телескопических наблюдений атмосферную турбулентность Земли.
В отличие от наземных телескопов, космические телескопы предлагают более точные наблюдения, поскольку они свободны от какой-либо атмосферной турбулентности и радиационных искажений. Ниже представлены различные типы космических телескопов.
4. Инфракрасные телескопы
Художественная концепция космического телескопа «Спитцер» | Изображение предоставлено НАСА
Инфракрасная астрономия является важной отраслью современной астрофизики. Поскольку большая часть инфракрасного излучения блокируется атмосферой Земли (относительно небольшая длина волны может пробиться сквозь нее), многие инфракрасные телескопы находятся в космосе.
Инфракрасные телескопы способны обнаруживать удаленные астрономические объекты в пыльных районах космоса. Они также играют важнейшую роль в изучении раннего состояния Вселенной. Однако, в отличие от большинства других длин волн, наблюдение на инфракрасной частоте несколько затруднено, поскольку каждое горячее тело испускает инфракрасное излучение.
5. Ультрафиолетовые телескопы
Атмосфера нашей Земли блокирует попадание на Землю большей части вредной радиации. Сюда входят ультрафиолетовые лучи. По этой причине излучение в ультрафиолетовом диапазоне можно наблюдать только из космоса.
Ультрафиолетовая астрономия позволяет исследователям более внимательно изучать далекие звезды и галактики. Большинство звезд излучают излучение в ближнем инфракрасном или видимом диапазоне длин волн, поэтому в ультрафиолетовом свете они кажутся незначительными. Видны будут только те звезды, которые находятся либо на ранней, либо на поздней стадии эволюции и намного горячее. Фактически, каждый горячий астрономический объект излучает ультрафиолетовое излучение.
Известные ультрафиолетовые космические телескопы
Первым космическим телескопом, способным наблюдать УФ-спектр, была камера/спектрограф в дальнем ультрафиолете, которая была развернута на поверхности Луны миссией Аполлон-16 в 1972 году.
Спектроскопический исследователь дальнего УФ-диапазона НАСА или FUSE и Swift Gamma-Ray Burst Emission являются двумя наиболее яркими примерами ультрафиолетовых телескопов.
Изображение Крабовидной туманности на нескольких длинах волн | Изображение предоставлено НАСА.
6. Рентгеновские телескопы
Рентгеновские телескопы предназначены для изучения очень далеких объектов в рентгеновских частотах. Подобно ультрафиолетовым волнам, частоты рентгеновского излучения блокируются земной атмосферой, поэтому их можно изучать только с помощью космических телескопов.
Основным компонентом рентгеновского телескопа являются зеркала (фокусирующие или коллимирующие), которые собирают излучение и проецируют его на специализированные детекторы. Рентгеновские телескопы с фокусирующими зеркалами нуждаются в длинном фокусе, т.е. зеркала должны располагаться на расстоянии нескольких метров от детекторов.
Известные космические рентгеновские телескопы
С 1960-х годов в космос было выведено почти пятьдесят рентгеновских телескопов. Первый известный рентгеновский спутник UHURU (Ухуру) провел обширные исследования Лебедь X-1 (источник рентгеновского излучения в созвездии Лебедя) и других известных рентгеновских источников. Рентгеновская обсерватория НАСА Чандра, запущенная в 1999 году, стала прорывом в области рентгеновской астрономии.
Чандра в 100 раз более чувствительна к слабым рентгеновским лучам, чем любой другой телескоп до ее запуска. Это стало возможным только благодаря более высокому угловому разрешению ее зеркал. Другими примечательными рентгеновскими обсерваториями являются NuSTAR (Nuclear Spectroscopic Telescope Array) и японский спутник Hitomi.
7. Микроволновые телескопы
Подобно рентгеновским лучам и ультрафиолетовому излучению, атмосфера Земли поглощает большую часть излучения на длине микроволновой волны, поэтому астрономам приходится полагаться на космические микроволновые обсерватории и телескопы для изучения космических микроволн.
Телескопы, установленные на WMAP NASA (Wilkinson Microwave Anisotropy Probe) и спутнике Planck ЕКА, возможно, единственные два действующих в настоящее время микроволновых телескопа космического базирования. Единственным известным космическим микроволновым телескопом был космический исследователь Cosmic background Explorer или COBE, который отключился в 1993 году.
8. Гамма-телескопы.
Однако их гораздо труднее наблюдать, чем рентгеновские волны. Фактически, на сегодняшний день не существует специализированного гамма-телескопа. Вместо этого астрономы используют вторичные средства для обнаружения потока гамма-лучей в небе, то есть черенковское излучение.
Хотя земная атмосфера действует как барьер для гамма-лучей, во многих случаях их можно наблюдать из нескольких наземных обсерваторий, включая HESS, HAWC и VERITAS.
Известные гамма-телескопы
В настоящее время существует только пять действующих космических телескопов, которые наблюдают за частотой гамма-излучения. Орбитальная обсерватория НАСА Swift, запущенная в 2004 году, обнаруживает загадочные гамма-всплески со всей Вселенной. Еще одна обсерватория NASA, Ферми, специально разработана для наблюдения высокоэнергетических вспышек пульсаров и черных дыр.
В то время как большинство космических спутников наблюдают или слушают только определенную длину волны, существует несколько многоволновых телескопов, которые могут собирать информацию из более чем одного участка электромагнитного спектра одновременно. Космический телескоп Хаббла является прекрасным примером таких телескопов. Он может наблюдать в ближнем инфракрасном, видимом и ультрафиолетовом диапазонах.
Виды современных телескопов
Все оптические телескопы можно разделить по типу основного собирающего свет элемента на линзовые, зеркальные и комбинированные – зеркально-линзовые. Все системы обладают своими достоинствами и недостатками, и при выборе подходящей системы требуется учитывать несколько факторов – цели наблюдений, условия, требования к транспортабельности и весу, уровню аберраций, цене и т.п. Попробуем привести основные характеристики наиболее популярных на сегодня типов телескопов.
Рефракторы (линзовые телескопы): какие модели телескопов выбрать?
Исторически первыми появились линзовые телескопы. Свет в таком телескопе собирается с помощью двояковыпуклой линзы, которая и является объективом телескопа. Ее действие основано на свойстве выпуклых линз преломлять световые лучи и собирать в определенной точке – фокусе. Поэтому часто линзовые телескопы называют рефракторами (от лат. refract – преломлять).
В рефракторе Галилея (созданном в 1609 г.) для того, чтобы собрать максимум звездного света и позволить человеческому глазу его увидеть, использовались две линзы. Первая линза (объектив) – выпуклая, она собирает свет и фокусирует его на определенном расстоянии, а вторая линза (играющая роль окуляра) – вогнутая, превращает сходящийся пучок световых лучей обратно в параллельный. Система Галилея дает прямое, неперевернутое изображение, однако сильно страдает от хроматической аберрации, портящей изображение. Хроматическая аберрация проявляется в виде ложной окраски границ и деталей объекта.
Более совершенным был рефрактор Кеплера (1611 г.), в котором в качестве окуляра выступала выпуклая линза, передний фокус которой совмещался с задним фокусом линзы-объектива. Изображение при этом получается перевернутым, но это несущественно для астрономических наблюдений, зато в точке фокуса внутри трубы можно поместить измерительную сетку. Предложенная Кеплером схема оказала сильное влияние на развитие рефракторов. Правда, она также не была свободна от хроматической аберрации, но ее влияние можно было уменьшить, увеличив фокусное расстояние объектива. Поэтому рефракторы того времени при скромных диаметрах объективов нередко имели фокусное расстояние в несколько метров и соответствующую длину трубы или обходились вообще без нее (наблюдатель держал окуляр в руках и «ловил» изображение, которое строил закрепленный на специальном штативе объектив).
Эти трудности рефракторов в свое время даже великого Ньютона привели к выводу о невозможности исправить хроматизм рефракторов. Но в первой половине XVIII в. появился ахроматический рефрактор.
Среди любительских инструментов наиболее распространены двухлинзовые рефракторы-ахроматы, но существуют и более сложные линзовые системы. Обычно объектив ахроматического рефрактора состоит из двух линз из разных сортов стекла, при этом одна собирающая, а вторая – рассеивающая, и это позволяет значительно уменьшить сферическую и хроматическую аберрации (присущие одиночной линзе искажения изображения). При этом труба телескопа остается сравнительно небольшой.
Дальнейшее совершенствование рефракторов привело к созданию апохроматов. В них влияние хроматической аберрации на изображение сведено к практически незаметной величине. Правда, достигается это за счет применения специальных типов стекол, которые дороги в производстве и обработке, поэтому и цена на такие рефракторы в несколько раз выше, чем на ахроматы одинаковой апертуры.
Как и у любой другой оптической системы, у рефракторов есть свои плюсы и минусы.
Достоинства рефракторов:
Недостатки рефракторов:
Мы рекомендуем:
Телескоп Sky-Watcher BK 707AZ2
Доступный по цене ахроматический рефрактор начального уровня. Позволяет наблюдать Луну и планеты земной группы, хорошо показывает Сатурн и галилеевы спутники Юпитера. Установлен на азимутальную монтировку и комплектуется необходимыми оптическими аксессуарами. Максимально полезное увеличение оптики составляет 140 крат. Есть резьба для установки зеркальной камеры.
Телескоп Bresser Jupiter 70/700 EQ
Рефрактор-ахромат на экваториальной монтировке, который прекрасно подходит для изучения ближнего и дальнего космоса. В него хорошо видны Луна, Венера, Марс, Сатурн, Юпитер, яркие галактики и звездные скопления. В комплект поставки включены три разнофокусных окуляра, а максимальное полезное увеличение телескопа составляет 140 крат. Модель подойдет начинающим пользователям, в том числе детям.
Телескоп Bresser National Geographic 60/800 AZ
Еще один представитель современных телескопов на азимутальной монтировке. Рефрактор с ахроматической оптикой, в который можно наблюдать Луну, планеты Солнечной системы и наиболее яркие объекты дальнего космоса. В комплекте: искатель с красной точкой и оптические аксессуары, в том числе линза Барлоу. Телескоп подходит для начинающих астрономов-любителей.
Телескоп Sky-Watcher Evostar 909 AZ PRONTO на треноге Star Adventurer
Ахроматический рефрактор для астрономических и ландшафтных наблюдений. В нем применяется двухэлементная конструкция с воздушным зазором, что значительно увеличивает разрешение и четкость передаваемой картинки. Телескопом легко управлять, он может использоваться даже астрономами без опыта. В комплекте есть необходимые для наблюдений аксессуары. Азимутальная монтировка снабжена ручками тонких движений, что редко встречается в моделях начального уровня.
Телескоп Levenhuk Skyline Travel 70
Сверхкомпактный и легкий телескоп для походов и загородных наблюдений. Хороший выбор для изучения наземных ландшафтов, Луны и ближнего космоса. Прекрасно подходит для наблюдений вне городской засветки. Легок в управлении, комплектуется необходимыми оптическими аксессуарами и удобным рюкзаком для переноски.
Рефлекторы (зеркальные телескопы)
Одним из первых рефлекторов был рефлекторный телескоп Грегори (1663), который придумал телескоп с параболическим главным зеркалом. Изображение, которое можно наблюдать в подобный телескоп, оказывается свободным и от сферических, и от хроматических аберраций. Собранный большим главным зеркалом свет, отражается от небольшого эллиптического зеркала, закрепленного перед главным, и выводится к наблюдателю через отверстие в центре главного зеркала.
Разочаровавшись в современных ему рефракторах, И. Ньютон в 1667 г. начал разработку телескопа-рефлектора. Ньютон использовал металлическое главное зеркало (стеклянные зеркала с серебряным или алюминиевым покрытием появились позже) для собирания света, и небольшое плоское зеркальце для отклонения собранного светового пучка под прямым углом и вывода его сбоку трубы в окуляр. Таким образом, удалось справиться с хроматической аберрацией – вместо линз в этом телескопе используются зеркала, которые одинаково отражают свет с разными длинами волн. Главное зеркало рефлектора Ньютона может быть параболическим или даже сферическим, если его относительное отверстие сравнительно невелико. Сферическое зеркало гораздо проще изготовить, поэтому рефлектор Ньютона со сферическим зеркалом – это один из самых доступных типов телескопов, в том числе и для самостоятельного изготовления.
В наше время рефлектором чаще всего называется именно телескоп, сделанный по схеме Ньютона. Имея малую сферическую аберрацию и полное отсутствие хроматизма, он, тем не менее, не полностью свободен от аберраций. Уже недалеко от оси начинает проявляться кома (неизопланатизм) – аберрация, связанная с неравностью увеличения разных кольцевых зон апертуры. Кома приводит к тому, что изображение звезды выглядит не как кружок, а как проекция конуса – острой и яркой частью к центру поля зрения, тупой и округлой в сторону от центра. Кома прямо пропорциональна удалению от центра поля зрения и квадрату диаметра объектива, поэтому особенно сильно она проявляется в так называемых «быстрых» (светосильных) Ньютонах на краю поля зрения. Для коррекции комы применяются специальные линзовые корректоры, устанавливаемые перед окуляром или фотокамерой.
Как наиболее доступный для самостоятельного изготовления рефлектор, «ньютон» часто выполняется на простой, компактной и практичной монтировке Добсона и в таком виде является наиболее портативным телескопом с учетом доступной апертуры. Причем производством «добсонов» занимаются не только любители, но и коммерческие производители, и телескопы могут иметь апертуры до полуметра и более.
Достоинства рефлекторов:
Недостатки рефлекторов:
Мы рекомендуем:
Телескоп Bresser Galaxia 114/900 EQ, с адаптером для смартфона
Особенность этой модели, представителя телескопов для визуальных наблюдений за дальним космосом, – наличие в комплекте адаптера для смартфона. Благодаря ему на телескоп можно устанавливать мобильное устройство, чтобы при помощи встроенной камеры фотографировать звездное небо. Телескоп подходит для начинающих и опытных пользователей, позволяет наблюдать ближний и дальний космос, комплектуется необходимыми оптическими аксессуарами.
Телескоп Bresser Pollux 150/1400 EQ2
Телескоп Bresser Pollux 150/1400 EQ2 создан по схеме Ньютона. Это позволяет при сохранении высоких оптических характеристик (фокусное расстояние достигает 1400 мм) значительно уменьшить габаритные размера телескопа. Благодаря апертуре в 150 мм телескоп способен собирать большое количество света, что позволяет наблюдать достаточно слабые объекты. С Bresser Pollux вы сможете наблюдать планеты Солнечной системы, туманности и звезды до 12.5 зв. вел., в том числе двойные. Максимально полезное увеличение составляет 300 крат.
Телескоп Levenhuk Skyline 130х900 EQ
Если вас манят своей неизведанностью объекты, расположенные в глубинах космического пространства, вам, без сомнения, нужен телескоп, способный приблизить эти загадочные объекты и позволить подробно изучить их. Мы говорим о Levenhuk Skyline 130х900 EQ – телескопе-рефлекторе Ньютона, созданном как раз для исследования глубокого космоса.
Телескоп с автонаведением Levenhuk SkyMatic 135 GTA
Рефлектор Levenhuk SkyMatic 135 GTA – прекрасный телескоп для астрономов-любителей, которым требуется система автоматического наведения. Азимутальная монтировка, система автонаведения и большая светосила телескопа позволяют наблюдать Луну, планеты, а также большинство крупных объектов из каталога NGC и Месcье.
Телескоп Sky-Watcher Dob 8″ (200/1200)
Большеапертурный рефлектор Ньютона на монтировке Добсона. Большое фокусное расстояние, отличная светосила и прекрасное разрешение картинки. Внутри установлено параболическое главное зеркало, которое делает наблюдения на высокой кратности более приятными глазу – все детали видны четко и ясно. На телескоп можно устанавливать зеркальную камеру для фотографирования глубин космоса. Модель предназначена для требовательных пользователей.
Катадиоптрические (зеркально-линзовые) телескопы
Зеркально-линзовые (или катадиоптрические) телескопы используют как линзы, так и зеркала для построения изображения и исправления аберраций. Среди катадиоптриков у любителей астрономии наиболее популярны два типа телескопов, основанных на кассегреновской схеме – Шмидт-Кассегрен и Максутов-Кассегрен.
В телескопах Шмидта-Кассегрена (Ш-К) главное и вторичное зеркала – сферические. Сферическая аберрация исправляется стоящей на входе в трубу полноапертурной коррекционной пластиной Шмидта. Эта пластина со стороны кажется плоской, но имеет сложную поверхность, изготовление которой и составляет главную трудность изготовления системы. Впрочем, американские компании Meade и Celestron успешно освоили производство системы Ш-К. Среди остаточных аберраций этой системы заметнее всего проявляются кривизна поля и кома, исправление которых требует применения линзовых корректоров, особенно при фотографировании. Главное достоинство – короткая труба и меньший вес, чем у ньютоновского рефлектора той же апертуры и фокусного расстояния. При этом отсутствуют растяжки крепления вторичного зеркала, а закрытая труба препятствует образованию воздушных потоков и защищает оптику от пыли.
Система Максутова-Кассегрена (М-К) была разработана советским оптиком Д. Максутовым и подобно Ш-К имеет сферические зеркала, а исправлением аберраций занимается полноапертурный линзовый корректор – мениск (выпукло-вогнутая линза). Поэтому такие телескопы еще называются менисковыми рефлекторами. Закрытая труба и отсутствие растяжек – также плюсы М-К. Подбором параметров системы можно скорректировать практически все аберрации. Исключение составляет так называемая сферическая аберрация высших порядков, но ее влияние невелико. Поэтому эта схема очень популярна и выпускается многими производителями. Вторичное зеркало может быть реализовано как отдельный блок, механически закрепленный на мениске, либо как алюминированный центральный участок задней поверхности мениска. В первом случае обеспечивается лучшее исправление аберраций, во втором – меньшая стоимость и вес, большая технологичность в массовом производстве и исключение возможности разъюстировки вторичного зеркала.
В целом, при одинаковом качестве изготовления система М-К способна дать немного более качественное изображение, чем Ш-К с близкими параметрами. Но большие телескопы М-К требуют больше времени на термостабилизацию, т.к. толстый мениск остывает значительно дольше пластины Шмидта, а также для М-К возрастают требования к жесткости крепления корректора, и весь телескоп получается тяжелее. Поэтому прослеживается применение для малых и средних апертур системы М-К, а для средних и больших – Ш-К.
Существуют также катадиоптрические системы Шмидта-Ньютона и Максутова-Ньютона, имеющие характерные черты упомянутых в названии конструкций и лучшее исправление аберраций. Но при этом габариты трубы остаются «ньютоновскими» (сравнительно крупными), а вес увеличивается, особенно в случае менискового корректора. Кроме того, к катадиоптрическим относятся системы с линзовыми корректорами, установленными перед вторичным зеркалом (система Клевцова, «сферические кассегрены» и т. п.).
Достоинства катадиоптрических телескопов:
Недостатки катадиоптрических телескопов:
Мы рекомендуем:
Телескоп Sky-Watcher Star Discovery MAK102 SynScan GOTO
Компактный катадиоптрик, собранный по схеме Максутова-Кассегрена. Одинаково эффективен при наблюдениях ближнего и дальнего космоса, подходит для изучения наземных ландшафтов. В комплекте все необходимые аксессуары, в том числе линза Барлоу, удваивающая кратность оптики. Телескоп комплектуется автоматизированной монтировкой, которая может самостоятельно наводить оптическую трубу на 42 000 разных астрономических объектов.
Телескоп Levenhuk Skyline PRO 127 MAK
Современные компьютеризированные телескопы – это удобно, но зачастую избыточно. Эта модель понравится тем, кто предпочитает самостоятельно контролировать наведение на астрономические объекты и не использовать дистанционное управление. Этот катадиоптрик установлен на классическую экваториальную монтировку, подходит для изучения дальнего космоса, может использоваться для астрофотографии. Хороший выбор для новичка и профессионала.
Телескоп Sky-Watcher BK MAK80EQ1
Один из самых доступных по стоимости катадиоптрических телескопов. Небольшая апертура не мешает ему быть хорошим оптическим инструментом для изучения ближнего и дальнего космоса. Основное его преимущество – очень компактная труба, удобная в перевозке. Этот телескоп можно смело рекомендовать как отличного помощника в загородных наблюдениях. Установлен на экваториальную монтировку, комплектуется необходимыми аксессуарами.
4glaza.ru
Статья обновлена в апреле 2021 года.
Использование материала полностью для общедоступной публикации на носителях информации и любых форматов запрещено. Разрешено упоминание статьи с активной ссылкой на сайт www.4glaza.ru.
Производитель оставляет за собой право вносить любые изменения в стоимость, модельный ряд и технические характеристики или прекращать производство изделия без предварительного уведомления.
Другие обзоры и статьи о телескопах и астрономии:
Обзоры оптической техники и аксессуаров:
Статьи о телескопах. Как выбрать, настроить и провести первые наблюдения:
Все об основах астрономии и «космических» объектах: