в теории кодирования и передачи сообщений бит это

В технике (теория кодирования и передачи сообщений) под количеством информации понимают количество кодируемых, передаваемых или хранимых символов.

Байт – единица количества информации в системе СИ. Байт – это восьмиразрядный двоичный код, с помощью которого можно представить один символ.

При вводе в ЭВМ символа с клавиатуры машине передается 1 байт информации.

1 тыс. байт

1 млн. байт

Информационный объем сообщения (информационная емкость сообщения) – количество информации в сообщении, измеренное в битах, байтах или производных единицах (Кбайтах, Мбайтах и т.д.).

В теории информации количеством информации называют числовую характеристику сигнала, не зависящую от его формы и содержания и характеризующую неопределенность, которая исчезает после получения сообщения в виде данного сигнала. В этом случае количество информации зависит от вероятности получения сообщения о том или ином событии.

Для абсолютно достоверного события (события обязательно произойдет, поэтому его вероятность равна 1 количество вероятности в сообщении о нем равно 0. Чем невероятнее событие, тем большую информацию о нем несет сообщение.

Лишь при равновероятных ответах ответ «да» или «нет» несет 1 бит информации.

Задания для повторения

Технический аспект измерения информации

Страниц текста 50 000 или 150 романов

Цветных слайдов высочайшего качества 150

Аудиозапись речи 1,5 часа

Музыкальный фрагмент качества СD-стерео 10 минут

Фильм высокого качества записи 15 секунд

Протоколы операций с банковским счетом за 1000 лет

Информация как снятая неопределенность

Интересный факт

На памятнике немецкому ученому Л. Больцману высечена формула, выведенная в 1977г. и связывающая вероятность состояния физической системы и величину энтропии этой системы. Энтропия (грек. en- в, внутрь + trope- превращение, буквальный перевод: то, что внутри, неопределенно)- физическая величина, характеризующая тепловое состояние тела и системы, мера внутренней неупорядоченности системы. Так вот, формула для энтропии Больцмана совпадает с формулой, предложенной Шенноном для среднего количества информации, приходящейся на один символ в сообщении. Совпадение это произвело столь сильное впечатление, что Шеннон назвал количество информации энтропией. С тех пор слово «энтропия» стало, чуть ли не синонимом слова «информация».

Чем больше энтропия системы, тем больше степень ее неопределенности. Поступающее сообщение полностью или частично снимает эту неопределенность. Следовательно, количество информации можно измерять тем, насколько понизилась энтропия системы после поступления сообщения. За меру количества информации принимается та же энтропия, но с обратным знаком.

Уменьшая неопределенность, мы получаем информацию, в этом весь смысл научного познания.

Различные подходы к определению и измерению информации.

Единицы измерения информации в вычислительной технике
1 бит
1 байт8 бит
1 Кбайт (килобайт)2 10 байт=1024 байт
1 Мбайт (мегабайт)2 10 Кбайт=2 20 байт
1 Гбайт (гигабайт)2 10 Мбайт=2 30 байт
Подход к определениюПодход к измерению
В бытуРазнообразные сведения, сообщения, их новизнаНовизна не измеряется
В техникеСообщение, передаваемые в форме знаков и сигналовИнформационная емкость равна количеству символов
В теории связиСнятая неопределенность (К. Шеннон)Количество информации
В теории информацииУвеличение объема знанийВ данном курсе не рассматривается
В теории принятия решенийУвеличение вероятности достижения цели
В кибернетике (теория управления)Часть знания, используемая в управлении
В теории отраженияРезультат отражения, отраженное разнообразие

Информационные процессы

Информация не существует сама по себе. Она проявляется в информационных процессах.

Если обратиться в далекое прошлое, то жалобы на обилие информации мы сможем найти тысячелетия назад. На глиняной дощечке (шумерское письмо IV тысячелетия до нашей эры.) начертано: «Настали тяжелые времена. Дети перестали слушаться родителей, и каждый норовит написать книгу». Особенно модным стало жаловаться на непереносимость информационного бремени с XVII в. В ХХ в. заговорили об информационной катастрофе. Информационный кризис – это возрастающее противоречие между объемами накапливаемой информации и ограниченными возможностями ее переработки отдельно взятой личностью. Количество информации, циркулирующей в обществе, удваивается примерно каждые 8-12 лет. Появилась уверенность в том, что справиться с такой лавиной информации человек не сможет. Для этого нужны специальные средства и методы обработки информации, ее хранения и использования. Сформировалась новая научная дисциплина – информатика, поставившая своей целью изучение закономерностей информационных процессов. Основными информационными процессами являются: поиск – сбор – хранение – передача – обработка – использование – защита. Познакомимся теперь с каждым из этих процессов в отдельности.

Поиск информации

Итак, цель определена: выяснить автора и название пьесы. Как будет решаться поставленная задача?

Вы затратили много время и энергию, а задачу не решили. Это результат неэффективно организованного поиска информации.

F Вы задумались о том, какую профессию выбрать, и решили, что она должна быть связана с производством и использованием компьютеров. Какие это профессии, в каком учебном заведении, и на каком, факультете можно приобрести такую специальность, вы пока не знаете.

Что вы можете предпринять?Ожидаемый результатЭтапы поиска
Поговорить с родителямиПолучение совета, с чегоначать и что для этого сделать, + психологическая поддержкаОпределение направления поиска
Обратиться в профориентационный центрПолучение перечня профессий, отвечающих вашим интересамПредварительное знакомство
Взять в библиотеке справочник для поступающих в вузыПолучение краткой информации о вузах, факультетах и специальностях. Выбор адресовКонкретизация информации
Послать запросы в приемные комиссии выбранных вузовПолучение рекламных проспектов и условий приема в данный вуз.Уточнение информации
Побеседовать со студентами или выпускниками выбранного факультетаПолучение субъективных и эмоциональных характеристик специальностиУглубление полученных представлений
Хорошенько все обдумать и обсудить ситуацию с родителямиУкрепиться в своем решении или отказаться от него и начать все сначалаАнализ полученной информации

Успех вашего выбора в большой степени будет зависеть от того, как вы организовали поиск информации.

Источник

Эффективность передачи данных и теория информации

Кодирование информации в простейшей форме зародилось при общении людей в виде жестовых кодов, а позднее в виде речи, суть которой кодовые слова для передачи наших мыслей собеседнику, далее наступил новый этап развития такого кодирования – письменность, которая позволяла хранить и передавать информацию с наименьшими потерями от писателя к читателю. Иероглифы – есть конечный алфавит, обозначающий понятия, предметы или действия, элементы которого в каком-то виде заранее оговорены людьми для однозначного «декодирования» записанной информации. Фонетическое письмо использует буквенный алфавит для внутреннего кодирования слов речи и так же служит для однозначного воспроизведения записанной информации. Цифры позволяют использовать кодовое представление вычислений. Но данные типы кодирования служили скорее для непосредственного общения, но людям требовалось так же передавать информацию на расстояние и достаточно быстро, как следствие появились простейшие системы телекоммуникаций.

Важнейшим скачком в истории развития передачи информации стало использование цифровых систем передачи данных. Использование аналоговых сигналов требует большой избыточности информации, передаваемой в системе, а так же обладает таким существенным недостатком как накапливание помех. Различные формы кодирования для преобразования аналоговых сигналов в цифровые, их хранения, передачи и преобразования обратно в аналоговую форму начали своё бурное развитие во второй половине XX века, и к началу XXI практически вытеснили аналоговые системы.

Основная проблема, которую необходимо решить при построении системы коммуникации, была впервые сформулирована Клодом Шенноном в 1948 году:

Главное свойство системы связи заключается в том, что она дольно точно или приближенно воспроизвести в определенной точке пространства и времени некоторое сообщение, выбранное в другой точке. Обычно, это сообщение имеет какой-то смысл, однако это совершенно не важно для решения поставленной инженерной задачи. Самое главное заключается в том, что посылаемое сообщение выбирается из некоторого семейства возможных сообщений.

Такая точная и ясная постановка проблемы коммуникации оказала огромное воздействие на развитие средств связи. Возникла новая научная отрасль, которая стала называться теорией информации. Главная идея, обоснованная Шенноном, заключается в том, что надежные коммуникации должны быть цифровыми, т.е. задачу связи следует рассматривать как передачу двоичных цифр (битов). Появилась возможность однозначно сравнить переданную и принятую информацию.

Заметим, что любой физический канал передачи сигналов не может быть абсолютно надежным. Например, шум, который портит канал и вносит ошибки в передаваемую цифровую информацию. Шеннон показал, что при выполнении некоторых достаточно общих условий имеется принципиальная возможность использовать ненадежный канал для передачи информации со сколь угодно большой степенью надежности. Поэтому нет необходимости пытаться очистить канал от шумов, например, повышая мощность сигналов (это дорого и зачастую невозможно). Вместо этого следует разрабатывать эффективные схемы кодирования и декодирования цифровых сигналов.

в теории кодирования и передачи сообщений бит это. Смотреть фото в теории кодирования и передачи сообщений бит это. Смотреть картинку в теории кодирования и передачи сообщений бит это. Картинка про в теории кодирования и передачи сообщений бит это. Фото в теории кодирования и передачи сообщений бит это

Задача кодирования канала (выбор сигнально-кодовой конструкции) заключается в построении на основе известных характеристик канала кодера, посылающего в канал входные символы, которые будут декодированы приемником с максимальной степенью надежности. Это достигается с помощью добавления в передаваемую цифровую информацию некоторых дополнительных проверочных символов. На практике каналом может служить телефонный кабель, спутниковая антенна, оптический диск, память компьютера или еще что-то. Задачей кодирования источника является создание кодера источника, который производит компактное (укороченное) описание исходного сигнала, который необходимо передать адресату. Источником сигналов может служить текстовый файл, цифровое изображение, оцифрованная музыка или телевизионная передача. Это сжатое описание сигналов источника может быть неточным, тогда следует говорить о расхождении между восстановленным после приема и декодирования сигналом и его оригиналом. Это обычно происходит при преобразовании (квантовании) аналогового сигнала в цифровую форму.

Если скорость передачи сообщений меньше пропускной способности канала связи, то существуют коды и методы декодирования такие, что средняя и максимальная вероятности ошибки декодирования стремятся к нулю, когда длина блока стремится к бесконечности
Иными словами: Для канала с помехами всегда можно найти такую систему кодирования, при которой сообщения будут переданы со сколь угодно большой степенью верности, если только производительность источника не превышает пропускной способности канала.

Если скорость передачи больше пропускной способности, то есть, то не существует таких способов передачи, при которых вероятность ошибки стремится к нулю при увеличении длины передаваемого блока.

Для аддитивного белого гауссова шума Шеннон получил следующее выражение:
в теории кодирования и передачи сообщений бит это. Смотреть фото в теории кодирования и передачи сообщений бит это. Смотреть картинку в теории кодирования и передачи сообщений бит это. Картинка про в теории кодирования и передачи сообщений бит это. Фото в теории кодирования и передачи сообщений бит это, где
C — пропускная способность канала, бит/с;
W — ширина полосы канала, Гц;
S — мощность сигнала, Вт;
N — мощность шума, Вт.

в теории кодирования и передачи сообщений бит это. Смотреть фото в теории кодирования и передачи сообщений бит это. Смотреть картинку в теории кодирования и передачи сообщений бит это. Картинка про в теории кодирования и передачи сообщений бит это. Фото в теории кодирования и передачи сообщений бит это
(График для наглядности, зависимость C(W,P) при N0=const; значения с потолка, попрошу на них не смотреть)
Т.к. мощность АБГШ растёт линейно с шириной полосы канала, имеем, что пропускная способность канала имеет предел Cmax=(S/N0)log(2), при бесконечно широкой частотной полосе (который растёт линейно по мощности).

в теории кодирования и передачи сообщений бит это. Смотреть фото в теории кодирования и передачи сообщений бит это. Смотреть картинку в теории кодирования и передачи сообщений бит это. Картинка про в теории кодирования и передачи сообщений бит это. Фото в теории кодирования и передачи сообщений бит это, где
η — эффективность использования спектра, бит/с/Гц;
TR — скорость передачи информации, бит/с;
W — ширина полосы канала, Гц.

Тогда, в теории кодирования и передачи сообщений бит это. Смотреть фото в теории кодирования и передачи сообщений бит это. Смотреть картинку в теории кодирования и передачи сообщений бит это. Картинка про в теории кодирования и передачи сообщений бит это. Фото в теории кодирования и передачи сообщений бит это, используя значение энергии бита (для сигналов со сложными сигнально кодовыми конструкциями я понимаю среднее значение энергии на бит) и в теории кодирования и передачи сообщений бит это. Смотреть фото в теории кодирования и передачи сообщений бит это. Смотреть картинку в теории кодирования и передачи сообщений бит это. Картинка про в теории кодирования и передачи сообщений бит это. Фото в теории кодирования и передачи сообщений бит это, где
k — количество бит на символ, передаваемый в канал;
T — длительность символа, с;
R — скорость передачи в канале, бит/с;
Eb — энергия на передачу одного бита в канале;
N0 — спектральная плотность мощности шума, Вт/Гц;
получим в теории кодирования и передачи сообщений бит это. Смотреть фото в теории кодирования и передачи сообщений бит это. Смотреть картинку в теории кодирования и передачи сообщений бит это. Картинка про в теории кодирования и передачи сообщений бит это. Фото в теории кодирования и передачи сообщений бит этоили в теории кодирования и передачи сообщений бит это. Смотреть фото в теории кодирования и передачи сообщений бит это. Смотреть картинку в теории кодирования и передачи сообщений бит это. Картинка про в теории кодирования и передачи сообщений бит это. Фото в теории кодирования и передачи сообщений бит это.

Предел Шеннона будет иметь вид:
в теории кодирования и передачи сообщений бит это. Смотреть фото в теории кодирования и передачи сообщений бит это. Смотреть картинку в теории кодирования и передачи сообщений бит это. Картинка про в теории кодирования и передачи сообщений бит это. Фото в теории кодирования и передачи сообщений бит это

Данный предел имеет смысл для каналов без кодеков (R = TR), для достижения такой эффективности принимаемое слово должно быть бесконечной длины. Для каналов с использованием кодеков помехоустойчивого кодирования под Eb следует понимать энергию на передачу одного информационного, а не канального бита (тут возможны разночтения и я готов выслушать альтернативные версии) => Eb/N0 в канале отлично от этого значения в зависимости от скорости кода (1/2, 3/4, 7/8… )

Таким образом видим, что существует предел отношения сигнал/шум в канале (Eb/N0) такой, что невозможно построить систему передачи данных, в которой можно добиться сколь угодно малой вероятности ошибки, при большем уровне шума (может существовать система с просто малой вероятностью ошибки, при предельном отношении!).

Литература

Галлагер Р. «Теория информации и надёжная связь» – М.: «Советское радио», 1974.
Сэломон Д. «Сжатие данных, изображений и звука» – М.: «Техносфера», 2004

Спасибо за внимание, в качестве продолжения, если интересно, могу написать статью с иллюстрациями и сравнением эффективности сигнально-кодовых конструкций по отношению к границе Шеннона.

Источник

Бит, информационная энтропия Шеннона и код Хэмминга. Как измерить любую информацию и передать ее без потерь

«Информация есть форма жизни», — писал американский поэт и эссеист Джон Перри Барлоу. Действительно, мы постоянно сталкиваемся со словом «информация» — ее получают, передают и сохраняют. Узнать прогноз погоды или результат футбольного матча, содержание фильма или книги, поговорить по телефону — всегда ясно, с каким видом информации мы имеем дело. Но что такое сама информация, а главное — как ее можно измерить, никто обычно не задумывается. А между тем, информация и способы ее передачи — важная вещь, которая во многом определяет нашу жизнь, неотъемлемой частью которой стали информационные технологии. Научный редактор издания «Лаба.Медиа» Владимир Губайловский объясняет, что такое информация, как ее измерять, и почему самое сложное — это передача информации без искажений.

Читайте «Хайтек» в

Пространство случайных событий

В 1946 году американский ученый-статистик Джон Тьюки предложил название БИТ (BIT, BInary digiT — «двоичное число» — «Хайтек») — одно из главных понятий XX века. Тьюки избрал бит для обозначения одного двоичного разряда, способного принимать значение 0 или 1. Клод Шеннон в своей программной статье «Математическая теория связи» предложил измерять в битах количество информации. Но это не единственное понятие, введенное и исследованное Шенноном в его статье.

Представим себе пространство случайных событий, которое состоит из бросания одной фальшивой монеты, на обеих сторонах которой орел. Когда выпадает орел? Ясно, что всегда. Это мы знаем заранее, поскольку так устроено наше пространство. Выпадение орла — достоверное событие, то есть его вероятность равна 1. Много ли информации мы сообщим, если скажем о выпавшем орле? Нет. Количество информации в таком сообщении мы будем считать равным 0.

Теперь давайте бросать правильную монету: с одной стороны у нее орел, а с другой решка, как и положено. Выпадение орла или решки будут двумя разными событиями, из которых состоит наше пространство случайных событий. Если мы сообщим об исходе одного бросания, то это действительно будет новая информация. При выпадении орла мы сообщим 0, а при решке 1. Для того, чтобы сообщить эту информацию, нам достаточно 1 бита.

Что изменилось? В нашем пространстве событий появилась неопределенность. Нам есть, что о нем рассказать тому, кто сам монету не бросает и исхода бросания не видит. Но чтобы правильно понять наше сообщение, он должен точно знать, чем мы занимаемся, что означают 0 и 1. Наши пространства событий должны совпадать, и процесс декодирования — однозначно восстанавливать результат бросания. Если пространство событий у передающего и принимающего не совпадает или нет возможности однозначного декодирования сообщения, информация останется только шумом в канале связи.

Если независимо и одновременно бросать две монеты, то разных равновероятных результатов будет уже четыре: орел-орел, орел-решка, решка-орел и решка-решка. Чтобы передать информацию, нам понадобится уже 2 бита, и наши сообщения будут такими: 00, 01, 10 и 11. Информации стало в два раза больше. Это произошло, потому что выросла неопределенность. Если мы попытаемся угадать исход такого парного бросания, то имеем в два раза больше шансов ошибиться.

Чем больше неопределенность пространства событий, тем больше информации содержит сообщение о его состоянии.

Немного усложним наше пространство событий. Пока все события, которые случались, были равновероятными. Но в реальных пространствах далеко не все события имеют равную вероятность. Скажем, вероятность того, что увиденная нами ворона будет черной, близка к 1. Вероятность того, что первый встреченный на улице прохожий окажется мужчиной, — примерно 0,5. Но встретить на улице Москвы крокодила почти невероятно. Интуитивно мы понимаем, что сообщение о встрече с крокодилом имеет гораздо большую информационную ценность, чем о черной вороне. Чем ниже вероятность события, тем больше информации в сообщении о таком событии.

Пусть пространство событий не такое экзотическое. Мы просто стоим у окна и смотрим на проезжающие машины. Мимо проезжают автомобили четырех цветов, о которых нам необходимо сообщить. Для этого мы закодируем цвета: черный — 00, белый — 01, красный — 10, синий — 11. Чтобы сообщить о том, какой именно автомобиль проехал, нам достаточно передать 2 бита информации.

Но довольно долго наблюдая за автомобилями, замечаем, что цвет автомобилей распределен неравномерно: черных — 50% (каждый второй), белых — 25% (каждый четвертый), красных и синих — по 12,5% (каждый восьмой). Тогда можно оптимизировать передаваемую информацию.

Больше всего черных автомобилей, поэтому обозначим черный — 0 — самый короткий код, а код всех остальных пусть начинается на 1. Из оставшихся половина белые — 10, а оставшиеся цвета начинаются на 11. В заключение обозначим красный — 110, а синий — 111.

Теперь, передавая информацию о цвете автомобилей, мы можем закодировать ее плотнее.

в теории кодирования и передачи сообщений бит это. Смотреть фото в теории кодирования и передачи сообщений бит это. Смотреть картинку в теории кодирования и передачи сообщений бит это. Картинка про в теории кодирования и передачи сообщений бит это. Фото в теории кодирования и передачи сообщений бит это

Энтропия по Шеннону

Пусть наше пространство событий состоит из n разных событий. При бросании монеты с двумя орлами такое событие ровно одно, при бросании одной правильной монеты — 2, при бросании двух монет или наблюдении за автомобилями — 4. Каждому событию соответствует вероятность его наступления. При бросании монеты с двумя орлами событие (выпадение орла) одно и его вероятность p1 = 1. При бросании правильной монеты событий два, они равновероятны и вероятность каждого — 0,5: p1 = 0,5, p2 = 0,5. При бросании двух правильных монет событий четыре, все они равновероятны и вероятность каждого — 0,25: p1 = 0,25, p2 = 0,25, p3 = 0,25, p4 = 0,25. При наблюдении за автомобилями событий четыре, и они имеют разные вероятности: черный — 0,5, белый — 0,25, красный — 0,125, синий — 0,125: p1 = 0,5, p2 = 0,25, p3 = 0,125, p4 = 0,125.

в теории кодирования и передачи сообщений бит это. Смотреть фото в теории кодирования и передачи сообщений бит это. Смотреть картинку в теории кодирования и передачи сообщений бит это. Картинка про в теории кодирования и передачи сообщений бит это. Фото в теории кодирования и передачи сообщений бит это

Это не случайное совпадение. Шеннон так подобрал энтропию (меру неопределенности в пространстве событий), чтобы выполнялись три условия:

Все эти требования вполне соответствуют нашим представлениям о неопределенности пространства событий. Если событие одно (первый пример) — никакой неопределенности нет. Если события независимы — неопределенность суммы равна сумме неопределенностей — они просто складываются (пример с бросанием двух монет). И, наконец, если все события равновероятны, то степень неопределенности системы максимальна. Как в случае с бросанием двух монет, все четыре события равновероятны и энтропия равна 2, она больше, чем в случае с автомобилями, когда событий тоже четыре, но они имеют разную вероятность — в этом случае энтропия 1,75.

Величина H играет центральную роль в теории информации в качестве меры количества информации, возможности выбора и неопределенности.

в теории кодирования и передачи сообщений бит это. Смотреть фото в теории кодирования и передачи сообщений бит это. Смотреть картинку в теории кодирования и передачи сообщений бит это. Картинка про в теории кодирования и передачи сообщений бит это. Фото в теории кодирования и передачи сообщений бит это

Клод Шеннон

Клод Элвуд Шеннон — американский инженер, криптоаналитик и математик. Считается «отцом информационного века». Основатель теории информации, нашедшей применение в современных высокотехнологических системах связи. Предоставил фундаментальные понятия, идеи и их математические формулировки, которые в настоящее время формируют основу для современных коммуникационных технологий.

В 1948 году предложил использовать слово «бит» для обозначения наименьшей единицы информации. Он также продемонстрировал, что введенная им энтропия эквивалентна мере неопределенности информации в передаваемом сообщении. Статьи Шеннона «Математическая теория связи» и «Теория связи в секретных системах» считаются основополагающими для теории информации и криптографии.

Во время Второй мировой войны Шеннон в Bell Laboratories занимался разработкой криптографических систем, позже это помогло ему открыть методы кодирования с коррекцией ошибок.

Шеннон внес ключевой вклад в теорию вероятностных схем, теорию игр, теорию автоматов и теорию систем управления — области наук, входящие в понятие «кибернетика».

Кодирование

И бросаемые монеты, и проезжающие автомобили не похожи на цифры 0 и 1. Чтобы сообщить о событиях, происходящих в пространствах, нужно придумать способ описать эти события. Это описание называется кодированием.

Кодировать сообщения можно бесконечным числом разных способов. Но Шеннон показал, что самый короткий код не может быть меньше в битах, чем энтропия.

Именно поэтому энтропия сообщения и есть мера информации в сообщении. Поскольку во всех рассмотренных случаях количество бит при кодировании равно энтропии, — значит кодирование прошло оптимально. Короче закодировать сообщения о событиях в наших пространствах уже нельзя.

При оптимальном кодировании нельзя потерять или исказить в сообщении ни одного передаваемого бита. Если хоть один бит потеряется, то исказится информация. А ведь все реальные каналы связи не дают 100-процентной уверенности, что все биты сообщения дойдут до получателя неискаженными.

Для устранения этой проблемы необходимо сделать код не оптимальным, а избыточным. Например, передавать вместе с сообщением его контрольную сумму — специальным образом вычисленное значение, получаемое при преобразовании кода сообщения, и которое можно проверить, пересчитав при получении сообщения. Если переданная контрольная сумма совпадет с вычисленной, вероятность того, что передача прошла без ошибок, будет довольно высока. А если контрольная сумма не совпадет, то необходимо запросить повторную передачу. Примерно так работает сегодня большинство каналов связи, например, при передаче пакетов информации по интернету.

Сообщения на естественном языке

Рассмотрим пространство событий, которое состоит из сообщений на естественном языке. Это частный случай, но один из самых важных. Событиями здесь будут передаваемые символы (буквы фиксированного алфавита). Эти символы встречаются в языке с разной вероятностью.

Самым частотным символом (то есть таким, который чаще всего встречается во всех текстах, написанных на русском языке) является пробел: из тысячи символов в среднем пробел встречается 175 раз. Вторым по частоте является символ «о» — 90, далее следуют другие гласные: «е» (или «ё» — мы их различать не будем) — 72, «а» — 62, «и» — 62, и только дальше встречается первый согласный «т» — 53. А самый редкий «ф» — этот символ встречается всего два раза на тысячу знаков.

Будем использовать 31-буквенный алфавит русского языка (в нем не отличаются «е» и «ё», а также «ъ» и «ь»). Если бы все буквы встречались в языке с одинаковой вероятностью, то энтропия на символ была бы Н = 5 бит, но если мы учтем реальные частоты символов, то энтропия окажется меньше: Н = 4,35 бит. (Это почти в два раза меньше, чем при традиционном кодировании, когда символ передается как байт — 8 бит).

Но энтропия символа в языке еще ниже. Вероятность появления следующего символа не полностью предопределена средней частотой символа во всех текстах. То, какой символ последует, зависит от символов уже переданных. Например, в современном русском языке после символа «ъ» не может следовать символ согласного звука. После двух подряд гласных «е» третий гласный «е» следует крайне редко, разве только в слове «длинношеее». То есть следующий символ в некоторой степени предопределен. Если мы учтем такую предопределенность следующего символа, неопределенность (то есть информация) следующего символа будет еще меньше, чем 4,35. По некоторым оценкам, следующий символ в русском языке предопределен структурой языка более чем на 50%, то есть при оптимальном кодировании всю информацию можно передать, вычеркнув половину букв из сообщения.

Другое дело, что не всякую букву можно безболезненно вычеркнуть. Высокочастотную «о» (и вообще гласные), например, вычеркнуть легко, а вот редкие «ф» или «э» — довольно проблематично.

Естественный язык, на котором мы общаемся друг с другом, высоко избыточен, а потому надежен, если мы что-то недослышали — нестрашно, информация все равно будет передана.

Но пока Шеннон не ввел меру информации, мы не могли понять и того, что язык избыточен, и до какой степени мы может сжимать сообщения (и почему текстовые файлы так хорошо сжимаются архиватором).

Избыточность естественного языка

В статье «О том, как мы ворпсиманием теcкт» (название звучит именно так!) был взят фрагмент романа Ивана Тургенева «Дворянское гнездо» и подвергнут некоторому преобразованию: из фрагмента было вычеркнуто 34% букв, но не случайных. Были оставлены первые и последние буквы в словах, вычеркивались только гласные, причем не все. Целью было не просто получить возможность восстановить всю информацию по преобразованному тексту, но и добиться того, чтобы человек, читающий этот текст, не испытывал особых трудностей из-за пропусков букв.

в теории кодирования и передачи сообщений бит это. Смотреть фото в теории кодирования и передачи сообщений бит это. Смотреть картинку в теории кодирования и передачи сообщений бит это. Картинка про в теории кодирования и передачи сообщений бит это. Фото в теории кодирования и передачи сообщений бит это

Почему сравнительно легко читать этот испорченный текст? В нем действительно содержится необходимая информация для восстановления целых слов. Носитель русского языка располагает определенным набором событий (слов и целых предложений), которые он использует при распознавании. Кроме того, в распоряжении носителя еще и стандартные языковые конструкции, которые помогают ему восстанавливать информацию. Например, «Она бла блее чвствтльна» — с высокой вероятностью можно прочесть как «Она была более чувствительна». Но взятая отдельно фраза «Она бла блее», скорее, будет восстановлена как «Она была белее». Поскольку мы в повседневном общении имеем дело с каналами, в которых есть шум и помехи, то довольно хорошо умеем восстанавливать информацию, но только ту, которую мы уже знаем заранее. Например, фраза «Чрты ее не бли лшны приятнсти, хтя нмнго рспхли и спллсь» хорошо читается за исключением последнего слова «спллсь» — «сплылись». Этого слова нет в современном лексиконе. При быстром чтении слово «спллсь» читается скорее как «слиплись», при медленном — просто ставит в тупик.

Оцифровка сигнала

Звук, или акустические колебания — это синусоида. Это видно, например, на экране звукового редактора. Чтобы точно передать звук, понадобится бесконечное количество значений — вся синусоида. Это возможно при аналоговом соединении. Он поет — вы слушаете, контакт не прерывается, пока длится песня.

При цифровой связи по каналу мы можем передать только конечное количество значений. Значит ли это, что звук нельзя передать точно? Оказывается, нет.

Разные звуки — это по-разному модулированная синусоида. Мы передаем только дискретные значения (частоты и амплитуды), а саму синусоиду передавать не надо — ее может породить принимающий прибор. Он порождает синусоиду, и на нее накладывается модуляция, созданная по значениям, переданным по каналу связи. Существуют точные принципы, какие именно дискретные значения надо передавать, чтобы звук на входе в канал связи совпадал со звуком на выходе, где эти значения накладываются на некоторую стандартную синусоиду (об этом как раз теорема Котельникова).

Теорема Котельникова (в англоязычной литературе — теорема Найквиста — Шеннона, теорема отсчетов) — фундаментальное утверждение в области цифровой обработки сигналов, связывающее непрерывные и дискретные сигналы и гласящее, что «любую функцию F(t), состоящую из частот от 0 до f1, можно непрерывно передавать с любой точностью при помощи чисел, следующих друг за другом через 1/(2*f1) секунд.

Помехоустойчивое кодирование. Коды Хэмминга

Если по ненадежному каналу передать закодированный текст Ивана Тургенева, пусть и с некоторым количеством ошибок, то получится вполне осмысленный текст. Но вот если нам нужно передать все с точностью до бита, задача окажется нерешенной: мы не знаем, какие биты ошибочны, потому что ошибка случайна. Даже контрольная сумма не всегда спасает.

Именно поэтому сегодня при передаче данных по сетям стремятся не столько к оптимальному кодированию, при котором в канал можно затолкать максимальное количество информации, сколько к такому кодированию (заведомо избыточному) при котором можно восстановить ошибки — так, примерно, как мы при чтении восстанавливали слова во фрагменте Ивана Тургенева.

Существуют специальные помехоустойчивые коды, которые позволяют восстанавливать информацию после сбоя. Один из них — код Хэмминга. Допустим, весь наш язык состоит из трех слов: 111000, 001110, 100011. Эти слова знают и источник сообщения, и приемник. И мы знаем, что в канале связи случаются ошибки, но при передаче одного слова искажается не более одного бита информации.

Предположим, мы сначала передаем слово 111000. В результате не более чем одной ошибки (ошибки мы выделили) оно может превратиться в одно из слов:

При передаче слова 001110 может получиться любое из слов:

Наконец, для 100011 у нас может получиться на приеме:

Заметим, что все три списка попарно не пересекаются. Иными словами, если на другом конце канала связи появляется любое слово из списка 1, получатель точно знает, что ему передавали именно слово 111000, а если появляется любое слово из списка 2 — слово 001110, а из списка 3 — слово 100011. В этом случае говорят, что наш код исправил одну ошибку.

Исправление произошло за счет двух факторов. Во-первых, получатель знает весь «словарь», то есть пространство событий получателя сообщения совпадает с пространством того, кто сообщение передал. Когда код передавался всего с одной ошибкой, выходило слово, которого в словаре не было.

Во-вторых, слова в словаре были подобраны особенным образом. Даже при возникновении ошибки получатель не мог перепутать одно слово с другим. Например, если словарь состоит из слов «дочка», «точка», «кочка», и при передаче получалось «вочка», то получатель, зная, что такого слова не бывает, исправить ошибку не смог бы — любое из трех слов может оказаться правильным. Если же в словарь входят «точка», «галка», «ветка» и нам известно, что допускается не больше одной ошибки, то «вочка» это заведомо «точка», а не «галка». В кодах, исправляющих ошибки, слова выбираются именно так, чтобы они были «узнаваемы» даже после ошибки. Разница лишь в том, что в кодовом «алфавите» всего две буквы — ноль и единица.

Избыточность такого кодирования очень велика, а количество слов, которые мы можем таким образом передать, сравнительно невелико. Нам ведь надо исключать из словаря любое слово, которое может при ошибке совпасть с целым списком, соответствующим передаваемым словам (например, в словаре не может быть слов «дочка» и «точка»). Но точная передача сообщения настолько важна, что на исследование помехоустойчивых кодов тратятся большие силы.

Сенсация

Понятия энтропии (или неопределенности и непредсказуемости) сообщения и избыточности (или предопределенности и предсказуемости) очень естественно соответствуют нашим интуитивным представлениям о мере информации. Чем более непредсказуемо сообщение (тем больше его энтропия, потому что меньше вероятность), — тем больше информации оно несет. Сенсация (например, встреча с крокодилом на Тверской) — редкое событие, его предсказуемость очень мала, и потому велика информационная стоимость. Часто информацией называют новости — сообщения о только что произошедших событиях, о которых мы еще ничего не знаем. Но если о случившемся нам расскажут второй и третий раз примерно теми же словами, избыточность сообщения будет велика, его непредсказуемость упадет до нуля, и мы просто не станем слушать, отмахиваясь от говорящего со словами «Знаю, знаю». Поэтому СМИ так стараются быть первыми. Вот это соответствие интуитивному чувству новизны, которое рождает действительно неожиданное известие, и сыграло главную роль в том, что статья Шеннона, совершенно не рассчитанная на массового читателя, стала сенсацией, которую подхватила пресса, которую приняли как универсальный ключ к познанию природы ученые самых разных специальностей — от лингвистов и литературоведов до биологов.

Но понятие информации по Шеннону — строгая математическая теория, и ее применение за пределами теории связи очень ненадежно. Зато в самой теории связи она играет центральную роль.

Семантическая информация

Шеннон, введя понятие энтропии как меры информации, получил возможность работать с информацией — в первую очередь, ее измерять и оценивать такие характеристики, как пропускная способность каналов или оптимальность кодирования. Но главным допущением, которое позволило Шеннону успешно оперировать с информацией, было предположение, что порождение информации — это случайный процесс, который можно успешно описать в терминах теории вероятности. Если процесс неслучайный, то есть он подчиняется закономерностям (к тому же не всегда ясным, как это происходит в естественном языке), то к нему рассуждения Шеннона неприменимы. Все, что говорит Шеннон, никак не связано с осмысленностью информации.

Пока мы говорим о символах (или буквах алфавита), мы вполне можем рассуждать в терминах случайных событий, но как только мы перейдем к словам языка, ситуация резко изменится. Речь — это процесс, особым образом организованный, и здесь структура сообщения не менее важна, чем символы, которыми она передается.

Еще недавно казалось, что мы ничего не можем сделать, чтобы хоть как-то приблизиться к измерению осмысленности текста, но в последние годы ситуация начала меняться. И связано это прежде всего с применением искусственных нейронных сетей к задачам машинного перевода, автоматического реферирования текстов, извлечению информации из текстов, генерированию отчетов на естественном языке. Во всех этих задачах происходит преобразование, кодирование и декодирование осмысленной информации, заключенной в естественном языке. И постепенно складывается представление об информационных потерях при таких преобразованиях, а значит — о мере осмысленной информации. Но на сегодняшний день той четкости и точности, которую имеет шенноновская теория информации, в этих трудных задачах еще нет.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *