зачатки коры головного мозга у кого

Зачатки коры головного мозга у кого

Развитие отделов мозга: промежуточный, передний, конечный. Кортикализация. Новый мозг.

Е. К. Сепп в учебнике по нервным болезням дает упрощенную, но удобную для изучения схему филогенеза головного мозга, которую мы и приводим. Согласно этой схеме, на I этапе развития головной мозг состоит из трех отделов: заднего, среднего и переднего, причем из этих отделов в первую очередь (у низших рыб) особенно развивается задний, или ромбовидный, мозг (rhombencephalon). Развитие заднего мозга происходит под влиянием рецепторов акустики и гравитации (рецепторы VIII пары черепных нервов), имеющих ведущее значение для ориентации в водной среде.

зачатки коры головного мозга у кого. Смотреть фото зачатки коры головного мозга у кого. Смотреть картинку зачатки коры головного мозга у кого. Картинка про зачатки коры головного мозга у кого. Фото зачатки коры головного мозга у кого

В дальнейшей эволюции задний мозг дифференцируется на продолговатый мозг, являющийся переходным отделом от спинного мозга к головному и потому называемый myelencephalon (myelos — спинной мозг, епсeрhalon — головной), и собственно задний мозг — metencephalon, из которого развиваются мозжечок и мост.

Под влиянием обонятельного рецептора развивается передний мозг — prosencephalon, вначале имеющий характер чисто обнятельного мозга. В дальнейшем передний мозг разрастается и дифференцируется на промежуточный— diencephalon и конечный — telencephalon.

зачатки коры головного мозга у кого. Смотреть фото зачатки коры головного мозга у кого. Смотреть картинку зачатки коры головного мозга у кого. Картинка про зачатки коры головного мозга у кого. Фото зачатки коры головного мозга у кого

В конечном мозге как в высшем отделе центральной нервной системы появляются центры для всех видов чувствительности. Однако нижележащие центры не исчезают, а сохраняются, подчиняясь центрам вышележащего этажа. Следовательно, с каждым новым этапом развития головного мозга возникают новые центры, подчиняющие себе старые. Происходит как бы передвижение функциональных центров к головному концу и одновременное подчинение филогенетически старых зачатков новым. В результате центры слуха, впервые возникшие в заднем мозге, имеются также в среднем и переднем, центры зрения, возникшие в среднем, имеются и в переднем, а центры обоняния — только в переднем мозге. Под влиянием обонятельного рецептора развивается небольшая часть переднего мозга, называемая поэтому обонятельным мозгом (rhinencephalon), который покрыт корой серого вещества — старой корой (paleocortex).

Необходимой формацией для осуществления высшей нервной деятельности является новая кора, расположенная на поверхности полушарий и приобретающая в процессе филогенеза шестислойное строение. Благодаря усиленному развитию новой коры конечный мозг у высших позвоночных превосходит все остальные отделы головного мозга, покрывая их, как плащом (pallium). Развивающийся новый мозг (neencephalon) оттесняет в глубину старый мозг (обонятельный), который как бы свертывается в виде гиппокампа (hyppocampus), остающегося по-прежнему обонятельным центром. В результате плащ, т. е. новый мозг (neencephalon), резко преобладает над остальными отделами мозга — старым мозгом (paleencephalon).

Источник

Зачатки коры головного мозга у кого

а) Определения:
• Ростральный: краниальный (т.е. расположенный со стороны головного конца эмбриона)
• Каудальный: хвостовой (т.е. расположенный со стороны тазового конца эмбриона)

б) Основные этапы эмбриогенеза головного мозга плода:

1. Нейруляция:
• Из клеток эктодермы образуются дорсальная и срединная нервные пластинки:
о Развиваются и затем сливаются нервные валики → нервная трубка + нервный гребень
• Нервная трубка → головной мозг, спинной мозг
• Нервный гребень → периферические нервы, вегетативная нервная система
• Нарушения нейруляции:
о Анэнцефалия
о Цефалоцеле
о Миеломенингоцеле
о Мальформация Киари 2-го типа: нарушение нейруляции заднего мозга

2. Пролиферация нейронов:

• Нарушения пролиферации нейронов:
о Голопрозэнцефалия (ГПЭ)
о Агенезия мозолистого тела (АМТ)
о Нарушение развития гипофиза о Синдром Денди-Уокера (СДУ)
о Ромбэнцефалосинапсис

4. Миграция нейронов:

• После пролиферации нейроны перемещаются по специальному пути из волокон радиальной глии → организация слоев коры:
о Выворачивание 6 слоев, в ходе которого нейроны, мигрировавшие последними, располагаются снаружи от мигрировавших ранее
о Процесс регулируется несколькими генами и циркулирующими в крови факторами

• Нарушения процесса миграции:
о Микроцефалия
о Мегалэнцефалия
о Гетеротопия
о Дисплазия коры головного мозга
о Лиссэнцефалия: прекращение миграции нейронов
о Факоматоз

5. Миелинизация:
• Может выявляться с 20-й недели
• Происходит в определенном порядке:
о Каудальная → краниальная, глубокая → поверхностная, задняя → передняя
• Продолжается и у взрослых

6. Формирование покрышек (оперкулизация):
• Развитие островковой доли коры больших полушарий и новообразование складки сильвиевой борозды
• В период 11-28 нед.
• Нарушение оперкулизации:
о Дефекты речи и нарушение смыслового восприятия языка

7. Формирование извилин и борозд:

• In vivo происходит раньше, чем можно выявить с помощью методов лучевой диагностики:
о Методы лучевой диагностики позволяют обнаружить структуры спустя 4-6 нед.

• Продолжается до конца 35-й недели

в) Большие полушарий, мозжечок и желудочки головного мозга плода:

1. Большие полушария головного мозга:

• Развитие хорды:
о Двуслойный зародышевый диск развивается в трехслойный, состоящий из эктодермы, мезодермы и энтодермы
о Из мезодермы развиваются средняя линия, полость и центральная трубка: хордальный отросток
о Хордальный отросток превращается в сплошную хорду
о Хорда и мезодерма дают начало формированию нервной пластинки
о Нервная пластинка растет в длину и ширину до 21-го дня, до начала нейруляции

• Формирование нервной трубки (первичная нейруляция):
о Валики нервной пластинки поднимаются, за счет чего между ними образуется вдавление (нервная бороздка)
о Слияние нервных валиков → нервная трубка:
— Клетки нервного гребня (произошедшие из нейроэктодермы) отделяются от нервной трубки во время слияния
о Какое-то время оба конца нервной трубки остаются незаращенными; их отверстия называются невропорами:
— Ростральные 2/3 нервной трубки → головной мозг
— Каудальная 1/3 нервной трубки → спинной мозг, нервы о Двустороннее закрытие нервной трубки начинается с затылочно-шейной области:
— Ростральный/передний невропор закрывается на 24-й день
— Каудальный/задний невропор закрывается на 25-й день

• Первичные мозговые пузыри формируются к середине 4-й недели:
о Передний (prosencephalon)
о Средний (mesencephalon)
о Задний, или ромбовидный (rhombencephalon)

• Вторичные мозговые пузыри формируются на протяжении 5-й недели:
о Передний мозг (prosencephalon) → конечный мозг (спереди) + промежуточный мозг (сзади):
— Промежуточный мозг (diencephalon) → гипоталамус, таламус, задняя доля гипофиза, глаза
— Конечный мозг (telencephalon) → большие полушария головного мозга (разделенные сагиттальной бороздой), базальные ядра
о Ромбовидный мозг (rhombencephalon) → задний мозг (спереди) + продолговатый мозг (сзади)
— Задний мозг (metencephalon) → мост головного мозга + мозжечок
— Продолговатый мозг (myelencephalon) → собственно продолговатый мозг

• Полушария головного мозга формируются к 11-й неделе:
о Изначально образуются из латеральных выпячиваний конечного мозга
о Быстро растут, накрывая промежуточный и средний мозг

• Полушария головного мозга соединены терминальной пластинкой («застежка» переднего невропора):
о Утолщение рострального конца терминальной пластинки → соединяющая пластинка + большая спайка:
— Соединяющая пластинка → передняя спайка
— Большая спайка → мозолистое тело, гиппокампальная спайка

2. Мозжечок:
• Утолщение крыловидной пластинки ромбовидного мозга → ромбовидные губы
• Ромбовидные губы в ходе активной пролиферации нейронов образуют полушария мозжечка
• Слияние ромбовидных губ → спайки мозжечка, образующие крышу IV желудочка
• Слияние полушарий мозжечка начинается с краниального отдела, в ходе чего к 9-й неделе формируются клочки мозжечка и узелок червя:
о Пролиферация и слияние продолжаются в каудальном направлении, завершаясь к 15-й неделе
• Клочково-узелковая борозда отделяет клочки от полушарий и узелка червя мозжечка

3. Желудочки:
• Полости внутри мозговых пузырей → желудочки в период 4-12 нед.:
о Боковые желудочки развиваются как выпячивания первичного желудочка конечного мозга
о III желудочек развивается из полости промежуточного мозга
о IV желудочек развивается из полости ромбовидного мозга
• Монроево отверстие соединяет III желудочек с боковым
• Сильвиев водопровод соединяет III и IV желудочки:
о Он развивается из полости среднего мозга
• Сосуды промежуточного и продолговатого мозга проникают в стенки желудочков → сосудистое сплетение
• Крыша IV желудочка:
о Сложноорганизованная структура
о Гребень развивающегося сосудистого сплетения делит крышу → передняя и задняя мембранозные области:
— Верхняя передняя часть врастает в сосудистое сплетение
— Нижняя задняя часть сохраняется неизменной, разрежение по средней линии → отверстие Мажанди

г) Особенности лучевой диагностики головного мозга плода:

2. Ошибки лучевой диагностики:
• Структуры, присутствующие в норме и ошибочно принимаемые за патологические:
о Желчный мешок ошибочно принимается за цефалоцеле
о Пузырь ромбэнцефалона ошибочно принимается за кисту задней черепной ямки (ЗЧЯ)
о Угол полости желудочка ошибочно принимается за кисту сосудистого сплетения
о Свод ошибочно принимается за полость прозрачной перегородки (ППП)
• Без знания нормального процесса развития можно пропустить небольшие очаги поражения:
о Отсутствие ППП
о Гетеротопия
о Лиссэнцефалия
о Дисплазия коры головного мозга
• ЗЧЯ:
о Поворот червя может быть ошибочно принят за дисгенезию червя
о Ромбэнцефалосинапсис можно ошибочно принять за гипоплазию мозжечка

д) Список использованной литературы:
1. Pooh RK et al: Novel application of three-dimensional HDlive imaging in prenatal diagnosis from the first trimester. J Perinat Med. 43(2): 147—58, 2015
2. Blaas HG: Detection of structural abnormalities in the first trimester using ultrasound. Best Pract Res Clin Obstet Gynaecol. 28(3):341-53, 2014
3. Pooh RK et al: Imaging of the human embryo with magnetic resonance imaging microscopy and high-resolution transvaginal 3-dimensional sonography: human embryology in the 21 st century. Am J Obstet Gynecol. 204(l):77.el-16, 2011
4. Kim MS et al: Three-dimensional sonographic evaluations of embryonic brain development. J Ultrasound Med. 27(1): 119-24, 2008

Источник

Основы развития мозга

зачатки коры головного мозга у кого. Смотреть фото зачатки коры головного мозга у кого. Смотреть картинку зачатки коры головного мозга у кого. Картинка про зачатки коры головного мозга у кого. Фото зачатки коры головного мозга у кого

За последние несколько десятилетий были достигнуты значительные успехи в нашем понимании основных этапов и механизмов развития мозга млекопитающих. Исследования, касающиеся нейробиологии развития мозга, охватывают уровни организации мозга от макроанатомических, до клеточных и молекулярных. Эти знания обеспечивают картину развития мозга как продукта сложной серии динамических и адаптивных процессов, работающих в условиях ограниченного, генетически организованного, но постоянно меняющегося контекста.

Развитие мозга продолжается в течение длительного периода времени. Мозг увеличивается в четыре раза в дошкольный период, достигая примерно 90% взрослого объема в возрасте до 6 лет. Но структурные изменения в основных отделениях серого и белого вещества ( материи ) продолжаются в детском и подростковом возрасте, и эти изменения в структуре параллельных изменений и функциональной организации, отражаются на поведении детей и подростков. В раннем послеродовом периоде уровень связности нейронов во всем развивающемся мозге намного превышает уровень взаимодействия нейронов у взрослых (Innocenti, Price 2005 ). Эта интнсивная связь постепенно слабеет в своей выраженности вследсвие конкурентных процессов, на которые влияет опыт организма человека. Ранние процессы, зависящие от опыта, лежат в основе пластичности и способности к адаптации, что является отличительной чертой раннего развития мозга.

Дифференциация всех линий эмбриональных стволовых клеток связана с комплексными каскадами молекулярной сигнализации. В начале гаструляции клетки слоя эпибласта, которые будут дифференцироваться в клетки нейронных предшественников, расположены вдоль рострально-каудальной срединной линии двухслойного эмбриона. Дифференциация этих клеток в клетки нейронных предшественников является результатом комплексной молекулярной сигнализации, которая включает в себя несколько продуктов гена (т.е. белков), которые продуцируются несколькими различными популяциями эмбриональных клеток. Напомним, что в начале гаструляции клетки эпибласта начинают мигрировать в определенном направлении, а затем проходят через примитивную полоску. Поскольку подмножество клеток, которые мигрируют вдоль рострально-каудальной срединной линии эмбриона, приближается к открытию, они проходят другую структуру, называемую примитивным узлом, которая расположена на ростральном конце примитивной полосы. Примитивный узел является молекулярным сигнальным центром. Клетки примитивного узла посылают молекулярный сигнал на подмножество клеток, которые мигрируют вдоль рострально-каудальной средней линии эмбриона, и этот сигнал, в свою очередь, вызывает экспрессию генов в мигрирующих клетках. Экспрессия гена в мигрирующей клетке продуцирует белок, который секретируется в пространство между мигрирующими клетками и клетками, которые остаются в области средней линии верхнего слоя эпибласта. Секретируемый белок связывается с рецепторами на поверхности клеток в верхнем слое эмбриона и побуждает клетки эпибласта дифференцироваться в клетки нейронных предшественников.

Зрелый неокортекс разделен на четко определенные структурно и функционально различные «области», которые дифференцируются по их клеточной организации и структурам нейронной связи.

Источник

Рост мозга у древних млекопитающих был связан с развитием обоняния

зачатки коры головного мозга у кого. Смотреть фото зачатки коры головного мозга у кого. Смотреть картинку зачатки коры головного мозга у кого. Картинка про зачатки коры головного мозга у кого. Фото зачатки коры головного мозга у кого

Американские палеонтологи при помощи компьютерной рентгеновской томографии изучили эндокасты (мозговые полости) двух раннеюрских маммалиаформ — животных, переходных между зверозубыми рептилиями цинодонтами и первыми млекопитающими. Исследование показало, что становление млекопитающих сопровождалось значительным увеличением мозга, которое проходило в три этапа. На первом этапе увеличились отделы мозга, отвечающие за обоняние и сенсомоторные функции (осязание и координацию движений); два последующих этапа отражают дальнейшее совершенствование обоняния.

Эволюционная история наземных позвоночных (тетрапод) началась с того, что в конце девонского периода (380–360 млн лет назад) одна из групп древних лопастепёрых рыб дала начало первым амфибиям. В следующем, каменноугольном периоде от амфибий произошли рептилии, которые вскоре подразделились на несколько эволюционных линий. Важнейшую роль в последующей истории наземной фауны сыграли две из них: диапсиды (см. также Diapsid) и синапсиды (см. также Synapsid). Диапсидные рептилии подразделилась на архозавров (к которым относятся, в частности, динозавры и произошедшие от них птицы) и лепидозавров (ящерицы, змеи и другие). Синапсидные рептилии были многочисленны и разнообразны в пермском и триасовом периодах, но потом мало-помалу вымерли, за исключением одной группы, которая дала начало млекопитающим.

Эволюционный переход от синапсидных рептилий к млекопитающим был длительным и постепенным; изучен он весьма подробно (см.: маммализация териодонтов). Древнейшие ископаемые находки животных, которых палеонтологи безоговорочно считают «настоящими млекопитающими», имеют позднетриасовый возраст (немногим более 200 млн лет назад). Непосредственных предков первых млекопитающих относят к группе «маммалиаформ», которые, в свою очередь, представляют собой одну из ветвей цинодонтов. Цинодонты являются одной из групп териодонтов, или зверозубых ящеров, а териодонты — это одна из эволюционных ветвей синапсид.

Палеонтологи детально реконструировали основные этапы эволюционных преобразований зубов и скелета териодонтов по мере их «маммализации» — постепенного эволюционного движения в сторону млекопитающих. Об эволюции мозга известно значительно меньше. Между тем очевидно, что именно прогрессивное развитие мозга во многом предопределило эволюционный успех млекопитающих.

Мозг млекопитающих радикально отличается от мозга рептилий, в том числе цинодонтов, не только своим размером, но и строением. В частности, у млекопитающих развилась так называемая «новая кора» — неокортекс (см. также Neocortex), отвечающая за сенсомоторные функции, резко увеличились обонятельные луковицы и отделы коры, связанные с обонянием, а также мозжечок. Но о том, когда и в какой последовательности произошли эти изменения в ходе эволюционного становления млекопитающих, до сих пор было известно очень мало.

зачатки коры головного мозга у кого. Смотреть фото зачатки коры головного мозга у кого. Смотреть картинку зачатки коры головного мозга у кого. Картинка про зачатки коры головного мозга у кого. Фото зачатки коры головного мозга у кого

Изучение мозга маммалиаформ и первых млекопитающих затруднялось, во-первых, редкостью находок хорошо сохранившихся черепов, во-вторых — тем обстоятельством, что для изучения эндокаста (слепка мозговой полости, по которому можно судить о размере и форме мозга) череп, как правило, нужно было разрушить.

Статья американских палеонтологов, опубликованная в последнем номере журнала Science, в значительной мере заполняет этот досадный пробел. При помощи компьютерной рентгеновской томографии авторам удалось, не разрушая драгоценных черепов, получить детальные трехмерные изображения эндокастов двух маммалиаформ, живших в начале ранней юры (200–190 млн лет назад) на территории нынешнего Китая.

Изученные маммалиаформы Morganucodon oehleri и Hadrocodium wui — ближайшие родственники первых «настоящих» млекопитающих. По строению скелета они представляют собой классические переходные формы между «еще рептилиями» и «уже млекопитающими». При этом Morganucodon стоит ближе к «базальным» (примитивным) цинодонтам, а Hadrocodium настолько близко подошел к млекопитающим, насколько это возможно, оставаясь формально за пределами группы. Исследование показало, что по строению мозга эти животные тоже занимают промежуточное положение между типичными цинодонтами и их потомками — млекопитающими.

Ранее были изучены эндокасты базальных цинодонтов Thrinaxodon и Diademodon. Выяснилось, что мозг у них был еще вполне «рептильный» по своему размеру и строению.

зачатки коры головного мозга у кого. Смотреть фото зачатки коры головного мозга у кого. Смотреть картинку зачатки коры головного мозга у кого. Картинка про зачатки коры головного мозга у кого. Фото зачатки коры головного мозга у кого

зачатки коры головного мозга у кого. Смотреть фото зачатки коры головного мозга у кого. Смотреть картинку зачатки коры головного мозга у кого. Картинка про зачатки коры головного мозга у кого. Фото зачатки коры головного мозга у кого зачатки коры головного мозга у кого. Смотреть фото зачатки коры головного мозга у кого. Смотреть картинку зачатки коры головного мозга у кого. Картинка про зачатки коры головного мозга у кого. Фото зачатки коры головного мозга у кого

Мозг Morganucodon, как выяснилось, был гораздо больше похож на мозг млекопитающего. По объему он в полтора раза превосходит мозг базальных цинодонтов (EQ = 0,32). Сильнее всего увеличились обонятельная луковица и обонятельная кора. Это со всей очевидностью указывает на развитое обоняние. Полушария переднего мозга стали выпуклыми благодаря развитию неокортекса; они закрывают средний мозг и эпифиз при взгляде сверху, как у млекопитающих. Передний мозг Morganucodon шире мозжечка, хотя мозжечок тоже заметно вырос по сравнению с базальными цинодонтами.

Увеличение мозжечка говорит об улучшенной координации движений. На это же указывает и более толстый, чем у базальных цинодонтов, спинной мозг.

Развитие неокортекса у древних млекопитающих было связано в первую очередь с совершенствованием соматосенсорных функций (см. Somatosensory system). Значительная часть неокортекса у примитивных млекопитающих, таких как опоссум, — это так называемая соматосенсорная кора, которая отвечает за сбор и анализ сигналов, приходящих от многочисленных механорецепторов, рассеянных по всему телу. Особенно много таких рецепторов приурочено к волосяным фолликулам.

По мнению многих палеонтологов, волосы выполняли сначала тактильную (осязательную) функцию, а для терморегуляции стали использоваться позже, когда у предков млекопитающих начала развиваться гомойотермия (теплокровность). У Morganucodon и Hadrocodium достоверных остатков волосяного покрова пока не обнаружено, однако их близкий родственник — похожий на бобра маммалиаформ Castorocauda — был покрыт густым мехом, состоявшим, как у современных зверей, из осевых волос и подшерстка (см.: Скелет удивительного водоплавающего зверя обнаружен в юрских отложениях Китая, «Элементы», 12.03.2006). Это позволяет предположить, что Morganucodon и Hadrocodium тоже были покрыты шерстью. По мнению авторов, появление неокортекса у маммалиаформ было тесно связано с развитием волосяного покрова и осязания.

зачатки коры головного мозга у кого. Смотреть фото зачатки коры головного мозга у кого. Смотреть картинку зачатки коры головного мозга у кого. Картинка про зачатки коры головного мозга у кого. Фото зачатки коры головного мозга у кого зачатки коры головного мозга у кого. Смотреть фото зачатки коры головного мозга у кого. Смотреть картинку зачатки коры головного мозга у кого. Картинка про зачатки коры головного мозга у кого. Фото зачатки коры головного мозга у кого

Мозг Morganucodon, базального представителя маммалиаформ, иллюстрирует первый этап прогрессивной эволюции мозга в ходе становления млекопитающих. На этом этапе увеличение мозга было обусловлено развитием обоняния, осязания и координации движений. Изменения в строении внутреннего уха свидетельствуют также о возможном улучшении слуха.

Hadrocodium, продвинутый представитель маммалиаформ и ближайший родственник «настоящих» млекопитающих, иллюстрирует второй этап развития мозга. Коэффициент энцефализации у Hadrocodium равен 0,5, то есть мозг увеличился еще в полтора раза по сравнению с Morganucodon и достиг размеров, характерных для некоторых настоящих млекопитающих. Мозг вырос в основном за счет обонятельных луковиц и обонятельной коры. Таким образом, второй этап прогрессивной эволюции мозга тоже был связан с развитием обоняния.

Косточки среднего уха (молоточек и наковальня) у Hadrocodium отделены от нижней челюсти, что является одним из главных определительных признаков млекопитающих. У Morganucodon, как и у всех остальных рептилий, эти косточки входят в состав нижней челюсти (см.: Новая палеонтологическая находка проливает свет на раннюю эволюцию млекопитающих, «Элементы», 17.03.2007). Авторы, однако, полагают, что отделение молоточка и наковальни от нижней челюсти вряд ли было связано с радикальным улучшением слуха, потому что строение внутреннего уха у Hadrocodium такое же, как у Morganucodon. Авторы также намекают, ссылаясь на данные по эмбриональному развитию опоссума, что это важное изменение черепа могло быть просто побочным следствием разрастания обонятельной коры переднего мозга.

Третий этап прогрессивной эволюции мозга соответствует переходу от высших маммалиаформ, таких как Hadrocodium, к настоящим млекопитающим. На этом этапе обоняние становится еще более тонким, о чём свидетельствуют специфические изменения решетчатой кости: на ней образуются носовые раковины, поддерживающие разросшийся обонятельный эпителий.

Новые данные показывают, что потребность в тонком чутье была, по-видимому, главным стимулом развития мозга в ходе становления млекопитающих. У млекопитающих, как известно, обоняние развито намного лучше, чем у всех остальных наземных позвоночных. Скорее всего, это изначально было связано с приспособлением к ночному образу жизни (см.: Обоняние и цветное зрение в эволюции млекопитающих развивались в противофазе, «Элементы», 18.06.2008). К концу триаса — началу юры синапсиды окончательно проиграли диапсидам конкуренцию за «дневные» ниши, и выжить удалось только тем из них, кто сумел «уйти в ночь», выработав совершенное обоняние для ориентации в потемках.

Источник: Timothy B. Rowe, Thomas E. Macrini, Zhe-Xi Luo. Fossil Evidence on Origin of the Mammalian Brain // Science. 2011. V. 332. P. 955–957.

Источник

Зачатки коры головного мозга у кого

зачатки коры головного мозга у кого. Смотреть фото зачатки коры головного мозга у кого. Смотреть картинку зачатки коры головного мозга у кого. Картинка про зачатки коры головного мозга у кого. Фото зачатки коры головного мозга у когозачатки коры головного мозга у кого. Смотреть фото зачатки коры головного мозга у кого. Смотреть картинку зачатки коры головного мозга у кого. Картинка про зачатки коры головного мозга у кого. Фото зачатки коры головного мозга у когозачатки коры головного мозга у кого. Смотреть фото зачатки коры головного мозга у кого. Смотреть картинку зачатки коры головного мозга у кого. Картинка про зачатки коры головного мозга у кого. Фото зачатки коры головного мозга у когозачатки коры головного мозга у кого. Смотреть фото зачатки коры головного мозга у кого. Смотреть картинку зачатки коры головного мозга у кого. Картинка про зачатки коры головного мозга у кого. Фото зачатки коры головного мозга у когозачатки коры головного мозга у кого. Смотреть фото зачатки коры головного мозга у кого. Смотреть картинку зачатки коры головного мозга у кого. Картинка про зачатки коры головного мозга у кого. Фото зачатки коры головного мозга у кого

48. Большие полушария головного мозга

Развитие больших полушарий у позвоночных животных. Чем выше организация животного, тем больше у него развиты полушария головного мозга (рис. 116 ).

зачатки коры головного мозга у кого. Смотреть фото зачатки коры головного мозга у кого. Смотреть картинку зачатки коры головного мозга у кого. Картинка про зачатки коры головного мозга у кого. Фото зачатки коры головного мозга у кого
Рис. 116

Большие полушария головного мозга птиц не только крупнее остальных его отделов, но имеют значительно более развитую, чем у пресмыкающихся, кору. Птица, у которой удален передний мозг, резко отличается по поведению от нормальной: часами сидит она неподвижно, нахохлившаяся и понурая, проглатывает налитую в ее клюв воду или вложенное в него зерно; подброшенная в воздух, такая птица летит, но, опустившись на землю, вновь становится неподвижной и безразличной ко всему окружающему.

У млекопитающих полушария головного мозга достигают большого развития. Они прикрывают собой остальные отделы мозга, кроме части продолговатого и мозжечка. Кора покрывает всю поверхность больших полушарий и состоит из огромного количества тел нейронов. Это количество возрастает с увеличением поверхности коры, и, чем она больше, тем сложнее поведение животного. У кролика, поведение которого менее сложно, чем у многих других млекопитающих, кора почти гладкая (рис. 116). У собаки она собрана в многочисленные складки: между выпуклыми извилинами находятсяглубокие узкие борозды. Такое складчатое строение увеличивает поверхность коры больших полушарий.

зачатки коры головного мозга у кого. Смотреть фото зачатки коры головного мозга у кого. Смотреть картинку зачатки коры головного мозга у кого. Картинка про зачатки коры головного мозга у кого. Фото зачатки коры головного мозга у кого
Рис. 117

зачатки коры головного мозга у кого. Смотреть фото зачатки коры головного мозга у кого. Смотреть картинку зачатки коры головного мозга у кого. Картинка про зачатки коры головного мозга у кого. Фото зачатки коры головного мозга у кого
Таблица XII

зачатки коры головного мозга у кого. Смотреть фото зачатки коры головного мозга у кого. Смотреть картинку зачатки коры головного мозга у кого. Картинка про зачатки коры головного мозга у кого. Фото зачатки коры головного мозга у кого
Таблица I

зачатки коры головного мозга у кого. Смотреть фото зачатки коры головного мозга у кого. Смотреть картинку зачатки коры головного мозга у кого. Картинка про зачатки коры головного мозга у кого. Фото зачатки коры головного мозга у кого
Рис. 118

Значение коры. Функции коры больших полушарий очень сложны и разнообразны. Опыты над животными помогли выяснить некоторые из этих функций. У собак удаляли отдельные участки коры, а затем наблюдали, как изменяется поведение оперированных животных.

Иногда кора больших полушарий оказывается частично поврежденной и у людей. Это случается, например, в результате мозговых заболеваний, черепных ранений. Наблюдения за такими больными также сыграли большую роль в установлении физиологического значения отдельных участков коры.

После разрушения коры затылочной доли оперированная собака ведет себя так же, как слепая, несмотря на то что глаза у нее совершенно здоровы. Она не различает окружающих предметов, теряет способность ориентироваться с помощью зрения. Аналогичные явления наблюдаются и у больных людей, когда у них повреждается кора затылочной доли.

Из таких опытов и наблюдений был сделан вывод, что в коре затылочной доли находится зрительная зона (цвет. табл. XII, II, 1). Различение зрительных раздражений возможно только тогда, когда этот участок коры не поврежден.

зачатки коры головного мозга у кого. Смотреть фото зачатки коры головного мозга у кого. Смотреть картинку зачатки коры головного мозга у кого. Картинка про зачатки коры головного мозга у кого. Фото зачатки коры головного мозга у кого
Таблица XII

зачатки коры головного мозга у кого. Смотреть фото зачатки коры головного мозга у кого. Смотреть картинку зачатки коры головного мозга у кого. Картинка про зачатки коры головного мозга у кого. Фото зачатки коры головного мозга у кого
Таблица II

После того как у собаки разрушают участок коры височной доли, она перестает различать звуки и ведёт себя, словно глухая. То же наблюдается у людей, у которых поврежден этот участок коры.

В коре височной доли больших полушарий расположена слуховая зона (2). Через слуховую зону проходят дуги рефлексов, связанных с различением звуковых раздражений.

Если оказываются поврежденными участки коры, примыкающие к центральной борозде, то у подопытных животных и больных людей расстраиваются движения и утрачивается способность различать раздражения, воспринимаемые рецепторами кожи.

В участке коры, лежащем по обе стороны от центральной борозды, располагается кожно-мышечная зона (3, 4).

На внутренней поверхности височной доли каждого полушария расположены вкусовая и обонятельная зоны (5).

По строению и функциям кора головного мозга человека значительно сложнее, чем кора млекопитающих животных. Некоторые ее участки характерны только для человеческого организма. Нарушение функций этих участков ведет к различным расстройствам речи или даже к полной ее потере. Через эти участки проходят дуги рефлексов, связанных с речью.

Классические исследования И. П. Павлова, в результате которых были открыты условные рефлексы, положили начало новому направлению в изучении функций коры.

В последние годы наука разрабатывает новые методы изучения нервных процессов, совершающихся в коре. Удалось установить, что в головном мозге все время возникают очень слабые электрические токи. Они изменяются в зависимости от характера деятельности мозга. Их записывают специальными регистрирующими установками. Эта методика исследования позволит глубже проникнуть в сложнейшие процессы, протекающие в коре больших полушарий.

■ Извилины. Борозды. Зрительная зона. Слуховая зона. Кожно-мышечная зона. Обонятельная и вкусовая зоны.

? 1. Как шло развитие полушарий головного мозга у позвоночных животных, начиная от рыб и кончая млекопитающими? 2. Каковы основные особенности строения больших полушарий человека? 3. Из каких долей состоят большие полушария человека и млекопитающих животных? 4. Какое значение для человека и млекопитающих животных имеет кора больших полушарий? 5. Какие методы исследования применяются при изучении функций коры больших полушарий?

! Почему при операциях мозга больные совершают непроизвольные движения, например рукой, ногой, когда хирург прикасается к участкам коры, лежащим впереди от центральной борозды?

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *