жир морских млекопитающих применение в фармации и медицинской практике
Роль омега-3 ненасыщенных кислот в профилактике и лечении различных заболеваний
В последнее время одним из самых обсуждаемых вопросов в медицине является важность омега-3 жирных кислот для человеческого организма. Существует несколько типов жирных омега-кислот – это омега-9, омега-6 и омега-3 полиненасыщенные липиды. Между ними сущес
Currently, one of the most discussed issue in medicine is importance of omega-3 fatty acids for human body. There are several types of omega fatty acids: omega-9, omega-6 and omega-3 polyunsaturated lipids. There are clear distinctions among them, both by chemical structure, and by influence on human body. It is the excess of omega-6 that leads to sluggish inflammatory process in the vascular walls, joints, heart and brain. The article covers action mechanisms and effects of omega-3 fatty acids in different diseases. The questions of correlation of omega-6 and omega-3 polyunsaturated fatty acids in nutrition are considered, as well as norms of consuming omega-3 fatty acids in prevention and treatment of different diseases.
Неалкогольная жировая болезнь печени и неалкогольный стеатогепатит
Омега-3 полиненасыщенные жирные кислоты изучались у пациентов с неалкогольной жировой болезнью печени и неалкогольным стеатогепатитом из-за их потенциального гипотриглицеридемического, инсулинсенсибилизирующего и противовоспалительного эффекта. Обсервационные исследования показали, что пациенты с неалкогольной жировой болезнью печени имеют низкие уровни ω-3 ПНЖК в плазме крови. Несколько предварительных исследований влияния приема ω-3 ПНЖК на различные аспекты неалкогольной жировой болезни печени и неалкогольного стеатогепатита (биомаркеры повреждения печени, накопление жира в печени и фиброз печени) продемонстрировали некоторые обнадеживающие результаты. Отмечается, что прием ω-3 ПНЖК может уменьшить радиологические и гистологические показатели стеатоза и фиброза печени у пациентов без цирроза печени. Кроме того, употребление ω-3 ПНЖК обратно связано с риском развития гепатоцеллюлярной карциномы. Одно из исследований включало 442 пациента без сахарного диабета, у которых прием ω-3 ПНЖК значительно улучшил липидный профиль (снижение уровня ТГ и общего холестерина и повышение уровня холестерина липопротеинов высокой плотности в сыворотке крови) и снизил уровень аланинаминотрансферазы в плазме крови, но с нечеткими последствиями для признаков стеатоза и фиброза печени и значительной гетерогенностью между исследованиями. Аналогичные результаты также были получены в метаанализе 4 рандомизированных клинических исследований, которые включали 263 ребенка и подростка с неалкогольной жировой болезнью печени. Результаты этого метаанализа показали, что применение ω-3 ПНЖК уменьшает проявления стеатоза печени согласно ультразвуковым данным и анализам крови по крайней мере через 1 год лечения [27, 28].
Применение ω-3 ПНЖК при лечении воспалительных и дистрофических заболеваний суставов
Омега-3 ПНЖК применяются при лечении воспалительных и дистрофических заболеваний суставов — ревматоидного артрита, остеоартроза, реактивного артрита и др. Омега-3 ПНЖК включены в состав противоревматической терапии дополнительно либо в комбинации с другими антиревматическими средствами. Комбинированный препарат на основе ω-3 ПНЖК и растительных экстрактов получил признание Европейской антиревматической лиги (European League Against Rheumatism, EULAR 2003, 2004, 2007) [29].
Противовоспалительный эффект ω-3 ПНЖК, обусловленный снижением продукции провоспалительных эйкозаноидов (простагландина Е2, лейкотриена В4) из АК, увеличением продукции противовоспалительных эйкозаноидов (простагландина Е3, лейкотриена В5), уменьшением (за счет подавления синтеза лейкотриена В4) выработки фактора агрегации тромбоцитов, интерлейкина-1 и фактора некроза опухоли, позволяет применять ПНЖК ω-3 при лечении и профилактике различных воспалительных заболеваний с аутоиммунным и/или аллергическим компонентом патогенеза, таких как ревматоидный артрит, системная красная волчанка, болезнь Крона и язвенный колит, бронхиальная астма и атопический дерматит. Например, при проведении сравнительного исследования эффективности малых доз ЭПК и ДКГ (27 мг/кг и 18 мг/кг соответственно) у 20 больных ревматоидным артритом и более высоких доз (54 мг/кг и 36 мг/кг) у 17 больных было отмечено выраженное снижение, по сравнению с 12 больными контрольной группы, которые получали капсулы оливкового масла, содержащие 6,8 г олеиновой кислоты, количества пациентов, отмечавших болезненность в суставах (на малой дозе — к 24-й неделе и на более высокой — к 18-й неделе (р = 0,04)); продукция лейкотриена В4 в нейтрофилах снизилась на 19% на малой дозе и на 20% на более высокой дозе (р = 0,03), тогда как выработка интерлейкина-1b макрофагами в контрольной группе уменьшилась на 38,5% (статистически недостоверно), при назначении ω-3 ПНЖК в малых дозах на 40,6% (р = 0,06) и при назначении более высоких доз ω-3 ПНЖК — на 54,7% (р = 0,0005). В ходе повторного испытания была предпринята попытка отмены нестероидных противовоспалительных средств (НПВС) на фоне приема рыбьего жира и оливкового масла. В основной группе через 8 недель после отмены диклофенака у больных не отмечалось ухудшения течения болезни по сравнению с контрольной группой, получавшей НПВС [30].
Лечение аутоиммунных заболеваний
Поскольку ω-3 ПНЖК оказывают влияние на гуморальные, а также клеточные факторы иммунитета, они были использованы для лечения аутоиммунных заболеваний. Показано повышение эффективности комплексной терапии системной красной волчанки при включении в ее состав ω-3 ПНЖК. Аналогичный эффект получен при лечении кожных воспалительных и аллергических заболеваний — атопического дерматита и псориаза. В этих исследованиях было выявлено, что у лиц с заболеваниями кожи уровень арахидоновой кислоты в пораженных тканях был в 8 раз выше, чем в здоровой коже. Противодействие ω-3 ПНЖК провоспалительным эффектам метаболитов арахидоновой кислоты (простациклин, лейкотриены, перекиси липидов и др.) в значительной степени объясняет их лечебный эффект [31].
Ренопротекторный эффект ω-3 ПНЖК
Применение ω-3 ПНЖК у больных с диабетической нефропатией способствует уменьшению оксидантного стресса и позитивно влияет на состояние почек. Получены предварительные данные о возможности уменьшения темпов склерозирования гломерулярного аппарата у больных с хронической патологией почек на фоне применения ω-3 ПНЖК. Не исключено, что этот препарат может тормозить прогрессирование хронической почечной недостаточности у лиц с хронической болезнью почек, что требует дальнейшего изучения [32].
Применение ω-3 ПНЖК при злокачественных новообразованиях
Основанием для изучения возможностей применения ω-3 ПНЖК при злокачественных новообразованиях явились результаты ряда эпидемиологических исследований, которые показали, что у женщин Японии и Гренландии отмечается крайне низкий уровень заболеваемости раком молочной железы, что с наибольшей вероятностью связано с характером питания. Традиционно рацион питания жителей Японии и Гренландии включает большое количество рыбы и морских водорослей, содержащих ω-3 ПНЖК. Результаты последующих исследований позволили установить, что применение ω-3 ПНЖК предупреждает развитие, ограничивают рост и метастазирование рака молочной железы. В механизме протективного действия ω-3 кислот в отношении канцерогенеза молочной железы имеет значение уменьшение продукции ряда метаболитов арахидоновой кислоты (простагландинов E2 и F2, тромбоксана А2), являющихся стимуляторами опухолевого роста. Наряду с влиянием ω-3 ПНЖК на синтез простагландинов предполагается уменьшение иммуноингибирующего эффекта кортизола, цитотоксический эффект за счет стимуляции перекисного окисления в мембранах опухолевых клеток.
Включение ω-3 ПНЖК в диету женщин с повышенным риском развития рака молочной железы в течение 4 месяцев ведет к достоверному снижению содержания биомаркера риска развития опухоли в крови. В последние годы получены положительные результаты применения ω-3 ПНЖК в эксперименте и в клинических условиях также при ряде других опухолей — толстой кишки, предстательной железы [33].
Профилактика и лечение заболеваний кожи
Докозагексаеновая кислота является структурным компонентом кожи и отвечает за здоровье клеточных мембран, которые составляют большую часть кожи. Здоровые клеточные мембраны — это мягкая, увлажненная и эластичная кожа без морщин. Эйкозапентаеновая кислота приносит следующую пользу для кожи [34, 35]:
Омега-3 жирные кислоты также могут защитить кожу от вредного воздействия солнечных лучей. ЭПК помогает блокировать высвобождение веществ, которые разрушают коллаген в коже после пребывания на солнце.
ПНЖК ω-3 весьма перспективны при псориазе, который рассматривается как своеобразный липоидоз (липонодоз) кожи. Положительный эффект препаратов ω-3 ПНЖК отмечен практически у всех больных псориазом. Получены хорошие результаты лечения больных красным плоским лишаем, атопическим дерматитом [36, 37].
Центральная нервная система
Учитывая высокое содержание ДГК в органах центральной нервной системы, ее участие в процессах миелинизации и передачи нервного импульса, предпринимаются попытки использовать ПНЖК в лечении больных с биполярными расстройствами психики [11]. Так, у 64,3% пациентов, принявших участие в двойном слепом плацебо-контролируемом исследовании эффективности биологически активной добавки с ω-3 ПНЖК, отмечалось выраженное улучшение в ответе на стандартную терапию, против 18,8% пациентов в контрольной группе (p = 0,02). При шизофрении обнаружилась достоверная связь между уровнем ω-3 ПНЖК в питании и выраженностью симптомов. В ходе рандомизированного, двойного слепого исследования синдрома гипервозбудимости в сочетании со сниженным вниманием у детей было показано, что увеличение, под влиянием биологически активной добавки с ω-3 ПНЖК, содержание этих кислот в сыворотке крови достоверно коррелирует с уменьшением симптомов гипервозбудимости.
Низкий уровень ω-3 ПНЖК связан с проблемами сна у детей и обструктивным апноэ сна у взрослых. Низкий уровень ДГК также связан со снижением уровня гормона мелатонина, который помогает заснуть. Исследования, проведенные с участием детей и взрослых, показали, что прием добавок ω-3 ПНЖК увеличивает продолжительность и качество сна.
Добавки ω-3 ПНЖК помогают предотвратить и лечить депрессию и тревожность. ЭПК является наиболее эффективной ПНЖК в борьбе с депрессией. У людей, страдающих психическими расстройствами, уровень ω-3 ПНЖК ощутимо снижен. Прием добавок ω-3 ПНЖК способствует уменьшению частоты колебания настроения и рецидивов у людей с шизофренией и биполярным расстройством. Принимая добавки ω-3 ПНЖК, можно также уменьшить агрессивное поведение [39].
ПНЖК ω-3 во время беременности и у младенцев после рождения
ПНЖК ω-3 способствуют нормальному развитию мозга у плода во время беременности и у младенцев после рождения. ПНЖК ω-3 жирные кислоты играют решающую роль для роста и развития мозга у детей раннего возраста. 40% ПНЖК ДГК находится в головном мозге и 60% в сетчатке глаза. Поэтому не удивительно, что дети, выкормленные детским питанием с добавлением ДГК, имеют лучшее зрение, чем дети, выкормленные детским питанием, не содержащим этой жирной кислоты [40, 41].
Получение достаточного количества ω-3 ПНЖК при беременности связано с многочисленными преимуществами для здоровья ребенка, среди которых:
Омега-3 могут уменьшить симптомы СДВГ у детей
СДВГ представляет собой неврологическо-поведенческое расстройство развития, характеризующееся невнимательностью, гиперактивностью и импульсивностью у детей. Некоторые исследования показали, что СДВГ у детей связан с более низким уровнем ω-3 ПНЖК в крови, по сравнению с их здоровыми сверстниками. Более того, многочисленные исследования показали, что добавки ω-3 ПНЖК могут реально уменьшить симптомы СДВГ. ПНЖК ω-3 помогают улучшить внимательность и возможность выполнения задач. Они также уменьшают гиперактивность, импульсивность, беспокойство и агрессию. В последнее время исследователи оценивали доказательства эффективности различных методов лечения СДВГ. Они обнаружили, что одним из наиболее эффективных натуральных средств для лечения СДВГ является рыбий жир [42].
Заслуживает внимания факт хорошей переносимости препаратов ω-3 ПНЖК и практическое отсутствие побочных эффектов. Отмечено, что прием терапевтических доз не вызывал серьезных побочных явлений. Однако у отдельных групп пациентов, например, с повышенным риском развития кровотечений, препараты ω-3 ПНЖК следует назначать с осторожностью.
Оптимальное соотношение полиненасыщенных жирных кислот
По утверждению специалиста в области питания биохимика Уильяма Ландса, который является исследователем Национального института здоровья и экспертом мирового класса по вопросам действия незаменимых липидов, жирные кислоты типа ω-3 и ω-6 находятся в состоянии постоянной конкуренции за владение ферментом десатуразой. Это активное вещество входит в структуру всех клеточных мембран, поддерживая их нормальное строение. Оно имеет большее сродство с ω-3. Но, за счет избытка липидных соединений типа ω-6, именно они в большей степени соединяются с этим ферментом, что приводит к их накоплению в организме. Это значит, что в условиях дефицита ω-3 липидов в употребляемой пище человеческий организм не может обеспечить свои ткани этими незаменимыми жирными кислотами. Поскольку природа не терпит пустоты, их место занимают ω-6 соединения. Все эти данные говорят только об одном: пища должна содержать достаточное количество жирных кислот из разряда ω-3 ПНЖК. Это не только обеспечит организм жизненно важными компонентами, но и защитит его от вредного воздействия конкурентов данных соединений. В случае длительного их недостатка организм настолько замедляет и искажает метаболические процессы, что восстановить их становится очень тяжело.
Ряд медицинских исследований показал, что избыток ω-6 ПНЖК по отношению к ω-3 ПНЖК существенно увеличивает риск ряда заболеваний. Рацион современных людей включает в большом количестве ω-6 ПНЖК при недостатке ω-3 ПНЖК. Эти кислоты должны поступать в организм в соотношении 3:1, но мы из нашей пищи получаем примерно 40:1. Это значит, что ω-6 ПНЖК поступает в избытке, а ω-3 ПНЖК с дефицитом. Это приводит к дисбалансу в обменных процессах и ряду заболеваний. При переизбытке ω-6 ПНЖК могут возникнуть ослабление защитных функций организма, иммунной системы, расстройства сердечно-сосудистой системы, различного рода воспаления и другие заболевания, вплоть до онкологических. Почему американцы, да теперь и не только они, страдают избыточным весом: потому что воспитаны на фаст-фудах и полуфабрикатных продуктах, в которых зашкаливает содержание ω-6 ПНЖК и насыщенных жиров. При злоупотреблении жирного мяса начинаются необратимые процессы, которые могут сказаться на нервной системе, вызвать бесплодие, экземы и разрушение печени. Для детей это грозит задержкой роста и общего развития.
Ученые из отдела проблем со здоровьем Национальной академии наук США (National Academy of Sciences, NAS) рекомендуют употребление жирных кислот в соотношении, которое составляет 10:1. Это значительно больше, чем рекомендуемое в Швеции (5:1) или в Японии (4:1). Возможно, именно за счет такого показателя в этих странах фиксируется сравнительно низкий уровень заболеваний сердца и сосудов, а также достигнут большой прогресс в лечении онкологической патологии. При этом с пищей не должно поступать жиров более 30% от общего количества калорий. Исходя из этого, рекомендуется, чтобы с ПНЖК поступало менее 8% калорий, с соотношением ω-6/ω-3 в пределах 5:1–3:1. Необходимо также помнить, что из-за участия ПНЖК в процессах перекисного окисления липидов их желательно принимать одновременно с антиоксидантами (токоферол и др.). Учитывая, что пищевые источники ω-3 ПНЖК довольно ограничены и соотношение ω-6/ω-3 ПНЖК в рационе современного человека далеко от оптимального, в настоящее время разработаны и присутствуют на рынке в большом количестве биологически активные добавки к пище, обогащающие рацион ПНЖК [43].
Рекомендации по применению ω-3 ПНЖК
Рекомендации НИИ питания РФ предусматривают ежедневное употребление в пищу 0,8–1,6 г ω-3 жирных кислот. Более точные дозировки зависят от многих факторов и предлагаются зарубежными рекомендациями. Согласно экспертам, желающие защитить свои сердца должны употреблять различные виды жирных рыб (таких как лосось, тунец и макрель) по меньшей мере два раза в неделю. Те, у кого есть проблемы с сердцем, должны получать 1 г ω-3 ПНЖК в день, предпочтительно из жирной рыбы. Около 50 г рыбы содержат 1 г ω-3 ПНЖК. 30 г, или одна горсть, грецких орехов содержат около 2,5 г ω-3. Это равно примерно 100 г лосося. Льняное масло содержит альфа-линоленовую кислоту — это самый мощный растительный источник альфа-линоленовой кислоты, которую организм может использовать для вырабатывания эйкозапентаеновой кислоты и декозагексаеновой кислоты. Гораздо лучше выбирать цельные семена льна, поскольку они также содержат 3 г клетчатки на столовую ложку, а также полезные фитоэстрогены. Другими источниками ω-3 являются рапсовое масло, брокколи, мускусная дыня, фасоль, шпинат, листья винограда, китайская капуста, цветная капуста и грецкие орехи. Кроме того, потребляя больше ω-3, можно заменить некоторые ω-6 жирные кислоты из масел для приготовления пищи (подсолнечное, соевое и т. п.) третьим типом омега жирных кислот, известных как ω-9 (олеиновая кислота). Это мононенасыщенный жир, содержащийся в основном в оливковом масле.
Все ли ω-3 ПНЖК препараты «одинаково полезны»? По происхождению ω-3 жирные кислоты можно условно разделить на две группы: «растительные» и «морские». К «морским» прежде всего относится ДГК. В основном она содержится в рыбе, креветках, крабах и тканях морских животных. Второй представитель «морских» ω-3 кислот ДПК — вещество, встречающееся только у морских млекопитающих.
Растения, как наземные, так и водные, почти не синтезируют «морские» формы ω-3 полиненасыщенных жирных кислот и не могут служить их источником.
К числу «растительных» ω-3 жирных кислот относятся AЛК и ЭПК. Растения в основном синтезируют AЛК. Попав в организм здорового человека, она без остатка превращается в активную «растительную» форму ω-3 жирных кислот ЭПК. Выбирая препарат ω-3 полиненасыщенных жирных кислот, прежде всего следует обращать внимание на количество «морских» форм ДГК и ДПК. Содержание «растительных» форм ЭПК и AЛК будет достаточным в любом препарате. Богатые ДПК препараты заслуживают предпочтения, поскольку они способны эффективнее справиться с любой формой дефицита ω-3 полиненасыщенных жирных кислот в организме. Необходимо «морских» форм: 500 мг. Таким образом, необходимо восполнить недостаток ω-3 полиненасыщенных жирных кислот, составляющий не менее 200 мг «морских» форм (ДГК, ДПК) и 300 мг «растительных» (ЭПК и, необязательно, AЛК).
Для эффективной профилактики атеросклероза рекомендуется принимать 300 мг полиненасыщенных жирных кислот ω-3 типа в день. С целью профилактики злокачественных опухолей полиненасыщенные жирные кислоты ω-3 типа необходимо принимать длительное время — в течение многих лет. В профилактических дозах полиненасыщенные жирные кислоты ω-3 типа хорошо переносятся, не имеют побочного и токсического действия [45, 46].
В соответствии с рекомендациями Европейской ассоциации перинатальной медицины (European Association of Perinatal Medicine, EAPM) суточная доза ДГК и ЭПК для беременных и кормящих составляет не менее 300 мг, при соотношении кислот 5:1; а для пациентов с кардиоваскулярной недостаточностью соотношение ЭПК к ДГК = 1,5:1.
Эксперты Национального института здоровья США не установили рекомендуемых количеств ω-3 жирных кислот, за исключением альфа-линоленовой кислоты. Средние ежедневные рекомендуемые количества для альфа-линоленовой кислоты перечислены ниже в граммах (табл. 1).
Для кардиологических пациентов ω-3 ПНЖК включены в рекомендации Всероссийского научного общества кардиологов (2017 г.) — «можно прибегнуть к назначению полиненасыщенных жирных кислот в дозе 2–4 г/сут для снижения уровня триглицеридов»; и рекомендации Американской ассоциации сердца (American Heart Association, AHA 2003 г.) (табл. 2). Максимальная безопасная цифра зависит от источников ω-3 — не более 7–8 г в сутки в виде рыбьего жира в капсулах и неограниченно в виде обычной еды [47].
Исходя из имеющихся научных данных, наиболее целесообразно назначать полиненасыщенные жирные кислоты ω-3 типа для профилактики рака молочной железы, толстой кишки и простаты пациентам из групп риска. В мировой онкологии планируется проведение длительных интервенционных клинических испытаний по химиопрофилактике рака данных локализаций с помощью ПНЖК ω-3 типа. Для вспомогательного лечения онкологических больных: повышения эффективности лучевой и химиотерапии, в период предоперационной подготовки и реабилитации, борьбы с раковой кахексией при генерализации опухолевого процесса, полиненасыщенные жирные кислоты ω-3 типа следует назначать в дозах не менее 1,8–2 г в день, в максимальных дозах — 13–18 г в день.
Переносимость ω-3 ПНЖК
Препараты ω-3 ПНЖК обладают доказанной высокой безопасностью и хорошей переносимостью. Серьезных побочных явлений при приеме в терапевтических дозах не зарегистрировано. При наличии индивидуальной непереносимости рыбных продуктов возможны аллергические реакции на прием ω-3 ПНЖК. Прием ω-3 ПНЖК в дозе до 3 г в сутки не приводит к развитию нежелательных реакций. Однако у отдельных групп пациентов, например, страдающих сахарным диабетом, с повышенным риском развития кровотечений или с высоким исходным уровнем липопротеидов низкой плотности, ω-3 ПНЖК следует назначать с осторожностью. Прием ω-3 ПНЖК в дозе более 3 г в сутки повышает риск развития кровотечений, однако случаи серьезных кровотечений не зарегистрированы. Высокие дозы скорее могут вызвать кровоточивость из носа или гематурию. Очень высокое потребление ω-3 ПНЖК («эскимосное» потребление) повышает риск развития геморрагического инсульта. Причинами подобных нарушений является способность ω-3 ПНЖК уменьшать тромбообразование, удлинять время кровотечения и снижать фактор фон Виллебранда.
Опасной может оказаться передозировка этими соединениями, которая намного тяжелее проявляется, чем их недостаток. Но достичь избытка полиненасыщенных жирных кислот в организме крайне тяжело, поскольку они очень медленно накапливаются. Поэтому опасным можно назвать только систематический и длительный прием высоких доз ω-3 ПНЖК.
Среди побочных эффектов со стороны желудочно-кишечного тракта возможны диспепсические расстройства в виде тошноты, в отдельных случаях — диареи, преимущественно на фоне высоких доз ω-3 ПНЖК. Однако эти явления носят нестойкий, быстро проходящий характер. В ряде научных публикаций в качестве возможной альтернативы приему ω-3 ПНЖК рекомендуется жирная рыба холодноводных сортов, употреблять которую рекомендуется по меньшей мере дважды в неделю. Вместе с тем следует помнить о возможной контаминации рыбы потенциально опасными продуктами — такими как соли тяжелых металлов, диоксины, метилртуть и полихлоринатные бифенилы. Попадание в организм солей тяжелых металлов может привести к нарушению функции центральной нервной системы и другим нарушениям. Кроме того, в неочищенном рыбьем жире могут присутствовать пестициды. Поэтому для проведения профилактики и лечения сердечно-сосудистых заболеваний рекомендуется использовать высокоочищенные ω-3 ПНЖК.
Литература
ФГБОУ ВО КемГМУ МЗ РФ, Кемерово
Роль омега-3 ненасыщенных кислот в профилактике и лечении различных заболеваний (часть 2)/ Е. Ю. Плотникова, М. Н. Синькова, Л. К. Исаков
Для цитирования: Лечащий врач № 8/2018; Номера страниц в выпуске: 56-61
Теги: полиненасыщенные липиды, соотношение, питание, сердечно-сосудистые заболевания, профилактика
Жир морских млекопитающих применение в фармации и медицинской практике
Морская биотехнология – это наука, об использовании морских организмов полностью или частично для производства или модификации веществ, которые улучшают состояние флоры и фауны. Разработки в сфере изучения биологически активных веществ, выделяемых из аквабионтов, имеют огромный успех, поскольку большое число извлекаемых соединений проявляют фармакологическую активность.
Актуальностью нашей темы является тот факт, что в ходе развития фармацевтической индустрии появляется возможность извлекать всё большее количество активных соединений, интересующих исследователей в плане разработок. В настоящее время объектами повышенного внимания являются брюхоногие моллюски, лучепёрые рыбы, кораллы, морские звёзды, лахтаки, личиночнохордовые и мшанки. При изучении различных видов кальмаров была получена информация о передаче нервных импульсов с помощью гигантских аксонов. Моллюски – отличная модель для изучения клеточного цикла и его регуляции, а морской еж – пример для понимания молекулярных основ клеточного размножения и развития.
Целью нашего исследования является освещение некоторых разработок и открытий в области морской биотехнологии с особым упором на биомедицинский потенциал морской флоры и фауны.
Материалы и методы исследования
Объектами настоящего исследования являлись морские обитатели, в частности: цианобактерии двух отделов Cyanophyta (сине-зеленые водоросли) и Pyrrophyta (динофлагелляты), морские водоросли видов Gelidium, одного вида Gracilaria- / Gracilariopsis, морские губки родов Haliclona, Petrosia и Discodemia. Исследование проводилось с помощью поисково-информационных (eLibrary, PubMed, CyberLeninka, ResearchGate) и библиотечных баз данных.
Результаты исследования и их обсуждение
Благодаря легкому доступу наземные растения служат основным источником полезных веществ для медицины, в особенности для народной. Значительными достоинствами акваторий являются: диапазон давлений (1–1000 атм), диапазон питательных веществ (от олиготрофных до автотрофных) а также огромный разброс в плане температур вод. Это разнообразие способствовало обширному видообразованию на всех филогенетических уровнях, от микроорганизмов до млекопитающих. Несмотря на то, что биоразнообразие в морской среде намного превышает биоразнообразие в наземной среде, исследования по использованию морских обитателей в качестве фармацевтического сырья всё ещё находятся в зачаточном состоянии. Но с развитием новых технологий и оборудования стало возможным собирать образцы морских организмов. При стандартном способе изучения биологически активных веществ в первую очередь исследуемое соединение извлекается из источника в виде суммы БАВ, затем подвергается ряду лабораторных проб, в ходе которых устанавливается биологическая мишень для данного вещества, далее оно подвергается процедуре биологического выделения, фракционирования и очищения, давая по существу одно биологически активное соединение. Несмотря на широкое использование данного метода исследования, оно является трудоемким, медленным, обладает маленькой эффективностью и не дает никаких гарантий успеха. В настоящее время обнаружение природных биологически активных веществ очень востребовано, для этого необходим быстрый скрининг, идентификация и ускоренные процессы разработки технологий. Всё это является обязательным для изучения новых подходов обнаружения лекарств [1].
Природа была источником лекарственных средств на протяжении тысячелетий, и из микроорганизмов было выделено большое количество современных лекарств, многие из которых основаны на их использовании в народной медицине. В прошлом веке большое внимание было уделено микроорганизмам, выступавшим в роли субстанций в производстве антибиотиков и других лекарств для лечения некоторых серьезных заболеваний. Несмотря на успехи в открытии лекарств против различных микроорганизмов, морским обитателям уделяется очень мало внимания. Трудность в поиске метаболитов у морских бактерий в основном связана с отсутствием их культур. Выделена необычная грамположительная бактерия из глубоководных отложений, которая произвела серию новых биологических метаболитов, макролактин A – F беспрецедентного линейного происхождения ацетогена C24 [2]. В ходе исследований влияния макролактина А на вирус простого герпеса млекопитающих (типа I и II) было выявлено, что метаболит, подавляя клетки мышиной меланомы B16-F10 в анализах in vitro, тем самым защищает Т-лимфоциты от репликации вируса иммунодефицита человека (ВИЧ) [3].
Исследуя морских микробов, а в частности Alteromonas spp., ученые поставили задачу разработки микробного метаболита, ингибитора обратной транскриптазы, обладающего анти-ВИЧ-потенциалом. В качестве сырья в водах Бермудского архипелага была выловлена морская губка. Источником внеклеточных протеаз, а также коллагеназ оказался род бактерий Vibrio, в особенности Vibrio alginolyticus, которая производит неспецифически устойчивую к поверхностно активным веществам щелочную сериновую экзопротеазу [4]. Данные ферменты в настоящее время различным способом используются в промышленности, к примеру в исследованиях культуры ткани [5]. Морскими животными вырабатывается ряд ядов нейропаралитического действия, в число которых входит сакситоксин, сигуатоксины, тетродотоксин и бреветоксины, эти биомолекулы специфические блокаторы натриевых каналов. Информация, полученная в данных исследованиях, легла в основу разработки потенциал-управляемых натриевых каналов [6]. Эти токсины полезны в нейрофизиологических и нейрофармакологических исследованиях, и морские бактерии могут быть важным источником этих ценных молекул.
Цианобактерии являются одним из самых богатых источников известных и новых биоактивных соединений, которые применяются в фармации. Из пяти отделов микроводорослей исследования источников биологически активных веществ внимание было сосредоточено только на двух отделах: Cyanophyta (сине-зеленые водоросли) и Pyrrophyta (динофлагелляты). Lyngbyatoxin-A и debromoaplysiatoxin – два структурно различных метаболита, выделенных из токсических штаммов Lyngbya mausculata [7], и анатоксина-a из Anabaena ciecinalis [8]. Некоторые из морских цианобактерий, по-видимому, являются потенциальными источниками для крупномасштабного производства витаминов, представляющих коммерческий интерес, таких как витамины группы B-комплекса и витамин-E. Метаболиты, выделенные из Lyngbya lagerhaimanii и Phormidium tenue, вызывают апоптоз раковых клеток, либо активируют члены сигнальных ферментов протеинкиназы-С, тем самым проявляют антиканцерогенную активность [8]. Известным источником фузаперазинов A и B, а также серосодержащих производных диоксопиперазина, ранее получаемых ферментацией грибом, Tolypocladium spp., на сегодняшний день является Fusarium chlamydosporum культивируемый из японской морской водоросли Carpopeltis affinis [9]. Четыре новых эпиполисульфанилдиоксопиперазина были выделены из культуры гриба Leptosphaeria spp., получаемой из японской бурой водоросли саргассум [8]. Культуры морского гриба Hypoxylon oceanicum из мангрового дерева в Шензене, Китай, производят макроциклические сложные полиэфиры и линейные сложные полиэфиры [10]. Из Lyngbya majusculata был выделен иммуносупрессивный линейный пептид microcolin-A, который при наномолярных концентрациях подавляет двустороннюю реакцию мышиных смешанных лимфоцитов [11]. Ряд известных антибиотиков был выделен из дианофлагеллят, противогрибковых препаратов из Gambierdiscus toxicus. Поскольку он деполяризует возбудимые мембраны и его сайты связывания на натриевом канале, механизм, по-видимому, отличается от механизма других активаторов [12].
В данной работе мы рассмотрели бурые водоросли, трех видов Gelidium, одного вида Gracilaria- / Gracilariopsis. Красная водоросль Sphaerococcus coronopifolius обладает антибактериальной активностью [5]; зеленая водоросль Ulva lactuca обладает противовоспалительным действием; и противоопухолевое соединение было выделено из Portieria hornemannii [13]. Ulva Fasciata выделяет производное сфингозина, которое, как было обнаружено, обладает противовирусной активностью in vivo [14]. Цитотоксический метаболит, стиполдион, который ингибирует полимеризацию микротрубочек и тем самым предотвращает образование митотического веретена, был выделен из тропической бурой водоросли Stypodium zonale [15]. Йодированный новый нуклеозид был выделен из Hypnea valitiae, который является мощным и специфическим ингибитором аденозинкиназы. Он может быть использован в исследованиях аденозиновых рецепторов в различных системах, а также в исследованиях метаболизма и регуляции нуклеотидов [16]. Существует много водорослей, способных превращать простые полиненасыщенные жирные кислоты, такие как арахидоновые кислоты, в сложные эйкозаноиды и родственные оксилипины. Производные арахидоновой кислоты играют важную роль в поддержании гомеостаза в системах млекопитающих, в частности в синтезе циклических эндопероксидов, которые являются предшественниками тромбоксана А2 и участвуют в тромбообразовании, аберрантная продукция метаболитов этого класса происходит при таких заболеваниях, как псориаз, астма, артериосклероз, болезни сердца, язвы и рак [3].
Источником биологически активных соединений, обладающих антиканцерогенной и противовоспалительной активностью, является род губок: демоспонги (Haliclona sp.), гигантские губки (Petrosia ficiformis) и чашеобразные губки (Discodermia calyx), к сожалению культивирование данных видов в настоящий момент затруднено. Губки в качестве сырья, изучаемого на наличие биологически активных веществ, стали изучаться после выделения, ингибирующего опухоль арабинозильного нуклеозида – спонгуридина, извлечённого из губки Cryptotethia crypta. Цитозин-арабинозид, включается в клеточную ДНК, где он ингибирует ДНК-полимеразу только после превращения в арабинозид цитозин трифосфат. Предоставленное исследование используется в клинической практике лечения неходжкинской лимфомы и острого миелоцитарного лейкоза [17]. Глубоководная губка Dercitus spp. обладает цитотоксической активностью в диапазоне низких наномолярных концентраций, полученный из неё аминоакридиновый алкалоид – дерцитин, активен в отношении клеток меланомы В16 и мелкоклеточной карциномы легких Льюиса, продлевает жизнь мышей с асцитными опухолями [18]. Лембехины B и C обладают нейрогенной активностью в отношении клеток нейробластомы, их получают из индонезийского вида демоспонгов Haliclona. Полиэфирный макролид Галихондрин-B экскретированный из японской губки Theonella spp., потенциальный противораковый агент [19]. Морские губки Mycale spp. и Theonella spp., собранные в Новой Зеландии и Окинаве соответственно, являются источниками микаламида-А и оннамида-А, структурно связанных с теопедеринами. Во многих модельных системах лейкемии и опухолей демонстрируют цитотоксичность in vitro и противоопухолевую активность in vivo. Caminoside-A – антимикробный гликолипид вида Caminus sphaeroconia, собранного в Доминиканской республике, ингибитор бактериальной системы секреции типа III [20]. Открытие простагландина в кораллах в конце 1960-х гг. во многом способствовало быстрому развитию в области морского лекарственного сырья [3]. Палитоксин, один из наиболее известных и серьёзных токсинов, является продуктом вида Palythoa семейства Zoanthidae. Это соединение полезно для исследования процессов распознавания клеток, так как оно стимулирует метаболизм арахидоновой кислоты и подавляет реакцию на эпидермальный фактор роста, активируя натриевую помпу в пути передачи сигнала, используя натрий в качестве второго мессенджера [9]. Фракционирование экстрактов, полученных из мягких кораллов, Lobophytum crassum, показало, что керамиды являются умеренно антибактериальным компонентом [21]. При поиске более безопасного противовоспалительного и анальгетического аналога, равного по фармакологической активности индометоцину, был получен трициклический дитерпенпентозид – псевдопетроцин-Е, источником которого является горгония рода Pseudopterogorgia [3].
Кораллы Lemnalia flava, собранные в водах Момбаса и Кении, стали первыми представителями в исследованиях лемнафлавозида и три моноацетатных производных. Выделенный из Clavularia viridis клавубициклон в отношении линий опухолевых клеток MCF-7 и OVCAR-3, проявляет умеренную цитотоксичность [22]. Дитерпен – цеспитуларин A-D, нордитерпен – цеспитуларин E и три дитерпена – цеспитуларин F H, с новым скелетом были получены биоаналитическим фракционированием мягкого коралла Cespitularia hypotentaculata [23]. Переменная активность и селективность наблюдались для восьми соединений в отношении опухолевых клеточных линий A-549, HT-29 и P388. Два новых дитерпеноида типа долабеллана, а также известный дитерпен клавенон были выделены из видов Clavularia. Было обнаружено, что искусственная культура Erythropodium caribaeorum продуцирует ряд дитерпенов, включая антимитотические агенты элеутеробин и аквариолид-А. Экстракты из Pseudopterogorgia elizabethae, содержащие псевдоптерозины и Eunicea fusca, содержащие фукозид-A, могут быть использованы в косметической промышленности.
Большинство добываемых веществ из мшанок являются алкалоидами. Морской мшанок Amathia convoluta, собранный с восточного побережья Тасмании, был источником трибромированных алкалоидов convolutamine-H и convolutindole-A. Соединения проявляли сильную селективную активность против Haemonchus contortus, паразитической нематоды жвачных животных. Источником бриоантратиофена были водоросли субторквата с острова Цуцуми, Япония [24]. Это соединение проявляло сильную антиангиогенную активность в отношении пролиферации эндотелиальных клеток бычьей аорты (BAEC). Асимметричный синтез аматамида A и B, алкалоидов из мшанок Amathia wilsoni, собранных в Тасмании, был выполнен, начиная с 3-гидроксибензальдегида. Bryostatin трансформирует фермент сигнальной трансдукции протеинкиназы-С, демонстрирует избирательность в отношении линий клеток лейкемии, меланомы, рака почки и немелкоклеточного рака легкого. Данное соединение, проявляющее противораковую активность, выделяют из Bugula neritina. В процессе изучения Anthia convoluta в отношении in vitro цитотоксичности клеток мышиного лейкоза L1210 и клеток эпидермоидной карциномы человека KB, был выделен активный метаболит – конволютамид-А. Фундаментальные исследования Cribricellina cribreria позволили изолировать проявляющий цитотоксическую, антибактериальную, противогрибковую и противовирусную активность алкалоид β-карболина. Индольные алкалоиды, выделенные из Flustra foliacea, показали сильную антимикробную активность [25].
Полученные результаты анализа литературных данных позволяют сделать вывод о том, что морские обитатели, в том числе полученные из них метаболиты и другие ресурсы в живой или мертвой форме, являются перспективными источниками для получения лекарственных веществ. Мировой океан является относительно незатронутым источником биологически активных веществ, которые могут применяться в фармацевтической промышленности. Исследования морской среды и биологический анализ, а также совершенствование технологий, по извлечению и культивирования морских микроорганизмов вносят огромный вклад в использование биоразнообразия подводного мира. Изученные нами виды представляют огромный интерес в сфере биохимических исследований и доклинических испытаний. Основное внимание уделяется разработке лекарств активных против вируса иммунодефицита человека и онкозаболеваний, в качестве биологических моделей по выделению биологически активных веществ выступают брюхоногие моллюски, личиночно-хордовые, мшанки и лахтаки. В ходе освоения моря проблемы, связанные со снабжением, технической поддержкой, доступом к биоразнообразию и фармацевтическому рынку, должны быть тщательно рассмотрены и устранены. Морские ресурсы со всеми их аспектами, несомненно, представляют собой огромный экономический потенциал для всего мира и представляют собой сектор, который может обеспечить устойчивый и всесторонний рост.
- жир в головном мозге
- жир полезен для мозга