aarch64 что это такое
Определение типа архитектуры процессора Android-устройств
Часто при загрузке Андроид-приложений на сайтах предлагающих такую возможность, у пользователей есть возможность выбора файлов для различных архитектур системы. И тут возникают сложности — какую из загрузок нужно скачивать и устанавливать.
Архитектура процессора — это, простыми словами, схема по которой работают части процессора между собой, а также набор команд с помощью которых они «общаются» с другими частями устройства.
Многие разработчики делают универсальные приложения и игры, которые подходят под любые архитектуры процессоров. Но некоторые из них создают несколько версий программ специально «заточенных» под ту или иную архитектуру. При установке такого продукта из Google Play, сервис автоматически определяет все необходимые параметры установки и загружает на пользовательское устройство необходимые файлы. Пользователю не нужно думать над тем какой файл скачать.
Если же установка (по той или иной причине) из Google Play невозможна или нежелательна, пользователь может скачать файл APK на стороннем сайте. С его помощью можно установить приложение или игру «в ручном режиме». Вот тут-то, если на сайте есть несколько вариантов таких файлов, и появляются муки выбора.
На сегодняшний день, сайты предлагающие файлы для установки приложений и игр могут распространять APK-файлы следующих архитектур: armeabi-v7a, arm64-v8a, x86 и x86_64.
Ниже мы несколько более детально рассмотрим разные типы архитектуры для Android-устройств. Вы можете пропустить этот блок и перейти к следующему, но все-таки мы бы рекомендовали ознакомиться с этой информацией для более ясного понимания.
Файлы начинающиеся на «x86» и «arm» не являются взаимно совместимыми — вы должны использовать версию, предназначенную для конкретной архитектуры устройства.
Также, если ваш девайс имеет 32-разрядный процессор, 64-разрядный файл на нем работать не будет. А вот 64-разрядные процессоры обратно совместимы, поэтому на него можно устанавливать 32-разрядный файл.
Исходя из вышесказанного, можно составить такие правила совместимости:
В большинстве случаев телефоны используют архитектуру ARM. Более дешевые устройства используют версию armeabi-v7a, более мощные — версию arm64-v8a. Поэтому, если сомневаетесь в том, какую версию файла выбрать, выбирайте ту, которая имеет отметку «armeabi-v7a».
Определение архитектуры процессора устройства
Теперь, когда мы разобрались с теоретической частью, пора определить — на какой архитектуре разработан ваш телефон или планшет.
Для этого можно воспользоваться инструкцией к устройству (но в ней не всегда можно найти нужную информацию) или же найти данные в интернете. Но лучше всего это сделать с помощью специального приложения.
Самый простой способ!
Droid Hardware Info
Если вышеописанный способ вас чем-то не устраивает или же вы хотите получить более расширенные данные о системе вашего устройства, воспользуйтесь приложением Droid Hardware Info.
Установите эту утилиту в Google Play или с помощью APK-файла (скачав его на сайте Biblprog). Для получения нужной нам информации запустите Droid Hardware Info, перейдите на вкладку «Система» и обратите свое внимание на раздел «Процессор».
Как вам данная инструкция? Все ли понятно? Если у вас появились дополнительные вопросы или же возникли замечания к информации выложенной на данной странице — не стесняйтесь. Напишите в комментариях!
СОДЕРЖАНИЕ
ARMv8-A
Соглашения об именах
Возможности AArch64
Расширение: подсказка для сбора данных (ARMv8.0-DGH)
AArch64 был представлен в ARMv8-A и включен в последующие версии ARMV8-A. AArch64 не входит в ARMv8-R или ARMv8-M, потому что они обе являются 32-разрядными архитектурами.
Форматы инструкций
Основной код операции для выбора группы, к которой принадлежит инструкция A64, находится в битах 25–28.
ARMv8.1-A
В декабре 2014 года было объявлено об обновлении ARMv8.1-A с «дополнительными преимуществами по сравнению с v8.0». Усовершенствования делятся на две категории: изменения набора инструкций и изменения модели исключений и преобразование памяти.
Усовершенствования набора инструкций включали следующее:
Улучшения для модели исключений и системы перевода памяти включали следующее:
ARMv8.2-А
В январе 2016 года был анонсирован ARMv8.2-A. Его улучшения делятся на четыре категории:
Масштабируемое векторное расширение (SVE)
512-битный вариант SVE уже реализован на суперкомпьютере Fugaku с использованием процессора Fujitsu A64FX ARM. Он нацелен на то, чтобы стать самым производительным суперкомпьютером в мире с «целью начать полноценную работу примерно в 2021 году».
ARMv8.3-А
В октябре 2016 года был анонсирован ARMv8.3-A. Его улучшения делятся на шесть категорий:
Архитектура ARMv8.3-A теперь поддерживается (по крайней мере) компилятором GCC 7.
ARMv8.4-А
В ноябре 2017 года был анонсирован ARMv8.4-A. Его улучшения попали в следующие категории:
ARMv8.5-А
В сентябре 2018 года был анонсирован ARMv8.5-A. Его улучшения попали в следующие категории:
2 августа 2019 года Google объявил, что Android примет расширение Memory Tagging Extension (MTE).
ARMv8.6-A
В сентябре 2019 года был анонсирован ARMv8.6-A. Он добавляет:
Например, мелкие прерывания, инструкции ожидания события (WFE), EnhancedPAC2 и FPAC. Расширения Bfloat16 для SVE и Neon в основном предназначены для глубокого обучения.
ARMv9-A
ARMv8-R (архитектура реального времени)
В профиль ARMv8-R была добавлена дополнительная поддержка AArch64, причем первым ядром ARM, реализующим ее, было Cortex-R82. Он добавляет набор инструкций A64 с некоторыми изменениями в инструкциях по ограничению памяти.
ARM64 и Ты
Несколько запоздалый перевод заинтересовавшего меня блогпоста о том, что в действительности дает 64-битность процессора в iPhone без маркетинговой шелухи. Если текст покажется вам слишком очевидным, пропустите часть «Базовые преимущества и недостатки».
Как только был анонсирован iPhone 5S, технические медия были переполнены недостоверными статьями. К сожалению, написание хороших статей занимает время, а мир технической журналистики больше ценит скорость, чем достоверность. Сегодня, по просьбе нескольких своих читателей, я кратко изложу, что дает 64-bit ARM в iPhone 5S в плане производительности, возможностей и разработки.
64 бита
Давайте для начала рассмотрим что, собственно, 64-битность означает. С этим термином связанно много путаницы, в основном из-за того, что нет единого устоявшегося определения. Однако, существует общее понимание этого термина. «Битность» обычно означает либо размер числового регистра, или размер указателя. К счастью, для большинства современных процессоров, их размер совпадает. Таким образом, 64-битность означает что процессор обладает 64-битными числовыми регистрами и 64-битными указателями.
Базовые преимущества и недостатки
Если вы будете сравнивать идентичные процессоры 32 и 64 битные CPU, вы не найдете больших различий, так что значительность перехода Apple на 64-битные ARM несколько преувеличена. Это важный шаг, но важный, в основном, из-за особенностей ARM и особенностью использования процессора компанией Apple. Тем не менее, некоторые различия имеются. Самым очевидным является 64-битные числовые регистры более эффективно работают с 64-битными числами. Вы можете работать с 64-битными числами и на 32-битном процессоре, но это обычно приводит к работе с двумя 32-битными частями, что работает ощутимо медленнее. 64-битные процессоры, обычно, выполняют операции над 64-битными числами также быстро как и над 32-битными, так что код активно использующий вычисления с 64-битными числами будет работать значительно быстрее.
Не смотря на то, что 64-битность не связана напрямую с объемом адресуемой памяти, она значительно облегчает использование большого объема RAM в рамках одной программы. Программа, запущенная на 32-битном процессоре может адресовать не больше 4GB адресного пространства. Часть памяти выделена под операционную систему и стандартные библиотеки, что оставляет 1-3GB на саму программу. Если у 32-битной системы больше 4GB RAM, то использование всего этого адресного пространства для программы значительно усложняется. Вам придется заняться махинациями вроде последовательного отображение разных частей RAM на часть виртуального адресного пространства или разбивание одной программы на несколько процессов.
Подобные трюки крайне трудозатраны и могут сильно замедлить систему, так что мало кто из программистов реально их использует. На практике, на 32-битных процессорах каждая программа используют до 1-3GB RAM, а вся ценность в обладании большего объема физической оперативной памяти заключается в возможности больше запускать программ одновременно и возможность кеширования больше данных с диска.
Увеличение объема адресного пространства полезно и для систем с небольшим объемом оперативной памяти — memory-mapped файлы, размеры которых могут быть и больше доступной оперативной памяти, т.к. операционная система реально загружает только те части файла, к которым производились обращения и, кроме того, умеет «вытеснять» загруженные данные обратно в файл, освобождая оперативную память. На 32-битных системах нельзя отобразить файлы размером больше 1-3GB. На 64-битных системах, адресное пространство значительно больше, так что такой проблемы нет.
Увеличение размера указателя может быть и ощутимым минусом: таже программа будет использовать больше памяти (возможно, сильно больше) будучи запущенной на 64 битном процессоре. Увеличение используемой памяти также «забивает» кэш, что снижает производительность.
В двух словах: 64-битность может увеличить производительность некоторых частей кода и упрощает некоторые техники, вроде memory-mapped файлов. Однако, производительность может и пострадать из-за увеличения используемой памяти.
ARM64
64-битный процессор в iPhone 5S не просто ARM с увеличенным размером регистров, есть и существенные изменения.
Во-первых, отмечу название: официального название от ARM — «AArch64», однако это — глупое название, печатать которое меня раздражает. Apple называет архитектуру ARM64 и я буду называть также.
ARM64 увеличил вдвое число целочисленных регистров. 32-битный ARM предоставляет 16 целочисленных регистров, из которых один — счетчик команд (program counter), еще два используются для указателя на стэк и регистра связи (link register) и 13 регистров общего назначения. В ARM64 32 целочисленных регистра, с выделенным нулевым регистром, регистром связи и регистром указателя кадра (frame pointer register). Еще один регистр зарезервирован платформой, что оставляет 28 регистров общего назначения.
ARM64 также увеличивает число регистров для чисел с плавающей запятой. Регистры в 32-битных ARM несколько странные, так что сложно сравнивать. У 32-битного ARM 32 32-битных регистров с плавающей запятой, которые могут быть представлены как 16 перекрывающихся 64-битных регистров. Кроме того, есть еще 16 независимых 64-битных регистров. ARM64 упрощает это до 32 неперекрывающихся 128-битных регистров, которые могут быть использован для данных меньшего размера.
Число регистров может значительно влиять на производительность. Память значительно медленнее процессора, и чтение/запись памяти занимает значительно больше времени, чем выполнение инструкций процессора. Процессор пытается исправить это при помощи кэшей, но даже самый быстрый кэш значительно медленнее регистров процессора. Больше регистров — больше данных могут храниться внутри процессора. Насколько это влияет на производительность зависит от конкретного кода и эффективности компилятора, который оптимизирует использование регистров. Когда архитектура Intel перешла от 32 к 64 битам, число регистров увеличилось с 8 до 16, и это было значительное изменение производительности. У ARM уже было больше регистров чем у 32-битной архитектуры Intel, так что увеличение регистров хоть и меньше повлияет на производительность, но это изменение все еще будет заметно.
ARM64 также привнес существенные изменения помимо увеличения числа регистров.
Большинство 32-битных инструкций ARM могут выполняться/не выполняться в зависимости от состояние регистра-условия. Это позволяет транслировать условные выражения (if-statements) без использования ветвления. Предполагалось, что это увеличит производительность, однако, судя по тому, что в ARM64 от этой возможности отказались, она порождала больше проблем, чем давала пользы.
В ARM64 набор SIMD (одна-инструкция-много-данных) NEON полностью поддерживает стандарт IEEE754 для чисел с плавающей запятой с двойной точностью, в то время как 32-битная версия NEON поддерживала только одинарную точность и не в точности следовала стандарту для некоторых битов.
В ARM64 добавили специализированные инструкции для AES шифрования и SHA-1 & SHA-256 хешей. Не слишком полезное в общем, однако существенный бонус если вы занимаетесь именно этими вопросами.
В целом, самым важным отличаем является увеличение числа регистров общего назначения и полная поддержка IEEE754-совметимой арифметики на числах с двойной точностью в NEON. Это может дать ощутимый прирост в производительности в большом числе мест.
Совместимость с 32-битным приложениями
Важно отметить, что A7 включает в себя 32-битный режим совместимости, который позволяет запускать 32-битные приложения без каких либо изменений. Это означает, что iPhone 5S может исполнять любые старые приложения без какого-то влияния на производительность.
Изменения в системе периода исполнения
Apple использует преимущества новой архитектуры в своих библиотеках. Так как им нет надобности беспокоиться о бинарной обратной совместимости при таких изменениях, это отличное время чтобы внести изменения которые в противном случае «поломали» уже существующие приложения.
В Max OS X 10.7 Apple ввела меченные указатели (tagged pointers). Меченные указатели позволяют хранить некоторые классы с небольшим количеством данных в экземпляре напрямую в указателе. Это позволяет избежать выделений памяти в некоторых случаях, например NSNumber и может дать существенный прирост производительности. Меченные указатели поддерживаются только на 64-битной платформе, частично из-за вопроса производительности, а частично из-за того что в 32-битном указателе не так много остается места под «метки». Видимо по-этому, у iOS не было поддержки меченных указателей. Таким образом, в ARM64 в рантайме Objective-C включена поддержка меченных указателей, что дает те же преимущества, что в Mac.
Не смотря на то, что размер указателя составляет 64 бита, не все эти биты на самом деле используются. В Mac OS X на x86-64 используется только 47 битов. В iOS на ARM64 используется еще меньше — только 33 бита. Если маскировать эти биты каждый раз перед использованием то можно использовать остальные биты чтобы хранить дополнительные данные. Это позволило внести одно из самых значительных изменений в рантайм Objective-C за всю его историю.
Переосмысление указателя isa
Большая часть информации в этой секции почерпана из статьи Грега Паркера. Во первых, для освежения памяти: объекты в Objective-C представляют выделенные блоки памяти. Первый часть, размером с указатель, это isa. Обычно, isa это указатель на класс объекта. Чтобы узнать больше о том, как объекты хранятся в памяти, читайте мою другую статью.
Использовать весь размер указателя на указатель isa несколько расточительно, особенно на 64-битной платформе, которая не использует все 64-бита. ARM64 на iOS реально использует 33 бита, оставляя 31 бит для других вещей. Классы в памяти выровнены по границе 8 байт, так что последние 3 бита можно отбросить, что дает 34 бита из isa доступные для хранения дополнительной информации. И Apple-овский рантайм в ARM64 использует это для повышения производительности.
Наверно, самой важной оптимизацией стало встраивание (inline) счетчика ссылок. Практически все объекты в Objective-C обладают счетчиком ссылок (за исключение неизменяемых объектов, таких как литералы NSString) и операции retain/release, которые меняют этот счетчик случаются очень часто. Это особенно критично для ARC, который вставляет вызовы retain/release чаще, чем бы это делал программист. Таким образом, высокая производительность retain/release методов крайне важна.
Суммарно, это существенный выигрыш. Мои бенчмарки показали, что создание и удаление простого объекта занимает 380нс на 5S в 32-битном режиме, в то время как в 64-битном только 200нс. Если хоть один экземпляр когда-либо имел слабую ссылку на себя, то в 32-битном режим время удаления для всех увеличивалось до 480нс, в то время как в 64-битном режиме время осталось в районе 200нс для всех экземпляров, на которых слабых ссылок не было.
Короче говоря, улучшения в рантайме таковы, что в 64-битном режиме время аллокации занимают 40-50% от времени аллокации в 32-битном режиме. Если ваше приложение создает и удаляет много объектов, это может оказаться существенным.
Заключение
64-битность A7 не просто маркетинговая уловка, но это и не поражающий воображение прорыв который позволит создавать новый класс приложений. Истина, как всегда, лежит посередине.
Один только факт перехода на 64 бита дает немного. Это в некоторых случая ускоряет приложения, несколько увеличивает объем используемой памяти большинство программ. В общем, большой разницы нет.
Архитектура ARM изменилась не только в 64-битности. Увеличенное число регистров и пересмотренный, модернизированный набор инструкций дает неплохой прирост производительности по сравнению с 32-битным ARM.
Apple использовала переход на новую архитектуру для улучшения в рантайме. Основное изменение — встраиваемый (inlined) счетчик ссылок, который позволяет избежать дорогого поиска по хеш-таблице. Так операции retain/release очень часты в Objective-C, это существенный выигрыш. Удаление ресурсов в зависимости от флагов делает удаление объектов почти вдвое быстрее. Меченные (tagged) указатели также добавляют производительность и уменьшают потребление памяти.
ARM64 — приятное добавление от Apple. Мы все знали, что это рано или поздно случится, но мало кто ожидал что так скоро. Но оно есть, и это отлично.
ARM как будущая архитектура для настольных ПК
Содержание
Содержание
Большинство привыкло к полярному рынку в мире процессоров — поле битвы делят Intel и AMD. Однако вполне вероятно, что ситуация изменится в ближайшем будущем, ведь компания Nvidia покупает фирму ARM — разработчика процессорных архитектур. Что же такое ARM и чем все это может обернуться для IT-индустрии?
Желудь из Кембриджа
Для начала стоит объяснить, что ARM обозначает одновременно и архитектуру процессоров (в данном случае Advanced RISC Machine) и название компании (ARM Limited). История берет свое начало с сотрудничества бывшего сотрудника крупной британской компании Sinclair Research Криса Карри и инвестора Германа Хаузера. В 1978 они основали компанию Cambridge Processor Unit (CPU), которая уже в 1979 была переименована в Acorn (Желудь). Такое названия было выбрано по одной простой причине — находиться в телефонном справочнике перед Apple.
Первым продуктом был карманный компьютер за 80 фунтов Acorn System 1, который стоил дешевле своего аналога ZX80, чем и запомнился многим пользователям.
Через два года Acorn получила крупный тендер от британской BBC (та самая радиовещательная компания) на создание компьютера для школ. Так появился BBC Micro, тираж которого превысил 1,5 миллионов устройств. Поступало даже предложение от Билла Гейтса с портированием MS-DOS на BBC Micro, но в Acorn от этого отказались.
Команда разработчиков увеличивалась и постепенно появилась идея перейти к более сложным технологиям, а именно работать с 16-разрядными процессорами. Сначала решили «прощупать» почву и отправились на экскурсию в компанию National Semiconductor. Ситуация крайне разочаровала разработчиков Acorn: над процессорами трудились сотни человек, но многочисленных ошибок и «проволочек» в разработке избегать не удавалось.
Совсем другая история была в Western Design Center, которую также посетили учредители. Там процессоры разрабатывали буквально несколько человек в «домашней» обстановке. Ведущий разработчик Acorn Роджер Уилсон был настолько впечатлен, что сам загорелся идеей разработки собственных процессоров, а не покупки как это предполагалось ранее.
В 1985 году появился первый процессор ARM на тогда популярной RISC-архитектуре. Вот только он был всего-лишь подключаемым дополнением для BBC Master (продвинутой версии ранее упомянутой BBC Micro).
Своеобразным прорывом стал ARM 2: до 64 Мб оперативной памяти, тактовая частота 8 МГц — для тех времен весьма впечатляющие показатели. Конкурентом был небезызвестный Intel 80368 с частотой 16 МГц. Разница в частоте была двукратная, но не в производительности. ARM 2 выполнял 4 миллиона операций против 5 миллионов у Intel 80368!
Перенасыщение рынка компьютеров в 1984 привело к сложному экономическому положению, и Acorn была куплена итальянским брендом Olivetti. Однако последующее заполнение рынка IBM PC и аналогами привело к тому, что вкладывать средства в архитектуру на базе RISC итальянцы не стали.
Новые союзники
Герман Хаузер искал способы сохранить процессорный бизнес и нашел союзника — Apple. Они же в 1990 проектировали инновационный карманный компьютер Newton, для которого энергоэффективные ARM подходили просто идеально. Третьим союзником стала компания VLSI Technologies, которая имела непосредственное отношение к производству интегральных схем.
В итоге появилась компания ARM, которая специализировалась исключительно на проектировании. Свою интеллектуальную собственность разработчики уже продавали по лицензиям другим компаниям.
Несмотря на то, что на рынке ПК главенствовала архитектура x86, ARM по-прежнему обеспечивала рабочие станции IBM и Sun Microsystems, а также огромный рынок микроэлектроники.
В чем главная особенность ARM
Во многом именно благодаря Apple после появления первого iPhone и iPad стала понятна значимость RISC-архитектуры. Потребление энергии процессоров было столь низким, что позволяло использовать их практически в любых портативных устройствах. Как не старалась Intel, добиться таких же показателей на х86 не получалось.
Итог — процессоры на ARM можно найти практически в любых портативных устройствах — смартфоны, GPS-навигаторы, игровые приставки, фото- и видеокамеры, телевизоры и не только. Как же так получилось, что принципиального в ARM? Ответом на этот вопрос является RISC-архитектура.
В существующей классификации можно выделить CISC (Complex Instruction Set Computing — комплексный набор инструкций) и RISC (Reduced Instruction Set Computing — сокращенный набор команд). Усовершенствование процессоров приводило к увеличению размера команды. В какой-то момент усложнения стали такими, что некоторые команды потребовали двух и больше тактов на исполнение.
Тогда в рамках проекта VSLI был предложен новый принцип — использовать команды заданной длины с заранее предопределенным расположением полей, а также дополнительно увеличить число общих регистров, благодаря которому процессору придется реже обращаться к ОЗУ. Проще говоря, сложные вычисления должны разбиваться на идентичные простые, обработка которых выполняется с большей эффективностью.
Так появилась RISC с сокращенным набором команд. С одной стороны, такой подход не позволял тягаться с устройствами на базе CISC, но уровень вычислительной мощности был достаточным для микроэлектроники, не говоря о мизерном тепловыделении.
ARM против x86/x64 — есть ли перспективы
Могут ли процессоры ARM тягаться с десктопными решениями от Intel или AMD. В одном из материалов был проведен крупный тест процессоров на архитектуре E2K (отечественные Эльбрусы), ARM (v6-v8) и x86 (i386) х86-64 (amd64). Использовались насколько тестов, в том числе LINPACK, который применяется для оценки производительности суперкомпьютеров.
Процессоры ARM были представлены следующими моделями: Amlogic S922X, Samsung Exynos 4412, Allwinner H5, Allwinner A64 и Broadcom BCM2837B0 (последний используется в миникомпьютере Raspberry PI 3).
Весь список результатов вы сможете изучить на этой странице, а мы приведем график для теста liNPACK:
Некоторые модели ARM-процессоров дотягиваются до уровня производительности Intel Atom. Аналогичную ситуацию можно видеть и на примере мобильного процессора Snapdragon 835. Исходя из тестов, он более чем в два раза проигрывает мобильным версиям Intel Core i5, не говоря уже про десктопные решения.
С другой стороны такие тесты нельзя назвать максимально объективными. Во-первых, большинство подборных программ ориентированы под x86/x64, поэтому для ARM часто приходится использовать эмуляторы, которые сказываются на результатах. Во-вторых, все рассматриваемые решения изначально ориентированы на мобильную электронику с минимальным тепловыделением и «жором» аккумулятора.
Однако можно ли использовать ARM для десктопных решений? Вполне вероятно, и первые звоночки уже есть. Каждые 6 месяцев выходит рейтинг ТОП-500 — список самых мощных суперкомпьютеров в мире. Ранее первые места занимали решения c Intel Xeon или Nvidia Volta, однако в рейтинге от сентября 2020 года самым мощным компьютером стал японский Fugaku. Беспрецедентный случай, ведь построен он именно на процессорах ARM (A64FX 48C). Замеры производительности показали 513,8 петафлопс. Много это или мало? Бывший лидер IBM Power Systems AC922 имеет всего 200,7 петафлопс — более чем в два раза меньше!
Конечно, в Fugaku целых 158 976 процессоров на 52 (48+4) ядра, но сам факт того, что на ARM можно строить столь производительные системы уже заслуживает внимания.
Второй звоночек — покупка ARM компанией Nvidia (подписание договора ожидается только к 2022 году), которая является крупнейшим игроком рынка с огромным опытом. Учитывая, что в сфере графических ускорителей они занимают главенствующие позиции, есть вероятность, что «зеленые» попробуют свои силы в сфере ЦП.
Возможно, Nvidia хочет выйти на мобильный игровой рынок. У компании уже существует платформа Tegra, которая объединяет в себе графическое ядро и ARM процессор. C новой покупкой Tegra вполне способна выйти за пределы смартфонов, смартбуков и КПК.
Также Apple объявила о переходе на процессоры ARM собственной разработки и отказ от продукции Intel. Это позволит сделать совместимыми приложения между MacOS и iOS. Как известно, линейка процессоров «A» всегда показывала выдающиеся результаты, благодаря чему iPhone находились в ТОПе самых производительных смартфонов. Однако достаточно ли таких наработок, чтобы заменить хотя бы Intel Core i5 — остается вопросом.
Сейчас у Apple есть только «демонстрационная технология» на базе процессора A12Z Bionic. Разработчики могут получить «девкит» за 779 долларов, но потом его придется вернуть (Apple во всей красе). Новинка A12Z будет установлена в iPad Pro 2020 и, судя по презентации, планшет прекрасно справляется с любыми пользовательскими задачами.
Более того, на процессоре получилось даже запустить Shadow of the Tomb Raider через эмулятор на средне-низких настройках, поэтому потенциал есть.
Если верить тестам за 2017–2018 гг., то iPad и iPhone уже практически дотягиваются до уровня i7 и даже i9, установленных в MacBook Pro.
Есть еще один игрок на рынке — фирма Ampere. Как заявляют представители, их 80-ядерный ARM-процесор превосходит AMD Epyc 7742 и Intel Xeon 8280, однако в тесте для AMD использовался понижающий коэффициент, который компенсировал недоработки пакета компиляторов.
Что ждет x86/x64
Стоит ли хоронить процессоры на x86/x64 — пока об этом рано говорить. Уже достаточно давно процессоры Intel и AMD разбивают входные инструкции на более мелкие микроинструкции (micro-ops), которые в дальнейшем, не удивляйтесь, исполняются RISC-ядром.
Те самые 4–8 ядер вашего процессора, это именно RISC-ядра. Проще говоря, ARM-технология является частью архитектуры x86/x64. Именно поэтому будущим может стать не тотальное вымирание, а именно более совершенная гибридная архитектура. С другой стороны, за счет уменьшения техпроцесса ARM может добиться производительности десктопных процессоров Intel и AMD, но с сохранением приемлемого энергопотребления.
Серверные решения на ARM уже реальность и даже весьма перспективная, а значит, не за горами и массовые процессоры для персональных компьютеров.