ai artificial intelligence что такое
Искусственный интеллект, машинное обучение и глубокое обучение: в чём разница
Компьютер запросто диагностирует рак, управляет автомобилем и умеет обучаться. Почему же машины пока не захватили власть над человечеством?
Мы пользуемся Google-картами, позволяем сайтам подбирать для нас интересные фильмы и советовать, что купить. И, в общем-то, слышали, что под капотом всех этих умных вещей — искусственный интеллект, машинное обучение и deep learning. Но сможете ли вы с ходу отличить одно от другого? Разбираемся на примерах.
Что такое искусственный интеллект
Искусственный интеллект (англ. artificial intelligence) — это способность компьютера обучаться, принимать решения и выполнять действия, свойственные человеческому интеллекту.
Кроме того, ИИ — это наука на стыке математики, биологии, психологии, кибернетики и ещё кучи всего. Она изучает технологии, которые позволяют человеку писать «интеллектуальные» программы и учить компьютеры решать задачи самостоятельно. Главная задача ИИ — понять, как устроен человеческий интеллект, и смоделировать его.
В области искусственного интеллекта есть подразделы. К ним относятся робототехника, наука о компьютерном зрении, обработка естественного языка и машинное обучение.
Хотите знать, может ли машина мыслить и чувствовать как человек? Приходите на курс «Философия искусственного интеллекта». Здесь вы получите новые знания об ИИ, обсудите актуальные вопросы с преподавателями и однокурсниками и прокачаете навык публичных выступлений.
Пишет про digital и машинное обучение для корпоративных блогов. Топ-автор в категории «Искусственный интеллект» на Medium. Kaggle-эксперт.
Каким бывает искусственный интеллект
Исследователи обычно делят ИИ на три группы:
Слабый ИИ (Weak, или Narrow AI)
Слабый интеллект — тот, что нам уже удалось создать. Такой ИИ способен решать определённую задачу. Зачастую даже лучше, чем человек. Например, как Deep Blue — компьютерная программа, которая обыграла Гарри Каспарова в шахматы ещё в 1996 году. Но такая Deep Blue не умеет делать ничего другого и никогда этому не научится. Слабый ИИ используют в медицине, логистике, банковском деле, бизнесе:
Это несколько примеров, в реальности применений намного больше.
Сильный ИИ (Strong, или General AI)
Как выглядел бы сильный искусственный интеллект, можно увидеть в игре Detroit: Become Human.
Во вселенной Detroit роботы способны учиться, мыслить, чувствовать, осознавать себя и принимать решения. Одним словом, становятся похожи на человека. А в обычной жизни ближе всего к General AI чат-боты и виртуальные ассистенты, которые имитируют человеческое общение. Здесь ключевое слово — имитируют. Siri или Алиса не думают — и неспособны принимать решения в ситуациях, которым их не обучили. Сильный искусственный интеллект пока остаётся мечтой.
Суперинтеллект (Superintelligence)
Суперинтеллект мы не только не создали, но и не имеем пока что ни малейшего представления, как это сделать и можно ли вообще. Это не просто умные машины, а компьютеры, которые во всём превосходят людей. Проще говоря, что-то из области фантастики.
Машинное обучение: как учится ИИ
Машинное обучение (англ. machine learning) — это один из разделов науки об ИИ. Здесь используются алгоритмы для анализа данных, получения выводов или предсказаний в отношении чего-либо. Вместо того чтобы кодировать набор команд вручную, машину обучают и дают ей возможность научиться выполнять поставленную задачу самостоятельно.
Чтобы машина могла принимать решения, необходимы три вещи:
В машинном обучении много разных алгоритмов. Один из самых простых — линейная регрессия. Её применяют, если есть линейная зависимость между переменными. Пример: чем больше сумма заказа, тем больше вы оставите чаевых. По имеющимся данным можно предсказать сумму чаевых в будущем. В общем-то, простая математика.
Есть байесовские алгоритмы. В их основе применение теоремы Байеса и теории вероятности. Эти алгоритмы используют для работы с текстовыми документами — например, для спам-фильтрации. Программе нужно дать наборы данных по категориям «спам» и «не спам». Дальше алгоритм будет самостоятельно оценивать вероятность того, что слова «Бесплатные туры для пенсионеров» и «Закажи маме тур, пожалуйста» относятся к той или иной категории.
А ещё есть нейронные сети, о них вы наверняка слышали. Они относятся к методам глубокого машинного обучения, и об этом чуть подробнее.
Deep learning: глубокое обучение для разных целей
Глубокое обучение — подраздел машинного обучения. Алгоритмам глубокого обучения не нужен учитель, только заранее подготовленные (размеченные) данные.
Самый популярный, но не единственный метод глубокого обучения, — искусственные нейронные сети (ИНС). Они больше всего похожи на то, как устроен человеческий мозг.
Нейронные сети — это набор связанных единиц (нейронов) и нейронных связей (синапсов). Каждое соединение передаёт сигнал от одного нейрона к другому, как в мозге человека. Обычно нейроны и синапсы организованы в слои, чтобы обрабатывать информацию. Первый слой нейросети — это вход, который получает данные. Последний — выход, результат работы. Например, несколько категорий, к одной из которых мы просим отнести то, что было отправлено на вход. И между ними — скрытые слои, которые выполняют преобразование.
По сути, скрытые слои выполняют какую-то математическую функцию. Мы её не задаём, программа сама учится выводить результат. Можно научить нейросеть классифицировать изображения или находить на изображении нужный объект. Помните, как reCAPTCHA просит найти все изображения грузовиков или светофоров, чтобы доказать, что вы не робот? Нейронная сеть выполняет то же самое, что и наш мозг, — видит знакомые элементы и понимает: «О, кажется, это грузовик!»
А ещё нейросети могут генерировать объекты: музыку, тексты, изображения. Например, компания Botnik скормила нейросети все книги про Гарри Поттера и попросила написать свою. Получился «Гарри Поттер и портрет того, что выглядит как огромная куча пепла». Звучит немного странно, но как минимум с точки зрения грамматики это сочинение имеет смысл.
Сегодня нейронные сети могут применяться практически для любой задачи. Например, при диагностике рака, прогнозировании продаж, идентификации лиц в системах безопасности, машинных переводах, обработке фотографий и музыки.
Чтобы обучить нейросеть, нужны гигантские наборы тщательно отобранных данных. Например, для распознавания сортов огурцов нужно обработать 1,5 млн разных фотографий. Не получится просто слить рандомные картинки или текст из интернета — их нужно подготовить: привести к одному формату и удалить то, что точно не подходит (например, мы классифицируем пиццу, а в наборе данных у нас фото грузовика). На разметку данных — подготовку и систематизацию — уходят тысячи человеко-часов.
Чтобы создать новую нейросеть, требуется задать алгоритм, прогнать через него все данные, протестировать и неоднократно оптимизировать. Это сложно и долго. Поэтому иногда проще воспользоваться более простыми алгоритмами — например, регрессией.
Подведём итоги
Искусственный интеллект — одновременно и наука, которая помогает создавать «умные» машины, и способность компьютера обучаться и принимать решения.
Машинное обучение — одна из областей искусственного интеллекта. МО использует алгоритмы для анализа данных и получения выводов.
А глубокое обучение — лишь один из методов машинного обучения, в рамках которого компьютер учится без учителя подспудно, с помощью данных.
Если чувствуете, что вас привлекает проектирование машинного интеллекта, продолжить образование можно на нашем курсе. Вы научитесь писать алгоритмы, собирать и сортировать данные и получите престижную профессию Data Scientist — специалист по машинному обучению.
Искусственный интеллект: краткая история, развитие, перспективы
Сейчас технологии развиваются с немыслимой скоростью. Ранее те возможности, что, казалось бы, были доступны только профессиональным ученым, в современной жизни доступны каждому. Один из подобных прорывов – искусственный интеллект, прочно обосновавшийся во многих сферах человеческой жизни.
Сегодня поговорим о том, что такое ИИ, как он возник, где применяется, а также чем он отличается от человеческого разума.
Что представляет собой искусственный интеллект
Искусственный интеллект – это свойство интеллектуальной системы выполнять те функции и задачи, которые обычно характерны для разумных существ. Это может быть проявление каких-то творческих способностей, склонность к рассуждению, обобщение, обучение на основании полученного ранее опыта и так далее.
Его развитием занимается направление науки, в рамках которого происходит аппаратное или программное моделирование тех задач человеческой деятельности, что считаются интеллектуальными. Еще под ИИ часто подразумевают направление в IT, основной целью которого является воссоздание разумных действий и рассуждений с помощью компьютерных систем.
История возникновения и развития искусственного интеллекта
Впервые термин artificial intelligence (с английского переводится как «искусственный интеллект») был упомянут в 1956 году Джоном МакКарти, основателем функционального программирования и изобретателем языка Lisp, на конференции в Университете Дартмута.
Однако сама идея подобной системы была сформирована в 1935 году Аланом Тьюрингом. Ученый дал описание абстрактной вычислительной машине, состоящей из безграничной памяти и сканера, перемещающегося вперед и назад по памяти. Однако позднее, в 1950 году, он предложил считать интеллектуальными те системы, которые в общении не будут отличаться от человека.
Тогда же Тьюринг разработал эмпирический тест для оценки машинного интеллекта. Он показывает, насколько искусственная система продвинулась в обучении общению и удастся ли ей выдать себя за человека.
Самая ранняя успешная программа искусственного интеллекта была создана Кристофером Стрейчи в 1951 году. А уже в 1952 году она играла в шашки с человеком и удивляла зрителей своими способностями предсказывать ходы. По этому поводу в 1953 году Тьюринг опубликовал статью о шахматном программировании.
В 1965 году специалист Массачусетского технологического университета Джозеф Вайценбаум разработал программу «Элиза», которая ныне считается прообразом современной Siri. В 1973 году была изобретена «Стэндфордская тележка», первый беспилотный автомобиль, контролируемый компьютером. К концу 1970-х интерес к ИИ начал спадать.
Новое развитие искусственный интеллект получил в середине 1990-х. Самый известный пример – суперкомпьютер IBM Deep Blue, который в 1997 году обыграл в шахматы чемпиона мира Гарри Каспарова. Сегодня подобные сети развиваются очень быстро за счет цифровизации информации, увеличения ее оборота и объема. Машины довольно быстро анализируют информацию и обучаются, впоследствии они действительно приобретают способности, ранее считавшиеся чисто человеческой прерогативой.
Отличие ИИ от нейросетей и машинного обучения
Нейросети представляют собой математическую модель, компьютерный алгоритм, работа которого основана на множестве искусственных нейронов. Суть этой системы в том, что ее не нужно заранее программировать. Она моделирует работу нейронов человеческого мозга, проводит элементарные вычисления и обучается на основании предыдущего опыта, но это не соотносимо с ИИ.
Искусственный интеллект, как мы помним, является свойством сложных систем выполнять задачи, обычно свойственные человеку. К ИИ часто относят узкоспециализированные компьютерные программы, также различные научно-технологические методы и решения. ИИ в своей работе имитирует человеческий мозг, при этом основывается на прочих логических и математических алгоритмах или инструментах, в том числе нейронных сетях.
Под машинным обучением понимают использование различных технологий для самообучающихся программ. Соответственно, это одно из многочисленных направлений ИИ. Системы, основанные на машинном обучении, получают базовые данные, анализируют их, затем на основе полученных выводов находят закономерности в сложных задачах со множеством параметров и дают точные ответы. Один из наиболее распространенных вариантов организации машинного обучения – применение нейросетей.
Если сравнивать с человеком, то ИИ подобен головному мозгу, машинное обучение – это один из многочисленных способов обработки поступающих данных и решения назревающих задач, а нейросети соответствуют объединению более мелких, базовых элементов мозга – нейронов.
Разница между искусственным и естественным интеллектом
Сравнивать искусственный и естественный интеллект можно лишь по некоторым общим параметрам. Например, человеческий мозг и компьютер работают по примерно схожему принципу, включающему четыре этапа – кодирование, хранение данных, анализ и предоставление результатов. И естественный, и искусственный разум склонны к самообучению, они решают те или иные задачи и проблемы, используя специальные алгоритмы.
Помимо общих умственных способностей к рассуждению, обучению и решению проблем, человеческое мышление также имеет эмоциональную окраску и сильно зависит от влияния социума. Искусственный интеллект не имеет никакого эмоционального характера и не ориентирован социально.
Если говорить об IQ – большинство ученых склонны считать, что сей параметр оценки никак не связан с искусственным интеллектом. С одной стороны, это действительно так, ведь стандартные IQ-тесты направлены на измерение «качества» человеческого мышления и связаны с развитием интеллекта на разных возрастных этапах.
С другой стороны, для ИИ создан собственный «IQ-тест», названный в честь Тьюринга. Он помогает определить, насколько хорошо машина обучилась и способна ли она уподобиться в общении человеку. Это своего рода планка для ИИ, установленная людьми. А ведь все больше ученых склоняется к тому, что скоро компьютеры обгонят человечество по всем параметрам… Развитие технологий идет по непредсказуемому сценарию, и вполне допустимо, что так и будет.
Применение ИИ в современной жизни
В зависимости от области и обширности сферы применения, выделяют два вида ИИ – Weak AI, называемый еще «слабым», и Strong AI, «сильный». В первом случае перед системой ставят узкоспециализированные задачи – диагностика в медицине, управление роботами, работа на базе электронных торговых платформ. Во втором же подразумевается решение глобальных задач.
Так, одна из наиболее популярных сфер применения ИИ – это Big Data в коммерции. Крупные торговые площадки используют подобные технологии для исследования потребительского поведения. Компания «Яндекс» вообще создает с их помощью музыку. В некоторые мобильные приложения встроены голосовые помощники вроде Siri, Алисы или Cortana. Они упрощают процесс навигации и совершения покупок в сервисе. И не стоит забывать про программы с нейросетями, обрабатывающими фото и видео.
ИИ также внедряют в производственные процессы для фиксации действий работников. Не обошлось и без внедрения новых технологических решений в транспортной сфере. Так, искусственный интеллект мониторит состояние на дорогах, фиксирует пробки, обнаруживает разные объекты в неположенных местах. А про автономное (беспилотное) вождение и так постоянно говорят…
Люксовые бренды внедряют ИИ в свои системы для анализа потребностей клиентов. Стремительно развивается использование подобных систем в системах здравоохранения, в основном при диагностике заболеваний, разработке лекарств, создании медицинских страховок, проведении клинических исследований и так далее.
Перечислить разом все области, в которых задействован искусственный интеллект, практически нереально. На данный момент он затрагивает все больше самых разных сфер. И причин на то немало – та же автоматизация производственных процессов, стремительный рост информационного оборота и инвестиций в эту сферу, даже социальное давление.
Влияние на различные области
ИИ все больше проникает в экономическую сферу, и, по некоторым прогнозам, это позволит увеличить объем глобального рынка на 15,7 трлн долларов к 2030 году. Лидирующую позицию в освоении сей технологии занимают США и Китай, однако некоторые развитые страны вроде Канады, Сингапура, Германии и Японии не отстают.
Искусственный интеллект может оказать существенное влияние на рынок труда. Это может привести к массовому увольнению рабочего персонала из-за автоматизации большинства процессов. Ну и росту востребованности разработчиков, конечно.
Перспективы развития искусственного интеллекта
Современные компьютеры приобретают все больше знаний и «умений». Скептики же утверждают, что все возможности ИИ – не более чем компьютерная программа, а не пример самообучения. Однако это не мешает технологии широко распространяться в самых различных сферах и открывать невиданные ранее потенциалы для развития. Со временем компьютеры будут становиться все мощнее, а ИИ еще быстрее совершенствоваться в своем развитии.
Заключение
Не так давно, казалось бы, ученые ввели понятие «искусственный интеллект», а чуть больше полвека спустя технология уже находит широкий спрос в самых различных сферах. Сейчас искусственный разум, можно сказать, находится в шаговой доступности для любого человека – компьютер и ноутбук, смартфон и электронные часы, даже многие простейшие приложения работают именно с его помощью. ИИ в самых разных своих проявлениях проник во многие сферы человеческой жизни и прочно обосновался в них.
Возможно, страхи ученых вполне обоснованы? Как знать 🙂
AI для людей: простыми словами о технологиях
Представляем исчерпывающую шпаргалку, где мы простыми словами рассказываем, из чего «делают» искусственный интеллект и как это все работает.
В чем разница между Artificial Intelligence, Machine Learning и Data Science?
Artificial Intelligence — AI (Искусственный Интеллект)
В глобальном общечеловеческом смысле ИИ — термин максимально широкий. Он включает в себя как научные теории, так и конкретные технологические практики по созданию программ, приближенных к интеллекту человека.
Machine Learning — ML (Машинное обучение)
Раздел AI, активно применяющийся на практике. Сегодня, когда речь заходит об использовании AI в бизнесе или на производстве, чаще всего имеется в виду именно Machine Learning.
ML-алгоритмы, как правило, работают по принципу обучающейся математической модели, которая производит анализ на основе большого объема данных, при этом выводы делаются без следования жестко заданным правилам.
Наиболее частый тип задач в машинном обучении — это обучение с учителем. Для решения такого рода задач используется обучение на массиве данных, по которым ответ заранее известен (см.ниже).
Data Science — DS (Наука о данных)
Наука и практика анализа больших объемов данных с помощью всевозможных математических методов, в том числе машинного обучения, а также решение смежных задач, связанных со сбором, хранением и обработкой массивов данных.
Data Scientists — специалисты по работе с данными, в частности, проводящие анализ при помощи machine learning.
Как работает Machine Learning?
Рассмотрим работу ML на примере задачи банковского скоринга. Банк располагает данными о существующих клиентах. Ему известно, есть ли у кого-то просроченные платежи по кредитам. Задача — определить, будет ли новый потенциальный клиент вовремя вносить платежи. По каждому клиенту банк обладает совокупностью определенных черт/признаков: пол, возраст, ежемесячный доход, профессия, место проживания, образование и пр. В числе характеристик могут быть и слабоструктурированные параметры, такие как данные из соцсетей или история покупок. Кроме того, данные можно обогатить информацией из внешних источников: курсы валют, данные кредитных бюро и т. п.
Машина видит любого клиента как совокупность признаков: . Где, например,
— возраст,
— доход, а
— количество фотографий дорогих покупок в месяц (на практике в рамках подобной задачи Data Scientist работает с более чем сотней признаков). Каждому клиенту соответствует еще одна переменная —
с двумя возможными исходами: 1 (есть просроченные платежи) или 0 (нет просроченных платежей).
Совокупность всех данных и
— есть Data Set. Используя эти данные, Data Scientist создает модель
, подбирая и дорабатывая алгоритм машинного обучения.
В этом случае модель анализа выглядит так:
Алгоритмы машинного обучения подразумевают поэтапное приближение ответов модели к истинным ответам (которые в обучающем Data Set известны заранее). Это и есть обучение с учителем на определенной выборке.
На практике чаще всего машина обучается лишь на части массива (80 %), применяя остаток (20 %) для проверки правильности выбранного алгоритма. Например, система может обучаться на массиве, из которого исключены данные пары регионов, на которых сверяется точность модели после.
Теперь, когда в банк приходит новый клиент, по которому еще не известен банку, система подскажет надежность плательщика, основываясь на известных о нем данных
.
Однако, обучение с учителем — не единственный класс задач, которые способна решать ML.
Другой спектр задач — кластеризация, способная разделять объекты по признакам, например, выявлять разные категории клиентов для составления им индивидуальных предложений.
Также с помощью ML-алгоритмов решаются такие задачи, как моделирование общения специалиста поддержки или создание художественных произведений, неотличимых от сотворенных человеком (например, нейросети рисуют картины).
Новый и популярный класс задач — обучение с подкреплением, которое проходит в ограниченной среде, оценивающей действия агентов (например, с помощью такого алгоритма удалось создать AlphaGo, победившую человека в Го).
Нейронная сеть
Один из методов Machine Learning. Алгоритм, вдохновленный структурой человеческого мозга, в основе которой лежат нейроны и связи между ними. В процессе обучения происходит подстройка связей между нейронами таким образом, чтобы минимизировать ошибки всей сети.
Особенностью нейронных сетей является наличие архитектур, подходящих практически под любой формат данных: сверточные нейросети для анализа картинок, рекуррентные нейросети для анализа текстов и последовательностей, автоэнкодеры для сжатия данных, генеративные нейросети для создания новых объектов и т. д.
В то же время практически все нейросети обладают существенным ограничением — для их обучения нужно большое количество данных (на порядки большее, чем число связей между нейронами в этой сети). Благодаря тому, что в последнее время объемы готовых для анализа данных значительно выросли, растет и сфера применения. С помощью нейросетей сегодня, например, решаются задачи распознавания изображений, такие как определение по видео возраста и пола человека, или наличие каски на рабочем.
Интерпретация результата
Раздел Data Science, позволяющий понять причины выбора ML-моделью того или иного решения.
Существует два основных направления исследований:
Естественно, производство интересует не только прогноз самого брака, но и интерпретация результата, т. е. причины брака для их последующего устранения. Это может быть долгое отсутствие тех.обслуживания станка, качество сырья, или просто аномальные показания некоторых датчиков, на которые технологу стоит обратить внимание.
Потому в рамках проекта прогноза брака на производстве должна быть не просто создана ML-модель, но и проделана работа по её интерпретации, т. е. по выявлению факторов, влияющих на брак.
Когда эффективно применение машинного обучения?
Когда есть большой набор статистических данных, но найти в них зависимости экспертными или классическими математическими методами невозможно или очень трудоемко. Так, если на входе есть более тысячи параметров (среди которых как числовые, так и текстовые, а также видео, аудио и картинки), то найти зависимость результата от них без машины невозможно.
Например, на химическую реакцию кроме самих вступающих во взаимодействие веществ влияет множество параметров: температура, влажность, материал емкости, в которой она происходит, и т. д. Химику сложно учесть все эти признаки, чтобы точно рассчитать время реакции. Скорее всего, он учтет несколько ключевых параметров и будет основываться на своем опыте. В то же время на основании данных предыдущих реакций машинное обучение сможет учесть все признаки и дать более точный прогноз.
Как связаны Big Data и машинное обучение?
Для построения моделей машинного обучения требуются в разных случаях числовые, текстовые, фото, видео, аудио и иные данные. Для того чтобы эту информацию хранить и анализировать существует целая область технологий — Big Data. Для оптимального накопления данных и их анализа создают «озера данных» (Data Lake) — специальные распределенные хранилища для больших объемов слабоструктированной информации на базе технологий Big Data.
Цифровой двойник как электронный паспорт
Цифровой двойник — виртуальная копия реального материального объекта, процесса или организации, которая позволяет моделировать поведение изучаемого объекта/процесса. Например, можно предварительно увидеть результаты изменения химического состава на производстве после изменений настроек производственных линий, изменений продаж после проведения рекламной кампании с теми или иными характеристиками и т. д. При этом прогнозы строятся цифровым двойником на основе накопленных данных, а сценарии и будущие ситуации моделируются в том числе методами машинного обучения.
Что нужно для качественного машинного обучения?
Data Scientiest’ы! Именно они создают алгоритм прогноза: изучают имеющиеся данные, выдвигают гипотезы, строят модели на основе Data Set. Они должны обладать тремя основными группами навыков: IT-грамотностью, математическими и статистическими знаниями и содержательным опытом в конкретной области.
Машинное обучение стоит на трех китах
Получение данных
Могут быть использованы данные из смежных систем: график работ, план продаж. Данные могут быть также обогащены внешними источниками: курсы валют, погода, календарь праздников и т. д. Необходимо разработать методику работы с каждым типом данных и продумать конвейер их преобразования в формат модели машинного обучения (набор чисел).
Построение признаков
Проводится вместе с экспертами из необходимой области. Это помогает вычислить данные, которые хорошо подходят для прогнозирования целей: статистика и изменение количества продаж за последний месяц для прогноза рынка.
Модель машинного обучения
Метод решения поставленной бизнес-задачи выбирает data scientist самостоятельно на основании своего опыта и возможностей различных моделей. Под каждую конкретную задачу необходимо подобрать отдельный алгоритм. От выбранного метода напрямую зависят скорость и точность результата обработки исходных данных.
Процесс создания ML-модели.
От гипотезы до результата
1. Всё начинается с гипотезы
Гипотеза рождается при анализе проблемного процесса, опыта сотрудников или при свежем взгляде на производство. Как правило, гипотеза затрагивает такой процесс, где человек физически не может учесть множество факторов и пользуется округлениями, допущениями или просто делает так, как всегда делал.
В таком процессе применение машинного обучения позволяет использовать существенно больше информации при принятии решений, поэтому, возможно, удается достичь существенно лучших результатов. Плюс ко всему, автоматизация процессов с помощью ML и снижение зависимости от конкретного человека существенно минимизируют человеческий фактор (болезнь, низкая концентрация и т. д.).
2. Оценка гипотезы
На основании сформулированной гипотезы выбираются данные, необходимые для разработки модели машинного обучения. Осуществляется поиск соответствующих данных и оценка их пригодности для встраивания модели в текущие процессы, определяется, кто будет ее пользователями и за счет чего достигается эффект. При необходимости вносятся организационные и любые другие изменения.
3. Расчет экономического эффекта и возврата инвестиций (ROI)
Оценка экономического эффекта внедряемого решения производится специалистами совместно с соответствующими департаментами: эффективности, финансов и т. д. На данном этапе необходимо понять, что именно является метрикой (количество верно выявленных клиентов / увеличение выпуска продукции / экономия расходных материалов и т. п.) и четко сформулировать измеряемую цель.
4. Математическая постановка задачи
После понимания бизнес-результата его необходимо переложить в математическую плоскость — определить метрики измерений и ограничения, которые нельзя нарушать. Данные этапы data
scientist выполняет совместно с бизнес-заказчиком.
5. Сбор и анализ данных
Необходимо собрать данные в одном месте, проанализировать их, рассматривая различные статистики, понять структуру и скрытые взаимосвязи этих данных для формирования признаков.
6. Создание прототипа
Является, по сути, проверкой гипотезы. Это возможность построения модели на текущих данных и первичной проверки результатов ее работы. Обычно прототип делается на имеющихся данных без разработки интеграций и работы с потоком в реальном времени.
Создание прототипа — быстрый и недорогой способ проверить, решаема ли задача. Это весьма полезно в том случае, когда невозможно заранее понять, получится ли достичь нужного экономического эффекта. К тому же процесс создания прототипа позволяет лучше оценить объем и подробности проекта по внедрению решения, подготовить экономическое обоснование такого внедрения.
DevOps и DataOps
В процессе эксплуатации может появится новый тип данных (например, появится ещё один датчик на станке или же на складе появится новый тип товаров) тогда модель нужно дообучить. DevOps и DataOps — методологии, которые помогают настроить совместную работу и сквозные процессы между командами Data Science, инженерами по подготовке данных, службами разработки и эксплуатации ИТ-систем, и помогают сделать такие дополнения частью текущего процесса быстро, без ошибок и без решения каждый раз уникальных проблем.
7. Создание решения
В тот момент, когда результаты работы прототипа демонстрируют уверенное достижение показателей, создается полноценное решение, где модель машинного обучения является лишь составляющей изучаемых процессов. Далее производится интеграция, установка необходимого оборудования, обучение персонала, изменение процессов принятия решений и т. Д.
8. Опытная и промышленная эксплуатация
Во время опытной эксплуатации система работает в режиме советов, в то время как специалист еще повторяет привычные действия, каждый раз давая обратную связь о необходимых улучшениях системы и увеличении точности прогнозов.
Финальная часть — промышленная эксплуатация, когда налаженные процессы переходят на полностью автоматическое обслуживание.
Шпаргалку можно скачать по ссылке.
Завтра на форуме по системам искусственного интеллекта RAIF 2019 в 09:30 — 10:45 состоится панельная дискуссия: «AI для людей: разбираемся простыми словами».
В этой секции в формате дебатов спикеры объяснят простыми словами на жизненных примерах сложные технологии. А также подискутируют на следующие темы:
Николай Марин, директор по технологиям, IBM в России и СНГ
Алексей Натекин, основатель, Open Data Science x Data Souls
Алексей Хахунов, технический директор, Dbrain
Евгений Колесников, директор Центра машинного обучения, Инфосистемы Джет
Павел Доронин, CEO, AI Today
Дискуссия будет доступна на канале YouTube «Инфосистемы Джет» в конце октября.