арифмометр это что такое для кого нужно
Справочник автора/Арифмометры
Арифмометр (в переводе с греческого — «числомер», «измеритель чисел») — механическая вычислительная машина, предназначенная для точного умножения и деления, а также для сложения и вычитания. Механическая вычислительная машина, ведущая автоматическую запись обрабатываемых чисел и результатов на особой ленте, называется арифмографом. Как правило, арифмометры были настольными, хотя встречались и портативные модели (такие как Curta)
Содержание
История [ править ]
Иногда говорят, что предтечей арифмометров был Антикитерский механизм — древнегреческий прибор для определения положения светил. Не совсем так: Антикитерский механизм — аналоговая механическая вычислительная машина (и скорее предок ПУАЗО — приборов управления артиллерийским зенитным огнём). Арифмометр — машина цифровая.
Важное отступление. В аналоговых машинах величины выставляются в непрерывном виде — как углы поворота чего-то, количество жидкости в чём-то, напряжение на чём-то и так далее. Наиболее известный аналоговый вычислитель — логарифмическая линейка: числа — длины отрезков на линейке. Аналоговые машины точны настолько, насколько точно они сделаны. Цифровые машины работают дискретными положениями каких-то элементов (цифрами), расчёты на них абсолютно повторяемы (на этом основаны запись демо-роликов и мультиплеер в Doom), а точность настолько велика, сколько цифр мы храним. Из-за точности, повторяемости и простоты программирования ход был дан именно цифровым машинам. После войны «оцифровались» и артиллерийские вычислители.
Схему первой цифровой суммирующей машины предложил Леонардо да Винчи около 1500 г. Но в то время разработка не получила распространения.
В XVII веке были сконструированы арифмометры Шиккарда, Паскаля, Лейбница и Морленда. В 1709 году появился арифмометр Полени. Серийный выпуск арифмометров начался в 1820 г. В СССР самым популярным арифмометром был «Феликс» (годы выпуска — 1929—78). Таких арифмометров было выпущено несколько миллионов.
Устройство и принцип действия [ править ]
Суммирующая машина [ править ]
Начнём с самого простого: как работает суммирующая машина. А работает она, как счётчик электричества в квартире или пробега в машине: несколько десятичных колёс, связанных механизмом переноса. Каждый раз, когда колесо прокручивается 9→0, оно зацепляет механизм переноса и сдвигает старший разряд. Чтобы не было ошибок в расчётах, колёса останавливаются не трением, а подпружиненной собачкой.
Если каким-то механизмом прощёлкивать младший разряд, получается устройство, известное под жаргонным названием кликер: с его помощью стюардессы считают пассажиров, транспортники — поток через дорогу. Но как к 123 прибавить 456? Не щёлкать же кликером 456 раз?
Первое усовершенствование — сделать по кнопочке на каждый разряд (запомним эту конструкцию под названием мультикликер). Но всё равно, чтобы набрать 456, потребуются 4+5+6=15 нажатий. Так что поступают не так: на каждый разряд делают по колесу с торчащими зубцами. Чтобы прибавить 400, надо ухватиться (пальцем или заострённым штырём) за 4-й зубец в разряде сотен и вытянуть его до самого низа. Чтобы вычесть 400 — наоборот, ухватиться за 4-й зубец сверху и толкнуть до верха.
Этот наш счётчик будем называть сумматором.
Суммирующая машина проста и дешева, некоторые варианты с полуавтоматическим переносом имели смехотворно простое устройство и умещались в кармане (счислитель Куммера).
Арифмометр «Феликс» [ править ]
Наиболее прогрессивные арифмометры (и «железный Феликс» тоже) работают на колесе Однера: на колесе вырастает от нуля до девяти зубцов в зависимости от выставленной на цифронаборнике цифры. Крутим ручку — и за один оборот арифмометр делает в точности то, что мы делали с суммирующей машиной руками. Если крутим её на оборот вперёд, прибавляется 456, если назад — вычитается. Но крутить надо точно на один оборот: если оставить в неисходном положении и начать работать с кареткой (см. ниже) или цифронаборником, можно сломать механизм (конкретно на Однере ещё и цифронаборник окажется смещённым). Потому ручка удерживается в исходном положении стопором, который надо ещё освободить (например, оттянув ручку). И крутить надо от щелчка до щелчка. Этот стопор может быть связан с блокиратором, не дающим работать с кареткой, цифронаборником и барашками сброса, если ручка не в исходном положении.
Такой способ — набрать 456 на цифронаборнике, а затем крутануть ручку — снижает вероятность ошибки (что для виртуоза суммирующей машины неважно), но несколько медленнее (что для виртуоза существенно). Потому в банках и бухгалтериях предпочитали суммирующие машины, а в конструкторских бюро — арифмометры. Но что нам этот цифронаборник даёт?
Давайте сбросим сумматор, наберём на цифронаборнике 123 и прокрутим ручку 4 раза. Что получается? 123·4=492. Уже неплохо, но как множить многозначные числа?
А для этого сумматор ставят на каретке. Она обеспечивает сдвиг результата на 1, 2, 3 и более разрядов.
Таким образом, чтобы умножить 123·456, надо действовать по принципу мультикликера: набрать на цифронаборнике 456 (так меньше работы), каретку в сотни, 1 оборот ручки, каретку в десятки, 2 оборота ручки, каретку в единицы, 3 оборота ручки.
Устройство арифмометра Однера
Опытный механик поинтересуется, как устроен механизм переноса: все колёса сумматора вращаются одновременно, и традиционный шестерёнчатый перенос может просто заклинить. У Однера перенос рычажный: переход колеса через 0 взводит рычаг. Взведённый рычаг отодвигает в сторону специальный подвижный зуб на колёсах Однера, и этот зуб прибавляет единицу к следующему разряду, после этого рычаг падает. Переносы производятся не одновременно, а по очереди, от младших разрядов к старшим — тогда сложение 99+1 сначала взведёт перенос в десятки, а это, в свою очередь, перенесёт в сотни. Зубьев переноса на каждом колесе по два: для сложения и для вычитания. Кроме того, есть несколько упрощённых колёс без зубцов Однера, только с механизмом переноса: у «Феликса» их 13−9=4 штуки. Из-за такого механизма переноса запрещается возвращать недовёрнутую ручку, это приведёт к ошибке в расчётах. Надо довернуть её до конца, потом сделать оборот назад.
Наконец, в «Феликсе» есть три небольших плюшки: звонок, который звенит при переполнении от 0 до 999999 (и наоборот), маркеры-запятые, которые можно выставить так, как того требуют вычисления, и задвижка для быстрого обнуления цифронаборника (на иллюстрации её рычажок виден под эмблемой завода-изготовителя).
Сложение, вычитание и умножение мы описали. Чтобы разделить 456 на 123, надо…
Именно из-за деления в 18-ичных колёсах девятка красная: при умножении девятку обычно прокручивают как «−1, +10», а при делении надо честно прокрутить девять оборотов. Встречаются «феликсы» с одноцветным счётчиком.
Карманный арифмометр «Curta» [ править ]
Этот арифмометр стал легендой ещё до появления — разрабатывал его Курт Херцштарк в предвоенные годы. В Бухенвальде Курт восстановил чертежи по памяти, а когда пришли русские, он сбежал на западную сторону и нашёл инвестора в лице князя Лихтенштейна. «Курта» выпускалась около 30 лет, стала легендой за необычный вид и хорошее качество, и является желанным предметом для коллекционеров. Но давайте об устройстве.
Основные элементы арифмометра на месте. Цифронаборник — на внешней стороне цилиндра. Сумматор и счётчик оборотов — вверху, под ручкой. Их можно крутить относительно цифронаборника — вот вам и каретка. Механизм сброса — кольцо под ручкой, которое можно крутить в любую сторону, через сумматор или счётчик. Ручку можно слегка выдвинуть — включается вычитание (ручка крутится только вперёд).
В «Курте» используется другой принцип — он считается менее прогрессивным, чем колёса Однера, но удивительно красиво вписан в карманную конструкцию «Курты». Ручка соединена с валиком Лейбница, барабаном с 0…9 зубцами на каждой из дорожек. Работа с цифронаборником ставит зубчатое колесо напротив той или другой дорожки. В «Курте», впрочем, двадцать дорожек (плюс несколько вспомогательных), в зависимости от положения цифронаборника и переключателя «плюс-минус».
В режиме «плюс» «Курта» действует как любой арифмометр. В режиме «минус» — чтобы вычесть 456−123, дополняем разряды вычитаемого до девятки (9876), складываем (0456+9876=10332), отбрасываем лишний разряд, добавляем единицу и получаем нужные нам 333. Другими словами, «Курта» вычитает 3, прибавляя 6 (в последнем разряде прибавляется семёрка). Устроено это так: в нижнем разряде две наглухо соединённых шестерёнки, одна напротив тройки, другая — напротив двойки. В режиме сложения добавляется большее из двух (3), в режиме вычитания — тоже большее из двух (7). Дополнительный ряд из 10 зубцов используется для вычитания нуля.
За направление счётчика оборотов отвечает отдельный переключатель, действующий как XOR с ручкой: ручка в минус и счёт в минус — счёт идёт в плюс. С одной стороны, при умножении и делении нужно переключать и ручку, и переключатель направления. С другой — если вы ошиблись на единицу, вы вытягиваете ручку, не трогая переключателя, и исправляете ошибку.
У наиболее распространённой Curta 1 было 8 цифр на цифронаборнике, 6 цифр в счётчике оборотов (оснащён переносом) и 11 цифр в сумматоре.
Перенос, как и в Однере, рычажный.
Механизация [ править ]
А теперь как ускорить работу с арифмометром.
Первое, что приходит на ум,— крутить ручку электромотором. Получаются две кнопки, «+» и «−», одна эквивалентна ручке вперёд, другая — ручке назад. Иногда ухитрялись механизировать даже умножение и деление (то есть мотор даже сдвигает каретку).
Чаще используется в суммирующих машинах, чем в арифмометрах — по кнопке на разряд, как в кассовом аппарате. Штоки клавиш имеют разную длину, пропорционально величине цифр: нажатие — пружины взводятся, отпускание — колёса крутятся. Плюс очень сложный заводной механизм переноса с тремя (!) блокировками, позволяющий давить на клавиши даже одновременно: пружина переноса освободится и сделает дело, когда кнопка вернётся в исходное положение. Виртуоз суммирующей машины сделает работу даже быстрее, чем на электронном калькуляторе — потому такие машины применялись до 90-х, в то время как арифмометры в 80-е полностью исчезли.
Некоторые арифмометры отпечатывают результат на бумажной ленте.
При работе на арифмометре порядок действий всегда задаётся вручную — непосредственно перед каждой операцией следует нажать соответствующую клавишу или повернуть соответствующий рычаг. Программируемых аналогов арифмометров практически не существовало. Хотя проект первого компьютера от Чарльза Бэббиджа представлял собой именно программируемый на перфокартах арифмометр.
История и развитие арифмометра Однера
Арифмометр — механическая вычислительная машинка, на которой осуществляется сложение, умножение и вычитание за счет сдвига разрядов чисел. Арифмометр Однера является наиболее популярным и стал основой для последующих аналогичных механизмов.
Вильгольдт Теофилович Однер
Будущий великий математик и изобретатель родился в Швеции в 1845 году. Затем, спустя время, переехал в Россию, где жил и трудился в Санкт-Петербурге. Нужно отметить, что в те годы очень многие инженеры из Швеции приезжали в Россию, поскольку здесь можно было сделать успешную карьеру.
Изобретатель изначально трудился на фабрике Нобеля, а потом на производстве «Экспедиция изготовления государственных бумаг». В то время изготавливалось много фальшивых и поддельных бланков государственных документов, и данная организация занималась контролем и выпуском оригинальной документации. Однер остался до конца своей жизни в России. За время своей деятельности талантливый инженер изобрел турникеты для пароходных компаний, знаменитый арифмометр, в основе которого лежат кольца Однера, папиросную машину, устройство для нумерации кредитных билетов.
Из истории арифмометра
Справедливости ради стоит отметить, что не только Однер работал над изобретением арифмометра. Подобные счетные машинки пытались запатентовать Болдуин и Полени, но до конца эти изобретатели дело не довели.
Первый знаменитый арифмометр был произведен в 1877 году. А спустя 13 лет Однер и его партнер открыли небольшой заводик, где наладили выпуск механизма. Сейчас есть один экземпляр, который находится в политехническом музее. Больше с тех времен арифмометров не сохранилось.
Для создания своего успешного детища инженер Однер изучил опыт предыдущих изобретателей, в том числе Тома, который к тому моменту по своей системе выпустил несколько тысяч вычислительных машинок.
Конструкция счетной машины Однера уникальна и пользовалась успехом вплоть до начала 70 годов ХХ века. Основой всей конструкции являются колеса с девятью зубцами. Углы между ними взяты за разряд чисел. Один диск был неподвижен и имел выдвигающиеся борозды. Другой двигался и соприкасался своими плоскостями с неподвижным диском. При правильном введении изначальных цифр механизм не мог выдать ошибку.
Количество зубьев, которые выдвигались рычагом, строго соответствовало цифре, которая в итоге устанавливалась. Аппарат был всегда точен и давал единственно верный результат при условии правильного введения исходных данных.
С 1897 года на аппаратах стоит клеймо, которое указывает на принадлежность производству Однера. Инженер постоянно улучшает свою конструкцию и выпускает модели с большей разрядностью, увеличивает не только счетчик результатов до 13, а также и емкость каретки.
После революции в России завод, на котором выпускали знаменитый механизм, переименовали, а выпуск счетных машинок был прекращен. Но в 20 годах его снова запустили и продолжили выпуск знаменитых вычислительных машин. Со временем на заводе стали производить новые модели с другими названиями, но основа была все той же. За несколько десятилетий было выпущено больше сорока миллионов расчетных механизмов Однера. Правда, назывались они «Салют», «Динамо», «Феликс».
«Феликс» выглядел следующим образом:
Но исходная модель постоянно улучшалась и развивалась, при этом становилась удобной в пользовании и современной.
Дальнейшее развитие арифмометра
В советское время устройство Однера под другими именами выпускалось и продавалось по всему миру. При этом механизм постоянно совершенствовали и улучшали, что позволило выпустить несколько прогрессивных для своего времени моделей. К таким относятся:
В первую очередь появился арифмометр «Фацит». Это прямой потомок системы Однера. Именно на основе этой машинки был разработан клавишный механизм, который стал настоящим прорывом в те времена. Следующим шагом было изобретение электромеханического аппарата. В различной модификации были выпущены машинки «Триумф», «Брунсви». В Советском Союзе аналогом электромеханического Однера стала модель, выпускаемая Пензенским заводом «Счетмаш» в 1951 году. Этот арифмометр назывался «ВК-1».
На основе «ВК-1» была выпущена полуавтоматическая модель с клавиатурой в 10 клавиш. Но самой удачной и распространенной моделью среди потомков механизма Однера была машинка «Феликс».
Счетный механизм, который еще полвека назад встречался в учреждениях, уже стал антиквариатом. Единичные экземпляры стоят довольно дорого, а пользоваться ими умеют уже немногие. Это не просто механизм для счета и прародитель автоматических калькуляторов, а великое изобретение шведского инженера, который бо́льшую часть жизни прожил в нашей стране. На основе его механизма вплоть до конца ХХ века выпускались счетные аппараты различной модификации, в том числе электротехнические. Правда, немногие знают, что советский «Феликс» — это знаменитый механизм Однера.
ЭВМ: ЧТО? ГДЕ? КОГДА? | Арифмометр
Настольная или портативная : Чаще всего арифмометры были настольные или «наколенные» (как современные ноутбуки), изредка встречались карманные модели (Curta). Этим они отличались от больших напольных вычислительных машин, таких как табуляторы (Т-5М) или механические компьютеры (Z-1, Разностная машина Чарльза Бэббиджа).
Механическая: Числа вводятся в арифмометр, преобразуются и передаются пользователю (выводятся в окнах счётчиков или печатаются на ленте) с использованием только механических устройств. При этом арифмометр может использовать исключительно механический привод (то есть для работы на них надо постоянно крутить ручку. Этот примитивный вариант используется, например, в «Феликсе») или производить часть операций с использованием электромотора (Наиболее совершенные арифмометры — вычислительные автоматы, например «Facit CA1-13», почти при любой операции используют электромотор).
Точное вычисление: Арифмометры являются цифровыми (а не аналоговыми, как например логарифмическая линейка) устройствами. Поэтому результат вычисления не зависит от погрешности считывания и является абсолютно точным.
Умножение и деление: Арифмометры предназначались в первую очередь для умножения и деления. Поэтому почти у всех арифмометров есть устройство, отображающее количество сложений и вычитаний — счётчик оборотов (так как умножение и деление чаще всего реализовано как последовательное сложение и вычитание; подробнее — см. ниже).
Сложение и вычитание: Арифмометры могут выполнять сложение и вычитание. Но на примитивных рычажных моделях (например, на арифмометре «Феликс») эти операции выполнялись очень медленно — быстрее, чем умножение и деление, но заметно медленнее, чем на простейших суммирующих машинах или даже вручную.
Непрограммируемый: При работе на арифмометре порядок действий всегда задаётся вручную — непосредственно перед каждой операцией следует нажать соответствующую клавишу или повернуть соответствующий рычаг. Это особенность арифмометра не включается в определение, так как программируемых аналогов арифмометров практически не существовало.
Важнейшие события истории развития
Примерно VI век н.э.
Появляются китайские счёты.
Первая счётная машина (Германия, Вильгельм Шиккард). Состоит из отдельных устройств — суммирующего, множительного и записывающего. Об этом устройстве почти ничего не было известно до 1957 года, поэтому существенного влияния на развитие счётного машиностроения оно не оказало. 1642 г.
1846 г.
Счислитель Куммера (Российская империя, Польша). Он сходен с машиной Слонимского (1842, Российская Империя), но компактнее. Был широко распространён во всём мире вплоть до 1970-х годов в качестве дешёвого карманного аналога счёт.
1885 г.
Burroughs (США, У. Бэрроуз) Первая двухпериодная суммирующая машина с полноклавишным вводом и печатающим устройством.
Одновременно Mercedes-Euklid (Мерседес-Евклид), модель I» является первым (или, по крайней мере, одним из первых) арифмометров с полуавтоматическим делением (машина способна автоматически вычислять текущую цифру частного).
1950-е гг.
Расцвет вычислительных автоматов и полуавтоматических арифмометров. Именно в это время выпущена большая часть моделей электрических вычислительных машин.
1969 г.
Пик производства арифмометров в СССР. Выпущено около 300 тысяч «Феликсов» и ВК-1.
1978 г.
Примерно в это время прекращён выпуск арифмометров «Феликс-М». Возможно, это был последний в мире выпускавшийся тип арифмометров.
1995-2002 гг.
Механические кассовые аппараты (ККМ) «Ока» (модели 4400, 4401, 4600) исключены из государственного реестра РФ. Видимо, исчезла последняя область применения сложных механических вычислительных машин на территории России.
2008 г.
В некоторых магазинах Москвы ещё встречались счёты.
Арифмометр
Арифмометр (от греч. αριθμός — «число», «счёт» и греч. μέτρον — «мера», «измеритель») — настольная (или портативная) механическая вычислительная машина, предназначенная для точного умножения и деления, а также для сложения и вычитания.
Настольная или портативная: Чаще всего арифмометры были настольные или «наколенные» (как современные ноутбуки), изредка встречались карманные модели (Curta). Этим они отличались от больших напольных вычислительных машин, таких как табуляторы (Т-5М) или механические компьютеры (Z-1, Разностная машина Чарльза Бэббиджа).
Механическая: Числа вводятся в арифмометр, преобразуются и передаются пользователю (выводятся в окнах счётчиков или печатаются на ленте) с использованием только механических устройств. При этом арифмометр может использовать исключительно механический привод (то есть для работы на них надо постоянно крутить ручку. Этот примитивный вариант используется, например, в «Феликсе») или производить часть операций с использованием электромотора (Наиболее совершенные арифмометры — вычислительные автоматы, например «Facit CA1-13», почти при любой операции используют электромотор).
Точное вычисление: Арифмометры являются цифровыми (а не аналоговыми, как например логарифмическая линейка) устройствами. Поэтому результат вычисления не зависит от погрешности считывания и является абсолютно точным.
Умножение и деление: Арифмометры предназначены в первую очередь для умножения и деления. Поэтому почти у всех арифмометров есть устройство, отображающее количество сложений и вычитаний — счётчик оборотов (так как умножение и деление чаще всего реализовано как последовательное сложение и вычитание; подробнее — см. ниже).
Не программируемый: При работе на арифмометре порядок действий всегда задаётся вручную — непосредственно перед каждой операцией следует нажать соответствующую клавишу или повернуть соответствующий рычаг. Это особенность арифмометра не включается в определение, так как программируемых аналогов арифмометров практически не существовало.
Знакомьтесь: арифмометр «Феликс»
Привет! На связи Музей Яндекса.
Во время режима социальной изоляции мы, как и многие коллеги по музейному делу, скучаем по посетителям:
Знакомьтесь, «Феликс» — арифмометр, один из самых популярных экспонатов нашего музея. Мало кому удаётся пройти мимо и не попытаться разобраться, как он работает. А я — Александр Шмелёв, сотрудник Музея. Под катом покажу как устроен наш «Феликс», немного первых арифмометров и много видео!
Немного истории
Арифмометр — настольная (или портативная) механическая вычислительная машина, предназначенная для выполнения точных умножения и деления, а также сложения и вычитания. Первые механические счётные машины появились ещё в XVII веке:
— «считающие часы» Вильгельма Шиккарда, 1623 год
Механизм состоял из звёздочек и шестерёнок, напоминающих часы, отсюда и название. Работали с шестиразрядными числами и могли выполнять все 4 операции. Со звуковым оповещением: о выходе результата вычислений за пределы технических возможностей аппарата предупреждал звонок. Два изготовленных экземпляра сгорели, а чертежи были утеряны и найдены только в 1935 году.
Реплика арифмометра Шиккарда
— суммирующая машина Блеза Паскаля («Паскалина»), 1642 год
Внешне — ящик с большим количеством шестерёнок. Хотя конструкция позволяла производить все 4 операции, удобно работать было только со сложением. Широкого распространения она не получила, но принцип работы (связанные шестерёнки) стал самым популярным для счётных машин ближайших трёх столетий.
«Паскалина» в Музее искусств и ремёсел в Париже
— арифмометр Готфрида Вильгельма Лейбница, 1673 год
Лейбниц придумал использовать шаговый барабан — колесо Лейбница. Позднее оно вошло в конструкцию популярного карманного арифмометра Curta («математическая граната»), выпускавшегося с 1948 по 1970 год. Как это выглядело:
Реплика арифмометра Лейбница
Модель колеса Лейбница
Прямым предком «Феликса» можно считать арифмометр, придуманный Вильгодтом Теофилом Однером, шведско-русским механиком и изобретателем. Он выпускался промышленно в Санкт-Петербурге с 1890 по 1918 год и известен под фамилией автора.
Арифмометр Однера
Самым важным новшеством в конструкции стало колесо Однера — подвижный диск с рычажками и штырьками. При перемещении рычажков штырьки выходят из своих гнезд, причём количество выдвинутых штырьков определяется положением рычажка. Арифмометр позволял выполнять 4 операции: сложение, вычитание, умножение и деление.
Колесо Однера
После Октябрьской революции 1917 года, наследники Однера вернулись в Швецию и стали производить вычислитель под маркой «Original-Odhner». В 1924 году петербургский завод был перевезён в Москву, и арифмометр стал «Феликсом».
Принцип работы на видео (осторожно, английский!):
«Феликс» — в честь Феликса Дзержинского
Под этим именем с 1929 по 1978 год было выпущено несколько миллионов экземпляров. Производством «Феликсов» занимались заводы счётных машин в Курске («Счётмаш»), Пензе (Пензенский завод вычислительной техники) и Москве (Завод счётно-аналитических машин имени В. Д. Калмыкова (САМ)). Кстати, «САМ» также занимался производством электронных вычислительных машин, таких как Урал-1, Стрела и БЭСМ-6.
В 70-ые годы «Феликс» стоил примерно 10–15 рублей, и за счёт достаточно низкой цены пользовался определённой популярностью: электрические калькуляторы в это же время стоили в несколько раз дороже. Арифмометрами учили пользоваться даже в школах. Почувствовать себя в роли оператора арифмометра можно тут: ссылка ведёт на инструкцию по эксплуатации.
«Феликс» на YaTalks 2019
На фото — экземпляр из коллекции Виктора Боева на YaTalks 2019. Если вы были в нашем музее до февраля текущего года, то видели именно этот арифмометр. Всем хотелось его потрогать (думаем, всё дело в его нечеловеческом обаянии), и мы решили обзавестись своим:
Органы управления арифмометром:
1 — барашек сброса счётчика оборотов ручки;
2 — счетчик оборотов основной рукоятки 10;
3 — рукоятка сдвига каретки;
4 и 7 — стрелки-запятые, не связаны с механизмом арифмометра;
5 — задвижка для сброса в 0 положений рычажков 8;
6 — счетчик результата;
8 — рычажки барабана, с помощью которых выставляется значение операнда;
9 — барашек сброса счётчика результата;
10 — основная рукоятка. На корпусе справа от рычажков 8 есть подсказка по нужному направлению вращения основной рукоятки 10 при разных арифметических операциях.
Что внутри?
Наш «Феликс» серого цвета выпущен заводом Счётмаш в городе Курск — на корпусе выбит соответствующий логотип — заглавная «С» в рамке. Сделан в 70-ые, последние годы выпуска — указан ГОСТ 16346-70. Габариты: 320х155х135 мм. Масса: 3,5 кг.
Мне удалось приобрести его в хорошем состоянии: рукоятки вращались нормально, рычажки двигались чётко, счётчики не заедали. Единственная возникшая проблема — тугая каретка. Значит, разбирать и смотреть. Поделюсь опытом: вдруг вам тоже посчастливится препарировать что-нибудь подобное.
Для обслуживания арифмометра я приготовил:
— набор шлицевых отверток;
— бумажные салфетки;
— салфетки из нетканого материала;
— машинное масло;
— ватные палочки;
— баллон со сжатым воздухом;
— бензин «Калоша».
Чтобы снять заднюю крышку, откручиваем 4 винта:
Снимаем крышки каретки:
Переворачиваем арифмометр и откручиваем ещё 6 винтов:
Отсоединяем часть с колесами Однера и основной рукояткой:
1 — система зубчатых колес Однера; 2 — счётчик результата; 3 — счётчик оборотов основной рукоятки; 4 — звонок переполнения или отрицательного числа в счётчике результата.
Откручиваем фиксаторы каретки и отсоединяем её:
На этом этапе будет много пыли и других возможностей запачкаться — не забудьте подготовиться! Продуваем и протираем внутренности. Смазываем машинным маслом трущиеся поверхности каретки и можно собирать всё в обратной последовательности.
«Феликс» позволяет работать с числами до 9 знаков. Есть и другие технические ограничения: результаты сложения, вычитания и умножения не должны превышать 13 знаков, деления — 8. При переполнении счётчика результата или получении отрицательного числа звучит звонок: требуется отменить предыдущую операцию.
Для подготовки к работе:
Так работает колесо Однера нашего «Феликса»: