интенсивы по программированию ии машинное обучение
3 дня машинного обучения: Python, нейросети и биткоин
Интенсив завершен, но вы можете посмотреть его в записи
Вы создадите свою первую модель машинного обучения и поймёте, как нейросети решают задачи бизнеса. Глубокие познания в математике и программировании не нужны: вы с нуля сделаете первые шаги в Data Science всего за 3 дня!
Кому подойдёт интенсив
Новичкам
Освоите азы программирования на Python. Узнаете, как и для чего используется машинное обучение, и сможете решить реальную бизнес-задачу с помощью нейросетей.
Аналитикам
Узнаете, как оценить качество модели машинного обучения. Поработаете с данными криптовалютных рынков и сделаете проект, который усилит ваше портфолио.
Начинающим программистам
Поймёте, как функционируют нейросети. Обучите модель, способную распознавать лица, и узнаете, как построить карьеру в Data Science.
Вы научитесь
Создавать базовые модели
Работать с данными
Понимать, как работает машинное обучение
Программа
Введение в анализ данных. Основные инструменты
Погружаемся в машинное обучение
Просто о сложной математике в Data Science
Подарки и призы
Сертификат на обучение в Skillbox
Участники интенсива, которые выполнят домашнее задание, получат 5 000 рублей на оплату любого курса.
«Век живи — век учись» Кей Петерсон и Дэвида Колба
Всем, кто дойдёт до конца, — электронная книга от издательства «МИФ».
Преподаватель
Михаил Овчинников
Работы участников
Участники интенсива изучали основы машинного обучения в среде Jupyter, с использованием библиотеки Sklearn. В интенсиве мы решали задачу предсказания курса доллара по историческим данным за последние годы. Домашним заданием было улучшить предсказание, используя различные алгоритмы и методики машинного обучения.
Работа Александра Метелягина
Работа Александра Метелягина
Работа Amparo Garcia
Работа Amparo Garcia
Что вас ждёт
Мощная программа
Три дня вебинаров по 1,5 часа для полного погружения в тему — такого вы ещё не видели.
Реальные задачи
Которые помогут закрепить знания и понять, в каком направлении двигаться дальше.
Комьюнити
Вас ждёт общение с другими участниками и ведущим интенсива в закрытом чате в Telegram.
Кейс в портфолио
На интенсиве вы создадите проект, который наверняка оценят потенциальные работодатели.
Получить доступ к записи бесплатного интенсива
Похоже произошла ошибка. Попробуйте отправить снова или перезагрузите страницу.
Ваша заявка успешно отправлена
Получайте расписание новых интенсивов каждую неделю
Раз в неделю мы будем присылать вам расписание грядущих интенсивов на почту. Подпишитесь, чтобы не пропустить вебинары по своим темам.
Похоже произошла ошибка. Попробуйте отправить снова или перезагрузите страницу.
Данные успешно отправлены.
Прежде чем вы уйдёте… Загляните на распродажу
Профессии с трудоустройством и топовые курсы. Для вас — со скидками до 50%.
Напишите первую модель машинного обучения за 3 дня
Интенсив завершен, но вы можете посмотреть его в записи
Узнайте, насколько просто заниматься Machine Learning. Вы научитесь программировать на базовом уровне, работать с открытыми данными из интернета и предсказывать курс доллара.
Кому подойдёт интенсив
Новичкам
Познакомитесь с основами программирования на Python. Научитесь работать с библиотекой Matplotlib и Scikit-Learn. Создадите свой первый проект.
Аналитикам
Узнаете, как оценивать качество модели машинного обучения. Поработаете с данными ЦБ РФ. Сделаете проект, который усилит ваше портфолио.
Начинающим программистам
Дополните свои знания и навыки в программировании. Узнаете, как грамотно выгружать и визуализировать данные. Сможете обучать модели.
Программа
Пишем модель машинного обучения на Python
Пробуем разные модели машинного обучения
Машинное обучение: подводим итоги
Подарки и призы
Трём лучшим участникам — сертификаты на 30 000 рублей
Их можно потратить на любой курс Skillbox. Лучших участников выберет преподаватель в конце интенсива.
Подарок всем, кто дойдёт до конца
Электронная книга Кей Петерсон и Дэвида Колба «Век живи — век учись» издательства «МИФ» — в подарок всем, кто выполнит задания интенсива и дойдёт до конца.
Преподаватель
Михаил Овчинников
Работы участников интенсива
Участники интенсива изучали основы машинного обучения в среде Jupyter, с использованием библиотеки Sklearn. В интенсиве мы решали задачу предсказания курса доллара по историческим данным за последние годы. Домашним заданием было улучшить предсказание, используя различные алгоритмы и методики машинного обучения.
Работа Александра Метелягина
Работа Александра Метелягина
Работа Amparo Garcia
Работа Amparo Garcia
Что вас ждёт
Мощная программа
Три дня вебинаров по 1,5 часа для полного погружения в тему — такого вы ещё не видели.
Кейс в портфолио
На интенсиве вы создадите проект, который наверняка оценят потенциальные клиенты.
Реальные задачи
Которые помогут закрепить знания и понять, в каком направлении двигаться дальше.
Комьюнити
Вас ждёт общение с другими участниками и ведущим интенсива в закрытом чате в Telegram.
Получить доступ к записи бесплатного интенсива
Похоже произошла ошибка. Попробуйте отправить снова или перезагрузите страницу.
10 курсов по машинному обучению на лето
За последние десятилетия с помощью машинного обучения создали самоуправляемые автомобили, системы распознавание речи и эффективный поиск. Сейчас это одна из самых быстроразвивающихся и перспективных сфер на стыке компьютерных наук и статистики, которая активно используется в искусственном интеллекте и data science. Методы машинного обучения используются в науке, технике, медицине, ритейле, рекламе, генерации мультимедиа и других областях.
Команда Университета ИТМО собрала десять курсов по машинному обучению, которые можно успеть пройти до конца лета. Одним они помогут войти в профессию, а другим — углубиться в нее.
1. «Введение в машинное обучение»
Площадка: Coursera
Автор: Высшая школа экономики, Школа анализа данных Яндекс
Длительность: 7 недель, 3-5 часов в неделю
Стоимость: бесплатно
Язык: русский
На курсе рассказывает преимущественно про основные типы задач машинного обучения: классификацию, регрессию и кластеризацию. Преподаватели из Яндекса и Высшей школы экономики объясняют основные методы и рассказывают про их особенности, учат оценивать качество моделей и понимать, для решения какой задачи подходит каждая из них. Программа рассчитана на семь недель, но если постараться, то можно закончить курс до 1 сентября. Курс ориентирован на слушателей, которые знакомы с Python, так как используются его библиотеки numpy, pandas и scikit-learn.
2. Введение в машинное обучение от GL4G
Площадка: Great Learning
Автор: Great Learning
Длительность: 1,5 часа
Стоимость: бесплатно
Язык: английский
Короткий курс предназначен для тех, кто интересуется машинным обучением, но пока еще не знает, с чего начать. Программа состоит из 12 видеоуроков и объясняет, что такое машинное обучение и как алгоритм может учиться, рассказывает основную терминологию и методы, а также дает практические упражнения.
Курс разработан двумя дата-сайентистами, чтобы объяснить сложную теорию, алгоритмы и программирование с использованием библиотек машинного обучения. Программа состоит из десяти частей, в которых рассматривается обработка данных, регрессия, классификация, кластеризация, обучение с подкреплением, обработка естественного языка и глубокое обучение. На курсе есть практические упражнения и шаблоны кода для Python и R. Большое внимание уделяется выбору правильной модели для каждого типа задач.
Программа курса помогает понять, как использовать Python для анализа данных, создания визуализации и использования алгоритмов машинного обучения. На курсе используются NumPy, Seaborn, Matplotlib, Pandas, Scikit-Learn, Machine Learning, Plotly, Tensorflow и другие инструменты. Также слушателям расскажут про обработку естественного языка, искусственный интеллект и глубокое обучение.
На курсе рассказывается об использовании искусственного интеллекта и машинного обучения для решения бизнес-задач. Преподаватель Фрэнк Кейн девять лет работал в Amazon и IMDb, создавая рекомендательные системы. Каждая концепция описывается на простом языке без сложных математических терминов. После вводной части демонстрируется использование кода на Python. Основное внимание уделяется практическому пониманию и применению алгоритмов машинного обучения. В конце курса слушателям предлагают работу над итоговым проектом, чтобы применить новые знания.
6. Курс машинного обучения от Google
Площадка: Google
Автор: Google
Длительность: 15 часов видеолекций
Стоимость: бесплатно
Язык: английский
Компания предлагает быстрое и практическое введение в машинное обучение с использованием API TensorFlow. Курс включает серию уроков с видеолекциями, реальными задачами и практическими упражнениями. Всего слушателям необходимо прослушать 25 уроков и выполнить 40 упражнений. Для всех алгоритмов предлагается интерактивная визуализация.
7. Структурирование проектов по машинному обучению
Площадка: Coursera
Автор: deeplearning.ai
Длительность: две недели
Стоимость: подписка на Coursera 3 039 ₽ в месяц
Язык: английский
Преподаватели курса из Стэнфордского университета расскажут, как построить работу команды по машинному обучения. За две недели слушатели научатся находить ошибки в системе машинного обучение, расставлять приоритеты в направлении работы и понимать сложные детали машинного обучения, например, невалидные обучающие наборы данных.
8. Использование глубокого обучения в творчестве с помощью TensorFlow
Площадка: Kadenze
Автор: Google Magenta
Длительность: пять сессий по 12 часов
Стоимость: бесплатно
Язык: английский, русские субтитры
Курс создан при поддержке проекта Magenta от Google, в рамках которого компания пытается создать «творческий компьютер». Преподаватели рассказывают про основные компоненты глубокого обучения, которые необходимы для построения алгоритмов: сверточные сети, вариационные автокодеры, генеративные состязательные сети и рекурсивные нейросети. Внимание уделяется творчеству нейросетей. Например, работе с изображением и созданию контента, который будет соответствовать эстетике или содержимому другого изображения.
9. Статистическое машинное обучение
Площадка: YouTube
Автор: Университет Карнеги — Меллона
Длительность: 24 лекции по 1,5 часа
Стоимость: бесплатно
Язык: английский, русские субтитры
На YouTube есть запись цикла лекций профессора Департамента статистики и факультета машинного обучения Университета Карнеги-Меллона Ларри Вассермана. Курс рассчитан на людей с продвинутыми знаниями математики и программирования, так как ориентирован на интеграцию статистики и машинного обучения. Предпосылкой к курсу служат лекции «Промежуточная статистическая теория» и «Введение в машинное обучение».
Курс входит в сертификацию Microsoft в области науки о данных. На нем рассказывают, как создавать и работать с моделями машинного обучения с использованием Python, R и Azure Machine Learning. Преподаватели рассказывают о классификации, регрессии в машинном обучении, контролируемых моделях, системах нелинейного моделирования, кластеризации и разработке рекомендаций.
Для тех, кому ближе оффлайн-встречи, Университет ИТМО со 2 по 15 августа проводит в Санкт-Петербурге Летнюю школу машинного обучения на базе Центра речевых технологий. Слушатели получат практический опыт применения методов и алгоритмов глубокого обучения для анализа аудиовизуальных данных для распознавания эмоций.
Требования к участникам:
— студенты старших курсов;
— владение Python;
— имеют опыт применения современных методов машинного обучения;
— огромное желание развиваться в области аудио- и видеоаналитики.
Прием заявок продлится до 23 июля. Зарегистрироваться можно на сайте. Участие в Школе бесплатное. Также организаторы оплачивают проживание в общежитии Университета ИТМО. А за лучшее решение тестового задания — и транспортные расходы.
21 канал на YouTube, где вы можете бесплатно изучить ИИ, машинное обучение и Data Science
Мы уже не раз делились в своем блоге полезными материалами для развития (их список можно найти в конце этого поста). Сегодня продолжаем это начинание и специально перед стартом новых потоков курсов по Data Analytics и Data Science представляем подборку YT-каналов по Data Science, искусственному интеллекту и машинному обучению, существование многих из которых неочевидно: например, представлен канал ArXiv Insights, посвящённый научным работам, и Google Cloud Platform.
Пока пандемия удерживает нас дома, удалёнка стала новой нормой для многих из нас. И хотя сейчас трудно найти стоящий тренинг, это не значит, что мы должны перестать учиться. Можно сказать, что наступил идеальный момент, чтобы чему-нибудь научиться. Почему бы не посвятить остаток этого сумасшедшего 2020 года изучению ИИ, программирования на Python, ML и DS? Такие рабочие роли, как аналитики данных, специалисты по машинному обучению, робототехнической инженерии, цифровой трансформации, являются лидерами в дальнейшем будущем. Это расширяющаяся область знаний, которая играет огромную роль в жизни общества.
SpringBoard
Этот канал публикует интервью с дата-сайентистами из больших компаний, подобных Google, Uber, Airbnb и т. д. Из этих видео вы получите представление о том, что значит быть дата-сайентистом, и ценные жизненные советы.
Arxiv Insights
Ксандер Стинбрюгге — исследователь машинного обучения в ML6. Его канал — резюме критически важных вопросов ML, где обучают с подкреплением искусственного интеллекта, в основном с технической точки зрения, делая их доступными для широкой аудитории.
Machine Learning 101
Новый канал ML Youtube, о котором должен знать каждый. Machine Learning 101 публикует объяснение начальных понятий в области искусственного интеллекта. Кроме того, канал публикует подкасты с экспертами Data Science, работающими в коммерческих индустриях.
FreeCodeCamp
FreeCodeCamp — невероятная некоммерческая организация. Это опенсорс сообщество, предлагающее коллекцию ресурсов, которые помогают людям научиться программировать бесплатно, через создание проектов.
Data School
Кевин Маркхем записывает понятные YouTube туториалы. Data School с самого начала фокусируется на темах, которые вам нужно изучить, чтобы стать дата-сайентистом, и предлагает углубленные туториалы, понятные вне зависимости от вашего образования.
Machine Learning TV
ML TV — ресурс для студентов и энтузиастов, созданный, чтобы вы лучше понимали ML.
Giant Neural Network
Этот канал YouTube направлен на то, чтобы сделать машинное обучение и обучение с подкреплением доступнее для всех. Вы найдете 12 плейлистов — это исчерпывающее введение в нейронные сети для начинающих, и, похоже, следующие ролики о нейронных сетях сейчас снимаются.
Андреас Крец
Андреас Крец — дата-инженер и основатель компании Plumbers of Data Science. Он транслирует на своем канале понятные программы о том, как получить практический опыт в области разработки данных, а также видео с вопросами и ответами о разработке данных с помощью Hadoop, Kafka, Spark и не только.
Edureka!
Edureka — это платформа с туториалами и руководствами на актуальные темы в области больших данных, Hadoop, DevOps, блокчейна, искусственного интеллекта, Angular, Data Science, Apache Spark, Python, Selenium, Tableau, Android, сертификации PMP, архитектуры AWS, digital-маркетинга и многого другого.
Эндрю Ын
Эндрю Ын был назван одним из 100 самых влиятельных людей, по версии Time, в 2012 году и самой культовой личностью, по версии Fast Company. Он — один из основателей Coursera и deeplearning.ai, вице-президент и главный научный сотрудник Baidu, а также адъюнкт-профессор Стэнфордского университета.
Deeplearning.ai
На официальном канале Deep Learning AI есть видеоуроки из специализации глубокого обучения на Coursera. DeepLearning.ai — это образовательная технологическая компания, которая развивает глобальное сообщество талантов в области искусственного интеллекта.
Накопленный под руководством экспертов опыт deeplearning.ai в области образования предоставляет специалистам-практикам и нетехническим специалистам ИИ необходимые инструменты, позволяющие им пройти весь путь от основ до передовых прикладных программ, расширяя их возможности в создании будущего на основе ИИ.
Tech with Tim
Тим — блестящий программист, преподающий Python, разработку игр с помощью Pygame, Java и машинное обучение. Он создает качественные учебные пособия по программированию на Python.
Machine Learning University (MLU)
Созданный в 2016 году Университет машинного обучения (MLU) — инициатива Amazon с ясной целью — обучить как можно больше сотрудников технологиям и необходимой компании магии предложения продуктов с помощью интегрированных технологий ML.
Artificial Intelligence — All in One
Этот канал YouTube содержит обучающие видеоролики, связанные с наукой, технологиями и искусственным интеллектом.
Sentdex
Sentdex создает один из лучших учебников по программированию Python на YouTube. Его учебные пособия варьируются от начального уровня до продвинутого с более чем 1000 видео о программировании на Python. Это больше, чем просто основы. В них рассказывается о машинном обучении, финансах, анализе данных, робототехнике, веб-разработке, разработке игр и многом другом.
Joma Tech
Joma Tech — ютубер, который делает видео, помогающие людям попасть в технологическую индустрию. Он работал в крупных технологических компаниях в качестве дата-сайентиста и инженера-программиста. Основываясь на своем опыте, он делает видеоинтервью с экспертами, видео об образе жизни в Силиконовой долине, делает науку о данных более доступной.
Python Programmer
Содержание Python Programmer — это учебные пособия по Python, Data Science, ML, рекомендации книг и многое другое.
Deep Learning TV
Этот канал YouTube посвящен инструкциям, обзорам библиотек ПО и приложений, а также интервью с ключевыми персонами в области глубокого обучения. DL TV посвящено области исследований, которая учит машины воспринимать мир. Начиная с серии, посвященной упрощенному объяснению DL, на канале выкладываются ролики с инструкциями, обзорами библиотек программного обеспечения и приложений, а также интервью с ключевыми персонами в этой области. С помощью серии концептуальных видеороликов, демонстрирующих интуитивно понятные объяснения лежащих в основе глубокого обучения методов, канал показывает, что глубокое обучение на самом деле проще, чем вы думаете.
Google Cloud Platform
Видеоролики YouTube помогут вам создавать будущее с помощью безопасной инфраструктуры, инструментов разработчика, API, анализа данных и машинного обучения.
Кит Гэлли
Кит Гэлли — недавний выпускник MIT. Он делает обучающие видео о DS, программировании, настольных играх и о многом другом.
Data Science Dojo
Data Science Dojo — это канал, который обещает научить Data Science всех желающих в простой для понимания форме. Вы найдете множество туториалов, лекций и курсов по инженерии данных и Data Science.
Заключение
Эти каналы уникальны, я уже долго слежу за ними и очарован огромным количеством знаний, которые сегодня доступны в сети бесплатно. Я надеюсь, что вам понравится, и, если вы знаете какие-либо другие интересные каналы YouTube об ИИ, машинном обучении, глубоком обучении или науке о данных, оставьте их в комментариях!
А если хочется не только смотреть каналы но и перенимать опыт практиков — приходите к нам, а специальный промокод HABR — приплюсует 10% к скидке на баннере.
Топ-10 курсов по машинному и глубокому обучению в 2020
Mar 26, 2020 · 8 min read
Знаете, о чём я мечтал, когда начал изучать машинное обучение? О таком сборном курсе по машинному обучению формата всё-в-одном. В то время было трудно найти хороший курс со всеми необходимыми концепциями и алгоритмами. Так что нам приходилось искать по всей сети, читать исследовательские документы и покупать книги.
К счастью, сегодня это больше не проблема. Теперь мы в противоположной ситуации. Появилось очень много хороших и не очень курсов. Как же разобраться в их качестве и понять, какой из них включает в себя все те вещи, которым вы хотите научиться? Для этого я составил список самых популярных курсов с высококлассной подачей материала.
Я и сам прошёл большинство из них и очень яро рекомендую их все. Любой инженер машинного обучения или исследователь данных порекомендует вам, как минимум, один курс из списка, а как максимум — все. Так что можете больше не искать. Поехали.
1) Машинное обучение от Stanford (Coursera)
Этот курс многие считают лучшим по машинному обучению среди всех существующих. Преподаёт сам Andrew Ng — для тех, кто не знает его, он профессор в Стэнфорде, сооснователь платформы Coursera, сооснователь Google Brain и вице-президент Baidu. Программа покрывает все базовые вещи, которые вам нужно знать. Вдобавок у этого курса огромный рейтинг 4.9 из 5, что говорит о многом.
Материал полностью завершённый и подходит для новичков, так как учит базовым принципам линейной алгебры и исчислению в форме обучения под присмотром куратора. Единственный недостаток, о котором я могу вспомнить, это то, что в курсе используется Octave (версия Matlab с открытым кодов) вместо Python и R. Авторы на самом деле хотят, чтобы вы сосредоточились на алгоритмах, а не на программировании.
Время обучения: 76 часов
2) Специализация по глубокому обучению от deeplearning.ai (Coursera)
И снова курс ведёт Andrew Ng. Опять же, он лучший в сфере глубокого обучения. Видите в этом закономерность? Программа в реальности состоит из 5-ти разных курсов, и они все дадут вам чёткое понимание большинства важных вещей в области архитектуры нейронных сетей. Если вы серьёзно заинтересованы в качественном обучении, то идите на этот курс.
В курсе применяют язык Python и библиотеку TensorFlow (кое-какие знания для прохождения всё же потребуются), и это даст вам возможность работать с реальными задачами обработки естественного языка, компьютерного зрения, здравоохранения.
Время прохождения: 3 месяца (11 часов/неделя)
3) Специализация по углубленному машинному обучению (Coursera)
Специализацию по углубленному машинному обучению создали в Национальном исследовательском университете “Высшая Школа Экономики”. Курс структурировали и преподают практиканты по машинному обучению Top Kaggle и ученые CERN. Он включает в себя 7 разных курсов и покрывает более глубокие темы, например, обучение с подкреплением и обработка естественного языка. Скорее всего, вам понадобится больше математики и достаточного понимания базовых идей машинного обучения, а от авторов вы получите превосходные инструкции и интересную среду. Я очень рекомендую этот курс.
Время прохождения: 8–10 месяцев (6–10 часов/неделя)
4) Машинное обучение от Georgia Tech (Udacity)
Если вам нужен целостный подход к сфере и интерактивное окружение, то этот курс создан прямо для вас. Должен признать, что я не видел более полной учебной программы, чем эта. От обучения с куратором и без до улучшения знаний — в нём есть всё, о чём вы только можете подумать относительно данной темы.
Курс не обучит вас глубоким нейросетям, но он даст чёткое понимание всех разнообразных алгоритмов машинного обучения, их сильных/слабых сторон и того, как их можно вплетать в разработку реальных приложений. Если вы фанат очень коротких видеороликов и интерактивных опросов, разбросанных по всему курсу, то вы обязательно найдёте, чему порадоваться в процессе обучения на этом курсе.
Время для прохождения: 4 месяца
Если интересуетесь ещё образовательным контентом и ресурсами по теме МО и ИИ, загляните в наш блог theaisummer.com
5) Введение в машинное обучение (Udacity)
Этот начальный курс составил и ведёт Sebastian Thrun, сооснователь платформы Udacity, вместе с Katie Malone, директором Data Science Research and Development. Основная аудитория этой программы — начинающие, кто ищет стартовое обучение в сфере МО. И снова, если вам нравится платформа Udacity (так же сильно, как мне), это отличная возможность начать погружаться в тему.
Время для прохождения: 10 недель
6) Наностепень по глубокому обучению (Udacity)
Этот курс научит вас всем передовым алгоритмам по глубокому обучению: от свёрточных сетей до генеративно-состязательных сетей. Он достаточно дорогостоящий, но это единственный курс с 5-ю разными практическими проектами. Вы создадите классификатор собачьих пород, систему генерации лиц, модель анализа настроений и ещё вы научитесь, как разворачивать их на этапе продакшна. И лучшая часть в этом курсе — учиться у таких авторитетов, как Jun-Yan Zhuand, Andrew Trask, Sebastian Thrun и Ian Goodfellow.
Стоимость: 1316 евро
Время на прохождение: 4 месяца
7) Машинное обучение от Columbia (edX)
Следующий пункт в списке — курс на платформе edX авторства Колумбийского университета. Курс требует основательной математической подготовки (линейная алгебра и вычисления) и знаний по программированию (Python или Octave), так что, если бы я был новичком, то этот курс я бы отложил на потом. Тем не менее, такое обучение может идеально подойти более продвинутым студентам, если они хотят развивать у себя математическое понимание алгоритмов.
Одна вещь делает этот курс уникальным — факт, что программа сфокусирована на вероятностной области машинного обучения, покрывая такие темы, как Байесовская линейная регрессия и скрытые марковские модели.
Время на прохождение: 12 недель
8) Практика глубокого обучения для кодеров, v3 ( от fast.ai)
Практика глубокого обучения для кодеров — это восхитительный бесплатный ресурс для людей с некоторым опытом программирования (не слишком долгим и не очень углубленным). Он состоит из множества заметок, заданий и видеороликов. Его создали вокруг идеи дать студентам практический опыт в области, так что подготовьтесь всё время что-то программировать на всём сроке обучения. Вы можете даже узнать, как пользоваться GPU-сервером для обучения ваших моделей. Достаточно круто.
Время на прохождение: 12 недель (8 часов/неделя)
9) Machine Learning A-Z™ (Машинное обучение от А до Я) : Практическое применение Python и R в науке о данных
Определённо, это самый популярный курс по ИИ на платформе Udemy с количеством заявленных студентов в 500 000 человек. Авторы: Кирилл Еременко (исследователь данных и эксперт систем Forex) и Hadelin de Ponteves, тоже исследователь данных. В этом курсе можете ожидать анализа большинства важных алгоритмов МО с шаблонами кода на Python и R. 41 час обучения и 31 статья — вместе это стоит того, чтобы пройти данный курс.
Стоимость: 199 € (но есть скидки. В момент написания оригинала статьи цена была 13.99€)
Время на прохождение: 41 час
10) CS234 — Обучение с подкреплением от Stanford
Стопроцентно, самый трудный курс из списка, потому что тема обучения с подкреплением самая сложная. Но если хотите погрузиться в неё, то нет лучшего способа. Фактически это вживую записанные лекции из Стенфордского университета. Будьте готовы к тому, что сами станете студентом Стэнфорда. Профессор Emma Brunskill рассказывает все эти сложные темы доступно для понимания, даёт прекрасное введение в системы RL и алгоритмы. Конечно, вы найдёте много математических уравнений и доказательств, но здесь и нет другого пути, по которому можно прийти к обучению с подкреплением.
Веб-сайт курса здесь, а видео лекции — в плей-листе на Youtube.
Время для завершения: 19 часов
Вот и весь список базовых лучших курсов по машинному и глубокому обучению. Некоторые из них могут показаться вам слишком углубленными, в некоторых слишком много математики, а другие чересчур дорогие, но всё же, каждый из них гарантировано научит вас всему, что нужно для успеха в области ИИ.
Буду честным до конца, на самом деле не важно, какой из курсов вы выберете. Все они действительно первоклассные. Важная начать и закончить учиться после того, как вы выберете один из курсов.