интенсификация в машинном обучении

Machine Learning – не только нейронки

Нейронные сети и глубокое обучение (deep learning) у всех на слуху, но нейросети – это лишь подобласть такого обширного предмета, как машинное обучение (machine learning). Существует несколько сотен других алгоритмов, которые способны быстро и эффективно решать задачи искусственного интеллекта и в большинстве случаев являются более интерпретируемыми для человека. В этой статье рассмотрим алгоритмы классического машинного обучения, принцип работы нейросетей, подготовку данных для обучения моделей и задачи, которые решают с помощью искусственного интеллекта.

интенсификация в машинном обучении. Смотреть фото интенсификация в машинном обучении. Смотреть картинку интенсификация в машинном обучении. Картинка про интенсификация в машинном обучении. Фото интенсификация в машинном обучении

Основные задачи машинного обучения

Восстановление регрессии (прогнозирования) – построение модели, способной предсказывать численную величину на основе набора признаков объекта.

Классификация – определение категории объекта на основе его признаков.

Кластеризация – распределение объектов.

Допустим, есть набор данных со статистикой по приложениям. В нем есть следующие сведения: размер, категория, количество скачиваний, количество отзывов, рейтинг, возрастной рейтинг, жанр и цена. С помощью этого набора данных и машинного обучения можно решить такие задачи:

Прогнозирование рейтинга приложения на основе признаков: размер, категория, возрастной рейтинг, жанр и цена – задача регрессии.

Определение категории приложения на основе набора признаков: размер, возрастной рейтинг, жанр и цена – задача классификации.

Разбиение приложений на группы на основании множества признаков (например, количество отзывов, скачиваний, рейтинга) таким образом, чтобы приложения внутри группы были более похожи друг на друга, чем приложения разных групп.

Нейронные сети (многослойный перцептрон)

Существует мнение, что лучшие идеи для изобретений человек заимствует у природы. Нейронные сети – это именно тот случай, ведь сама концепция нейросетей базируется на функциональных особенностях головного мозга.

Принцип работы

Есть определенное количество нейронов, которые между собой связаны и взаимодействуют друг с другом путем передачи сигналов. Также есть рецепторы, которые получают информацию, поступающую извне, и исполнительный орган, на который приходит итоговый сигнал. По схожему принципу работают искусственные нейросети: есть несколько слоев с нейронами и связи между ними (каждая связь имеет свой весовой коэффициент). По связям передаются сигналы в виде численных значений, первый слой выполняет собой роль рецепторов, то есть получает набор признаков для обучения, и есть выходной слой, который выдает ответ.

интенсификация в машинном обучении. Смотреть фото интенсификация в машинном обучении. Смотреть картинку интенсификация в машинном обучении. Картинка про интенсификация в машинном обучении. Фото интенсификация в машинном обученииНейронные связи в головном мозге («Создаем нейронную сеть», Тарик Рашид) интенсификация в машинном обучении. Смотреть фото интенсификация в машинном обучении. Смотреть картинку интенсификация в машинном обучении. Картинка про интенсификация в машинном обучении. Фото интенсификация в машинном обученииПример искусственной трехслойной нейросети («Создаем нейронную сеть», Тарик Рашид)

Каждый слой нейросети оперирует разными представлениями о данных. На рисунке ниже можно увидеть пример использованиям глубокого обучения (нейросети) для распознавания образа на картинке. На входной слой нам поступают пиксели изображений, далее после вычислений между входным и первым скрытым слоем мы получаем границы, на втором скрытом слое – контуры, на третьем – части объектов, на выходном – вероятности принадлежности изображения к каждому типу объектов.

интенсификация в машинном обучении. Смотреть фото интенсификация в машинном обучении. Смотреть картинку интенсификация в машинном обучении. Картинка про интенсификация в машинном обучении. Фото интенсификация в машинном обученииПример использования нейросети для распознавания образа ( «Глубокое обучение», Ян Гудфеллоу)

Как настраивать

Настраивается путем задания количества узлов, скрытых слоев и выбора функции активации. В искусственных нейронных сетях функция активации нейрона отвечает за выходной сигнал, который определяется входным сигналом или набором входных сигналов.

Задачи: классификация, регрессия, кластеризация.

Классические алгоритмы машинного обучения

K-ближайших соседей

Метод K-ближайших соседей – простой и эффективный алгоритм, его можно описать известной поговоркой: “Скажи мне, кто твой друг, и я скажу, кто ты”.

Принцип работы

Пусть имеется набор данных с заданными классами. Мы можем определить класс неизвестного объекта, если рассмотрим определенное количество ближайших объектов (k) и присвоим тот класс, который имеет большинство “соседей”. Посмотрим на рисунок ниже.

Есть набор точек с двумя классами: синие крестики и красные кружки. Мы хотим определить, к какому классу относится неизвестная зеленая точка. Для этого мы берем k ближайших соседей, в данном случае 3, и смотрим, к каким классам они относятся. Из трех ближайших соседей больше оказалось синих крестиков, соответственно, мы можем предположить, что зеленая точка также, скорее всего, относится к этому классу.

интенсификация в машинном обучении. Смотреть фото интенсификация в машинном обучении. Смотреть картинку интенсификация в машинном обучении. Картинка про интенсификация в машинном обучении. Фото интенсификация в машинном обучении

Как настраивать

Необходимо подобрать параметр k (количество ближайших соседей) и метрику для измерения расстояний между объектами.

Задачи: классификация, также может применяться и для задач регрессии.

Линейная регрессия

Линейная регрессия – простая и эффективная модель машинного обучения, способная решать задачи быстро и недорого.

Принцип работы

Модель линейной регрессии можно описать уравнением

интенсификация в машинном обучении. Смотреть фото интенсификация в машинном обучении. Смотреть картинку интенсификация в машинном обучении. Картинка про интенсификация в машинном обучении. Фото интенсификация в машинном обучении

Здесь x – это значения признаков, y – целевая переменная, a – весовые коэффициенты признаков. При обучении модели весовые коэффициенты подбираются таким образом, чтобы как можно лучше описывалась линейная зависимость признаков от целевой переменной.

Пример: задача предсказания стоимости квартиры в зависимости от площади и удаленности от метро в минутах. Целевой переменной (y) будет являться стоимость, а признаками (x) – площадь и удаленность.

На рисунке ниже также представлен пример построения линейной регрессии. Красная прямая более точно описывает линейную зависимость x от y.

интенсификация в машинном обучении. Смотреть фото интенсификация в машинном обучении. Смотреть картинку интенсификация в машинном обучении. Картинка про интенсификация в машинном обучении. Фото интенсификация в машинном обучении

Как настраивать

Для многих моделей Machine Learning, в частности и для линейной регрессии, можно улучшить итоговое качество с помощью регуляризации.

Регуляризация в статистике, машинном обучении, теории обратных задач — метод добавления некоторых дополнительных ограничений к условию с целью решить некорректно поставленную задачу или предотвратить переобучение, то есть ситуацию, когда модель хорошо показывает себя на тренировочный данных, но перестаёт работать на новых.

Распространенные методы регуляризации для повышения качества модели линейной регрессии:

Ridge — один из методов понижения размерности. Применяется для борьбы с переизбыточностью данных, когда независимые переменные коррелируют друг с другом (мультиколлинеарность), вследствие чего проявляется неустойчивость оценок коэффициентов линейной регрессии.

LASSO — также как и Ridge, применяется для борьбы с переизбыточностью данных.

Elastic-Net — модель регрессии с двумя регуляризаторами L1, L2. Частными случаями являются модели LASSO L1 = 0 и Ridge регрессии L2 = 0.

Задачи: регрессия.

Логистическая регрессия

Логистическая регрессия – также простая и эффективная модель машинного обучения, способная решать задачи быстро и недорого.

Принцип работы

интенсификация в машинном обучении. Смотреть фото интенсификация в машинном обучении. Смотреть картинку интенсификация в машинном обучении. Картинка про интенсификация в машинном обучении. Фото интенсификация в машинном обучении

Указанная выше сумма проходит через функцию сигмоиды, которая возвращает число от 0 до 1, характеризующее вероятность отнесения объекта к классу 1. Пример: логистическую регрессию часто применяют в задачах кредитного скоринга, когда по определенным данным о клиенте нужно определить, стоит ли выдавать ему кредит.

интенсификация в машинном обучении. Смотреть фото интенсификация в машинном обучении. Смотреть картинку интенсификация в машинном обучении. Картинка про интенсификация в машинном обучении. Фото интенсификация в машинном обучении

Иллюстрация алгоритмов линейной и логистической регрессии (источник)

Как настраивать

Задачи: классификация.

Метод опорных векторов (SVM)

Принцип работы

Чтобы лучше всего понять алгоритм метода опорных векторов, рассмотрим рисунок. На рисунке приведен пример двух линейно разделимых классов в двумерном пространстве. Идея алгоритма заключается в нахождении оптимальной разделяющей прямой (или гиперплоскости для более высоких пространств) для отделения объектов одного класса от другого. Пунктирные линии выделяют разделяющую полосу и проводятся через объекты, которые называют опорными. Чем шире разделяющая полоса, тем качественнее модель SVM. Чтобы определить класс объекта, достаточно определить, с какой стороны гиперплоскости он находится.

интенсификация в машинном обучении. Смотреть фото интенсификация в машинном обучении. Смотреть картинку интенсификация в машинном обучении. Картинка про интенсификация в машинном обучении. Фото интенсификация в машинном обучении

Как настраивать

Необходимо подобрать оптимальное ядро (функцию переводящую признаковое пространство в более высокую размерность), если линейная зависимость слабо выражена.

Задачи: классификация и регрессия.

Сравнение классических алгоритмов с нейросетью

Для примера мы взяли датасет со статистикой приложений в Play Market. Датасет содержит следующие данные: размер приложения, возрастной рейтинг, количество скачиваний, жанр, категория и др. На данном датасете были обучены модели: линейная регрессия, метод опорных векторов, нейронная сеть (многослойный перцептрон).

В ходе экспериментов были подобраны следующие параметры для моделей машинного обучения:

Линейная регрессия – модели линейной регрессии с регуляризацией не показали результат, превосходящий качество классической линейной регрессии.

Метод опорных векторов – модель метода опорных векторов с RBF-ядром показала лучший результат по сравнению с другими ядрами.

Многослойный перцептрон – оптимальный результат показала модель с 4 слоями, 300 нейронами и функций активацией ReLu. При попытках увеличить количество слоев и нейронов прирост качества не наблюдался.

Решена задача прогнозирования потенциального рейтинга приложения в зависимости от его признаков.

Результаты ошибки среднего отклонения от истинного значения целевой переменной в процентах для каждой модели:

Линейная регрессия6.13 %

Метод опорных векторов6.01%

Нейронная сеть6.41%

Таким образом, классические алгоритмы машинного обучения и нейросети показали приблизительно одинаковое качество. Это связано с тем, что нейросети хорошо обучаются на датасетах с большим размером и обычно применяются для решения задач, где зависимость в данных очень сложна. Поэтому для решения данной задачи можно обойтись применением классических алгоритмов и не прибегать к использованию нейросетей.

На гистограмме ниже представлены итоговые весовые коэффициенты a, полученные при обучении модели линейной регрессии. Чем больше столбик, тем выше влияние признака на целевую переменную. Если столбик направлен вверх, то он оказывает положительное влияние на рост целевой переменной, если вниз – то отрицательное. Другими словами, если приложение имеет жанр “Other” или “Tools”, то, скорее всего, его рейтинг будет высоким, а если у него категория “FAMILY” или “GAME” – то, вероятно, низким. Данная интерпретация весовых коэффициентов линейной регрессии бывает очень полезной при анализе данных.

интенсификация в машинном обучении. Смотреть фото интенсификация в машинном обучении. Смотреть картинку интенсификация в машинном обучении. Картинка про интенсификация в машинном обучении. Фото интенсификация в машинном обученииГистограмма значений коэффициентов линейной регрессии

Больше наших статей по машинному обучению и обработке изображений:

Источник

Машинное обучение

Материал из MachineLearning.

Содержание

Машинное обучение (Machine Learning) — обширный подраздел искусственного интеллекта, изучающий методы построения алгоритмов, способных обучаться. Различают два типа обучения. Обучение по прецедентам, или индуктивное обучение, основано на выявлении общих закономерностей по частным эмпирическим данным. Дедуктивное обучение предполагает формализацию знаний экспертов и их перенос в компьютер в виде базы знаний. Дедуктивное обучение принято относить к области экспертных систем, поэтому термины машинное обучение и обучение по прецедентам можно считать синонимами.

Машинное обучение находится на стыке математической статистики, методов оптимизации и классических математических дисциплин, но имеет также и собственную специфику, связанную с проблемами вычислительной эффективности и переобучения. Многие методы индуктивного обучения разрабатывались как альтернатива классическим статистическим подходам. Многие методы тесно связаны с извлечением информации и интеллектуальным анализом данных (Data Mining).

Наиболее теоретические разделы машинного обучения объединены в отдельное направление, теорию вычислительного обучения (Computational Learning Theory, COLT).

Машинное обучение — не только математическая, но и практическая, инженерная дисциплина. Чистая теория, как правило, не приводит сразу к методам и алгоритмам, применимым на практике. Чтобы заставить их хорошо работать, приходится изобретать дополнительные эвристики, компенсирующие несоответствие сделанных в теории предположений условиям реальных задач. Практически ни одно исследование в машинном обучении не обходится без эксперимента на модельных или реальных данных, подтверждающего практическую работоспособность метода.

Общая постановка задачи обучения по прецедентам

Дано конечное множество прецедентов (объектов, ситуаций), по каждому из которых собраны (измерены) некоторые данные. Данные о прецеденте называют также его описанием. Совокупность всех имеющихся описаний прецедентов называется обучающей выборкой. Требуется по этим частным данным выявить общие зависимости, закономерности, взаимосвязи, присущие не только этой конкретной выборке, но вообще всем прецедентам, в том числе тем, которые ещё не наблюдались. Говорят также о восстановлении зависимостей по эмпирическим данным — этот термин был введён в работах Вапника и Червоненкиса.

Наиболее распространённым способом описания прецедентов является признаковое описание. Фиксируется совокупность n показателей, измеряемых у всех прецедентов. Если все n показателей числовые, то признаковые описания представляют собой числовые векторы размерности n. Возможны и более сложные случаи, когда прецеденты описываются временными рядами или сигналами, изображениями, видеорядами, текстами, попарными отношениями сходства или интенсивности взаимодействия, и т. д.

Для решения задачи обучения по прецедентам в первую очередь фиксируется модель восстанавливаемой зависимости. Затем вводится функционал качества, значение которого показывает, насколько хорошо модель описывает наблюдаемые данные. Алгоритм обучения (learning algorithm) ищет такой набор параметров модели, при котором функционал качества на заданной обучающей выборке принимает оптимальное значение. Процесс настройки (fitting) модели по выборке данных в большинстве случаев сводится к применению численных методов оптимизации.

Замечание о терминологии. В зарубежных публикациях термин algorithm употребляется только в указанном выше смысле, то есть это вычислительная процедура, которая по обучающей выборке производит настройку модели. Выходом алгоритма обучения является функция, аппроксимирующая неизвестную (восстанавливаемую) зависимость. В задачах классификации аппроксимирующую функцию принято называть классификатором (classifier), концептом (concept) или гипотезой (hypothesys); в задачах восстановления регрессии — функцией регрессии; иногда просто функцией. В русскоязычной литературе аппроксимирующую функцию также называют алгоритмом, подчёркивая, что и она должна допускать эффективную компьютерную реализацию.

Типология задач обучения по прецедентам

Основные стандартные типы задач

Специфические прикладные задачи

Некоторые задачи, возникающие в прикладных областях, имеют черты сразу нескольких стандартных типов задач обучения, поэтому их трудно однозначно отнести к какому-то одному типу.

Приложения

Целью машинного обучения является частичная или полная автоматизация решения сложных профессиональных задач в самых разных областях человеческой деятельности. Машинное обучение имеет широкий спектр приложений:

Сфера применений машинного обучения постоянно расширяется. Повсеместная информатизация приводит к накоплению огромных объёмов данных в науке, производстве, бизнесе, транспорте, здравоохранении. Возникающие при этом задачи прогнозирования, управления и принятия решений часто сводятся к обучению по прецедентам. Раньше, когда таких данных не было, эти задачи либо вообще не ставились, либо решались совершенно другими методами.

Подходы и методы

Подход к задачам обучения — это концепция, парадигма, точка зрения на процесс обучения, приводящая к набору базовых предположений, гипотез, эвристик, на основе которых строится модель, функционал качества и методы его оптимизации.

Разделение методов «по подходам» довольно условно. Разные подходы могут приводить к одной и той же модели, но разным методам её обучения. В некоторых случаях эти методы отличаются очень сильно, в других — совсем немного и «плавно трансформируются» друг в друга путём незначительных модификаций.

Статистическая классификация

В статистике решение задач классификации принято называть дискриминантным анализом.

Байесовская теория классификации основана на применении оптимального байесовского классификатора и оценивании плотностей распределения классов по обучающей выборке. Различные методы оценивания плотности порождают большое разнообразие байесовских классификаторов. Среди них можно выделить три группы методов:

Параметрическое оценивание плотности

Непараметрическое оценивание плотности

Оценивание плотности как смеси параметрических плотностей

Несколько особняком стоит наивный байесовский классификатор, который может быть как параметрическим, так и непараметрическим. Он основан на нереалистичном предположении о статистической независимости признаков. Благодаря этому метод чрезвычайно прост.

Другие теоретико-вероятностные и статистические подходы:

Классификация на основе сходства

Метрические алгоритмы классификации применяются в тех задачах, где удаётся естественным образом задавать объекты не их признаковыми описаниями, а матрицей попарных расстояний между объектами. Классификация объектов по их сходству основана на гипотезе компактности, которая гласит, что в «хорошей задаче» схожие объекты чаще лежат в одном классе, чем в разных.

Метрические алгоритмы относятся к методам рассуждения на основе прецедентов (Case Based Reasoning, CBR>. Здесь действительно можно говорить о «рассуждениях», так как на вопрос «почему объект u был отнесён к классу y?» алгоритм может дать понятный эксперту ответ: «потому, что имеются прецеденты — схожие с

ним объекты, принадлежащие классу y», и

предъявить список этих прецедентов.

Наиболее известные метрические алгоритмы классификации:

Классификация на основе разделимости

Большая группа методов классификации основана на явном построении разделяющей поверхности в пространстве объектов. Из них чаще всех применяются Линейные классификаторы:

Нейронные сети

Нейронные сети основаны на принципе коннективизма — в них соединяется большое количество относительно простых элементов, а обучение сводится к построению оптимальной структуры связей и настройке параметров связей.

Индукция правил (поиск закономерностей)

Категория:Логические алгоритмы классификации представляют собой композиции простых, легко интерпретируемых правил.

Кластеризация

Регрессия

Алгоритмические композиции

Сокращение размерности

Выбор модели

Байесовский вывод

На середину 2016 года лидирующие позиции в мире статистической обработки информации занимает R, который, в частности, содержит обширный набор пакетов для машинного обучения.

Нейронные сети: нейронная сеть с одним скрытым слоем реализована в пакете nnet (поставляется в составе R). Пакет RSNNS предлагает интерфейс к Stuttgart Neural Network Simulator (SNNS). Интерфейс к библиотеке FCNN позволяет расширяемые пользователем искусственные нейронные сети в пакете FCNN4R.

Рекурсивное разделение: модели с древовидной структурой для регрессии, классификации и анализа дожития, следующие идеям в документации CART, реализованы в пакетах rpart и tree (поставляется с R). Пакет rpart рекомендуется для вычислений подобных CART-деревьям. Обширный набор инструментов алгоритмов разделения доступен в пакете Weka, RWeka обеспечивает интерфейс этой реализации, включая J4.8-вариант C4.5 и M5. Кубиxческий пакет подгоняет модели, основанными на правилах (подобными деревьям) с линейными регрессионными моделями в терминальных листах, основанных на коррекции наблюдений и бустинге. Пакет C50 может подогнать деревья классификации C5.0, модели, основанные на правилах и их версиях бустинга.

Два рекурсивных алгоритма разделения с несмещенным выбором переменной и статистическим критерием остановки реализованы в пакете party. Функция ctree () основывается на непараметрических условных процедурах вывода для тестирования независимости между откликом и каждой входной переменной, тогда как mob() может использоваться, чтобы разделить параметрические модели. Расширяемые инструменты для визуализации двоичных деревьев и распределений узла отклика также доступны в пакете party.

Модели древовидной структуры с изменяемыми коэффициентами реализованы в пакете vcrpart.

Для задач с двоичными входными переменными пакет LogicReg реализует логистическую регрессию. Графические инструменты для визуализации деревьев доступны в пакете maptree.

Деревья для моделирования длящихся данных посредством случайных эффектов предлагаются пакетом REEMtree. Разделение смешанных моделей выполнено RPMM. Вычислительная инфраструктура для представления деревьев и объединенных методов для предсказания и визуализации реализована в partykit. Эта инфраструктура используется пакетом evtree, чтобы реализовать эволюционное приобретение знаний о глобально оптимальных деревьях. Наклонные деревья доступны в пакете oblique.tree.

Бустинг (усиление): различные формы градиентного бустингаа реализованы в пакете gbm (бустинг, основанный на дереве функциональный градиентный спуск). Оптимизируется функция потерь Hinge с помощью бустинга, реализованного в пакете bst. Можно использовать пакет GAMBoost для подгонки обобщенных аддитивных моделей алгоритмом бустинга. Расширяемая платформа бустинга для обобщенных линейных, аддитивных и непараметрических моделей доступна в пакете mboost. Основанный на правдоподобии бустинг для моделей Cox реализовано в CoxBoost и для смешанных моделей в GMMBoost. Можно подогнать модели GAMLSS, используя бустинг gamboostLSS.

Методы опорных векторов и ядерные методы: функция svm () из e1071 предлагает интерфейс библиотеке LIBSVM, и пакет kernlab реализует гибкую платформу для ядерного обучения (включая SVMs, RVMs и другие алгоритмы ядерного обучения). Интерфейс к реализации SVMlight (только для one-all классификации) дан в пакете klaR. Соответствующая размерность в пространствах признаков ядра может быть оценена, используя rdetools, который также предлагает процедуры для выбора модели и предсказание.

Байесовские Методы: Bayesian Additive Regression Trees (BART), где заключительная модель определена с точки зрения суммы по многим слабым ученикам (мало чем отличающийся от методов ансамбля), реализованы в пакете BayesTree. Байесовская нестационарная, полупараметрическая нелинейная регрессия и проектирование с помощью древовидного Гауссовского процесса, включая Байесовский CART и древовидной линейные модели, доступны в пакете tgp.

Оптимизация с использованием генетических алгоритмов: Пакеты rgp и rgenoud предлагают подпрограммы оптимизации на основе генетических алгоритмов. Пакет Rmalschains реализует имитационные алгоритмы с цепочками локального поиска, которые являются специальным типом эволюционных алгоритмов, комбинируя генетический алгоритм устойчивого состояния с локальным поиском для реально оцененной параметрической оптимизации.

Правила ассоциации: Пакет arules обеспечивает обе структуры данных для эффективной обработки прореженных двоичных данных, а также интерфейсов к реализациям Apriori, и Eclat для интеллектуальной обработки частотных наборов элементов, максимальных частотных наборов элементов, замкнутых частотных наборов элементов и правила ассоциации.

Системы, основанные на нечетких правилах: пакет frbs реализует стандартные методы для изучения систем, основанных на нечетких правилах для регрессии и классификации. Пакет RoughSets содержит всесторонние реализации грубой теории множеств (RST) и нечеткой грубой теории множеств (FRST) в одном пакете.

Выбор и проверка модели: пакет e1071 содержит функцию настройки tune() для настройки параметров, а функция errorest () (ipred) может использоваться для оценки коэффициента ошибок. Параметр стоимости C для методов опорных векторов может быть выбран, использовав функциональность пакета svmpath. Функции для анализа ROC и другие методы визуализации для сравнения классификаторов доступны в пакете ROCR. Пакеты hdi и stabs реализуют выбор устойчивости для диапазона моделей, hdi также предлагает другие процедуры вывода в высоко-размерных моделях.

Другие процедуры: очевидные классификаторы определяют количество неопределенности по поводу класса тестовых образцов, используя функцию mass Dempster-Shafer в пакете evclass. Пакет OneR (Одно Правило) предлагает алгоритм классификации с улучшениями для сложной обработки отсутствующих значений и числовых данных вместе с обширными диагностическими функциями

Пакеты-обертки: пакет caret содержит функции для подгонки моделей с последующим предсказанием, включая настройку параметров и и мер значимости переменных. Пакет может использовать с различными инструментами по организации параллельных вычислений (например, MPI, NWS и т.д.). В подобном духе пакет mlr предлагает высокоуровневый интерфейс различным пакетам статистически и машинного обучения. Пакет SuperLearner реализует аналогичный набор инструментов. Пакет h2o реализует платформу машинного обучения общего назначения, у которой есть масштабируемые реализации многих популярных алгоритмов, такие как случайный лес, GBM, GLM (с эластичной сетевой регуляризацией), и глубокое обучение (feedforward многоуровневые сети), среди других.

CORElearn реализует довольно широкий класс машинного обучения.

Конференции

Основные международные конференции — ICML, NIPS, ICPR, COLT.

Международные конференции в странах СНГ — ИОИ.

Основные всероссийские конференции — ММРО, РОАИ.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *