искусственный интеллект машинное обучение нейронные сети
Как работают искусственный интеллект, машинное и глубокое обучение
Об авторе: Андрей Беляев, технический директор (CTO) исследовательской компании Neurodata Lab.
Умные дома, самоуправляемые автомобили, роботы-помощники… Нас окружают инновационные технологии, в основе которых лежат алгоритмы, по своей специфике напоминающие работу человеческого мозга. Их называют по-разному: алгоритмы с использованием машинного обучения, глубокого обучения, а иногда и вовсе искусственный интеллект (ИИ).
В чем разница между этими названиями?
Все задачи, которые может решать человек или компьютер, можно условно разделить на две категории: рутинные и нерутинные.
К рутинным задачам можно отнести те, где достаточно просто найти универсальный путь решения: например, сложение чисел или измерение температуры воздуха.
Искусственным интеллектом сейчас принято называть все, что способно решать нерутинные задачи на уровне, близком к человеческому, а иногда и лучше. Такие задачи окружают нас везде. Камеры над дорогой вычисляют скорость автомобиля, распознают его знак и высылают штраф, а системы безопасности в метро и аэропортах находят преступников в толпе. Все это сегодня принято считать искусственным интеллектом, хотя в действительности алгоритмы, лежащие в основе каждой такой технологии, уникальны. И только некоторые используют машинное обучение.
Получается, что машинное обучение — это обучение ИИ
Искусственный интеллект — это название не какого-то отдельного алгоритма, но скорее группы методов, которыми пользуются для решения различного рода задач. Алгоритмы, которые используют подходы с обучением, являются лишь одной из подгрупп всего того множества алгоритмов, что принято называть искусственным интеллектом.
Машинное обучение — это подход, при котором алгоритм «учится» решать задачу. Один из самых простых примеров алгоритма, использующего машинное обучение, это классификация фотографий на те, где изображены кошки и те, где есть собаки:
Допустим, есть несколько тысяч фотографий кошек и несколько тысяч — собак. Эти данные можно загрузить в алгоритм и заставить его «учиться» отличать кошек от собак, «ругая» за ошибки в классификации и «поощряя» за правильные ответы. В зависимости от количества и качества вводных данных, а также от сложности используемого алгоритма после некоторого количества итераций с «наказанием» и «поощрением», получается обученный алгоритм, которой с разным качеством умеет отличать кошек и собак.
Применяя методы машинного обучения, эти же алгоритмы можно «натренировать» и для выполнения более сложных задач — таких как поиск людей на кадре, определение пола и возраста человека и т.д.
Такие алгоритмы можно научить решать задачи любой сложности?
В теории — да. Но на практике мы сталкиваемся с большим количеством проблем, начиная от недостаточного количества данных для обучения, заканчивая невозможностью интерпретировать действия человека при решении такой же задачи. Получается, что невозможно построить алгоритм, который эти действия бы совершал. Хороший пример — автопилотируемый автомобиль. Научить машину держать полосу, входить в повороты и автоматически перестраивать маршрут, если на дороге ремонт, сравнительно несложно, потому что есть понимание, как вел бы себя человек (а значит, как должна вести себя машина) в таких ситуациях.
Однако научить автомобиль принимать решения в чрезвычайных ситуациях гораздо сложнее: проблема в том, что и самому человеку трудно понять, как именно надо поступать в том или ином экстренном случае. Поэтому человек не может показать алгоритмам примеры хорошего и плохого поведения для таких случаев.
А что насчет глубокого обучения? Чем оно отличается от машинного?
Как машинное обучение является подвидом искусственного интеллекта, так и глубокое обучение является подвидом машинного (см. картинку в начале статьи). В глубоком обучении используются те же подходы: алгоритму дают много данных и «ругают» его за ошибки. Разница здесь в том, что сами алгоритмы глубокого обучения устроены гораздо сложнее и часто используют более серьезные математические модели. Сейчас под алгоритмами глубокого обучения практически всегда подразумевают нейронные сети.
Нейронные сети? Как те, что в мозгу у человека?
Такое сравнение действительно часто используется. Нейронная сеть — это последовательность слоев, каждый из которых, в свою очередь, состоит из нейронов, и каждый выполняет свою роль. Есть нейроны (или структуры нейронов), которые учатся выделять важные элементы на изображениях, например шерсть у кошки или собаки; есть те, которые учатся делать выводы, исходя из выделенных элементов — например, если у животного длинные лапы, то, скорее всего, это собака. Эти нейроны объединяются в группы (слои), а они превращаются в единую искусственную нейронную сеть.
И все же можно как-то сравнить процессы внутри нейросети с деятельностью мозга?
Некоторое количество идей, используемых в нейросетях, разработчики почерпнули из знаний об устройстве человеческого мозга. Одни из самых частых задач для нейросетей — это задачи, связанные с работой с изображениями. Для таких задач используют специальный тип нейросетей, внутри которых есть так называемые сверточные слои.
Если говорить упрощенно, смысл этой сверточной нейронной сети в том, чтобы оценивать каждый элемент картинки (пиксель) не отдельно, а в группе с несколькими соседними, благодаря чему можно находить как базовые фигуры (линии, углы, и т.д.), так и объекты целиком. Примерно такой же процесс происходит и в человеческом мозге при обработке визуальной информации. После снятия всех возможных визуальных признаков в нейросети, как и в человеческом мозге, происходит анализ этих признаков, а затем принимается решение: видим мы, допустим, кошку или собаку.
А как происходит процесс обучения?
Процесс обучения алгоритма во многом напоминает процесс обучения человека. Как мы совершаем ошибки и учимся на них (например, что не стоит засовывать руку в кипящую воду), так и алгоритмы, использующие машинное обучение, совершают ошибки, за что получают штраф.
Как работает нейросеть? В качестве примера можно рассмотреть процесс обучения нейросети распознаванию лиц. Чтобы корректно обучить любую нейросеть, нужно сделать две вещи: собрать достаточное количество данных и определить, за что мы будем ее штрафовать. Применительно к этой задаче необходимо собрать несколько десятков фотографий лиц для каждого из людей, которых надо определить, и штрафовать нейросеть за то, что предсказанный ею человек не совпадает с человеком на фотографии.
Что значит «поощрять» и «штрафовать» нейросеть?
С математической точки зрения нейросеть — это функция с большим количеством параметров. Штрафование этой функции за неверное определения лица — это когда мы, упрощенно говоря, корректируем работу функции таким образом, чтобы в будущем она меньше ошибалась. Соответственно, поощрение нейросети — это когда мы ее просто не штрафуем.
Во всех примерах вы рассказываете про конкретные задачи. А можно ли нейросеть научить думать, как человек?
Это уже скорее философский вопрос. Мыслительный процесс напрямую связан с наличием сознания. Нейронная сеть, как и любой другой алгоритм машинного обучения, по своей сути является лишь математической функцией, и умеет решать лишь одну конкретную задачу. Нейросеть, которую учили отличать кошек и собак, не сможет отличить медведя от слона, ведь она даже не знала, что такие существуют. Процессы же анализа данных, которые происходят в голове у человека, намного сложнее чем те, что происходят в нейросети, так что даже при наличии данных, сопоставимых по размеру с массивом информации, которую за жизнь получает человек, сегодня обучить нейросеть думать, как человек, невозможно.
Подписывайтесь и читайте нас в Яндекс.Дзене — технологии, инновации, эко-номика, образование и шеринг в одном канале.
Machine Learning – не только нейронки
Нейронные сети и глубокое обучение (deep learning) у всех на слуху, но нейросети – это лишь подобласть такого обширного предмета, как машинное обучение (machine learning). Существует несколько сотен других алгоритмов, которые способны быстро и эффективно решать задачи искусственного интеллекта и в большинстве случаев являются более интерпретируемыми для человека. В этой статье рассмотрим алгоритмы классического машинного обучения, принцип работы нейросетей, подготовку данных для обучения моделей и задачи, которые решают с помощью искусственного интеллекта.
Основные задачи машинного обучения
Восстановление регрессии (прогнозирования) – построение модели, способной предсказывать численную величину на основе набора признаков объекта.
Классификация – определение категории объекта на основе его признаков.
Кластеризация – распределение объектов.
Допустим, есть набор данных со статистикой по приложениям. В нем есть следующие сведения: размер, категория, количество скачиваний, количество отзывов, рейтинг, возрастной рейтинг, жанр и цена. С помощью этого набора данных и машинного обучения можно решить такие задачи:
Прогнозирование рейтинга приложения на основе признаков: размер, категория, возрастной рейтинг, жанр и цена – задача регрессии.
Определение категории приложения на основе набора признаков: размер, возрастной рейтинг, жанр и цена – задача классификации.
Разбиение приложений на группы на основании множества признаков (например, количество отзывов, скачиваний, рейтинга) таким образом, чтобы приложения внутри группы были более похожи друг на друга, чем приложения разных групп.
Нейронные сети (многослойный перцептрон)
Существует мнение, что лучшие идеи для изобретений человек заимствует у природы. Нейронные сети – это именно тот случай, ведь сама концепция нейросетей базируется на функциональных особенностях головного мозга.
Принцип работы
Есть определенное количество нейронов, которые между собой связаны и взаимодействуют друг с другом путем передачи сигналов. Также есть рецепторы, которые получают информацию, поступающую извне, и исполнительный орган, на который приходит итоговый сигнал. По схожему принципу работают искусственные нейросети: есть несколько слоев с нейронами и связи между ними (каждая связь имеет свой весовой коэффициент). По связям передаются сигналы в виде численных значений, первый слой выполняет собой роль рецепторов, то есть получает набор признаков для обучения, и есть выходной слой, который выдает ответ.
Нейронные связи в головном мозге («Создаем нейронную сеть», Тарик Рашид)
Пример искусственной трехслойной нейросети («Создаем нейронную сеть», Тарик Рашид)
Каждый слой нейросети оперирует разными представлениями о данных. На рисунке ниже можно увидеть пример использованиям глубокого обучения (нейросети) для распознавания образа на картинке. На входной слой нам поступают пиксели изображений, далее после вычислений между входным и первым скрытым слоем мы получаем границы, на втором скрытом слое – контуры, на третьем – части объектов, на выходном – вероятности принадлежности изображения к каждому типу объектов.
Пример использования нейросети для распознавания образа ( «Глубокое обучение», Ян Гудфеллоу)
Как настраивать
Настраивается путем задания количества узлов, скрытых слоев и выбора функции активации. В искусственных нейронных сетях функция активации нейрона отвечает за выходной сигнал, который определяется входным сигналом или набором входных сигналов.
Задачи: классификация, регрессия, кластеризация.
Классические алгоритмы машинного обучения
K-ближайших соседей
Метод K-ближайших соседей – простой и эффективный алгоритм, его можно описать известной поговоркой: “Скажи мне, кто твой друг, и я скажу, кто ты”.
Принцип работы
Пусть имеется набор данных с заданными классами. Мы можем определить класс неизвестного объекта, если рассмотрим определенное количество ближайших объектов (k) и присвоим тот класс, который имеет большинство “соседей”. Посмотрим на рисунок ниже.
Есть набор точек с двумя классами: синие крестики и красные кружки. Мы хотим определить, к какому классу относится неизвестная зеленая точка. Для этого мы берем k ближайших соседей, в данном случае 3, и смотрим, к каким классам они относятся. Из трех ближайших соседей больше оказалось синих крестиков, соответственно, мы можем предположить, что зеленая точка также, скорее всего, относится к этому классу.
Как настраивать
Необходимо подобрать параметр k (количество ближайших соседей) и метрику для измерения расстояний между объектами.
Задачи: классификация, также может применяться и для задач регрессии.
Линейная регрессия
Линейная регрессия – простая и эффективная модель машинного обучения, способная решать задачи быстро и недорого.
Принцип работы
Модель линейной регрессии можно описать уравнением
Здесь x – это значения признаков, y – целевая переменная, a – весовые коэффициенты признаков. При обучении модели весовые коэффициенты подбираются таким образом, чтобы как можно лучше описывалась линейная зависимость признаков от целевой переменной.
Пример: задача предсказания стоимости квартиры в зависимости от площади и удаленности от метро в минутах. Целевой переменной (y) будет являться стоимость, а признаками (x) – площадь и удаленность.
На рисунке ниже также представлен пример построения линейной регрессии. Красная прямая более точно описывает линейную зависимость x от y.
Как настраивать
Для многих моделей Machine Learning, в частности и для линейной регрессии, можно улучшить итоговое качество с помощью регуляризации.
Регуляризация в статистике, машинном обучении, теории обратных задач — метод добавления некоторых дополнительных ограничений к условию с целью решить некорректно поставленную задачу или предотвратить переобучение, то есть ситуацию, когда модель хорошо показывает себя на тренировочный данных, но перестаёт работать на новых.
Распространенные методы регуляризации для повышения качества модели линейной регрессии:
Ridge — один из методов понижения размерности. Применяется для борьбы с переизбыточностью данных, когда независимые переменные коррелируют друг с другом (мультиколлинеарность), вследствие чего проявляется неустойчивость оценок коэффициентов линейной регрессии.
LASSO — также как и Ridge, применяется для борьбы с переизбыточностью данных.
Elastic-Net — модель регрессии с двумя регуляризаторами L1, L2. Частными случаями являются модели LASSO L1 = 0 и Ridge регрессии L2 = 0.
Задачи: регрессия.
Логистическая регрессия
Логистическая регрессия – также простая и эффективная модель машинного обучения, способная решать задачи быстро и недорого.
Принцип работы
Указанная выше сумма проходит через функцию сигмоиды, которая возвращает число от 0 до 1, характеризующее вероятность отнесения объекта к классу 1. Пример: логистическую регрессию часто применяют в задачах кредитного скоринга, когда по определенным данным о клиенте нужно определить, стоит ли выдавать ему кредит.
Иллюстрация алгоритмов линейной и логистической регрессии (источник)
Как настраивать
Задачи: классификация.
Метод опорных векторов (SVM)
Принцип работы
Чтобы лучше всего понять алгоритм метода опорных векторов, рассмотрим рисунок. На рисунке приведен пример двух линейно разделимых классов в двумерном пространстве. Идея алгоритма заключается в нахождении оптимальной разделяющей прямой (или гиперплоскости для более высоких пространств) для отделения объектов одного класса от другого. Пунктирные линии выделяют разделяющую полосу и проводятся через объекты, которые называют опорными. Чем шире разделяющая полоса, тем качественнее модель SVM. Чтобы определить класс объекта, достаточно определить, с какой стороны гиперплоскости он находится.
Как настраивать
Необходимо подобрать оптимальное ядро (функцию переводящую признаковое пространство в более высокую размерность), если линейная зависимость слабо выражена.
Задачи: классификация и регрессия.
Сравнение классических алгоритмов с нейросетью
Для примера мы взяли датасет со статистикой приложений в Play Market. Датасет содержит следующие данные: размер приложения, возрастной рейтинг, количество скачиваний, жанр, категория и др. На данном датасете были обучены модели: линейная регрессия, метод опорных векторов, нейронная сеть (многослойный перцептрон).
В ходе экспериментов были подобраны следующие параметры для моделей машинного обучения:
Линейная регрессия – модели линейной регрессии с регуляризацией не показали результат, превосходящий качество классической линейной регрессии.
Метод опорных векторов – модель метода опорных векторов с RBF-ядром показала лучший результат по сравнению с другими ядрами.
Многослойный перцептрон – оптимальный результат показала модель с 4 слоями, 300 нейронами и функций активацией ReLu. При попытках увеличить количество слоев и нейронов прирост качества не наблюдался.
Решена задача прогнозирования потенциального рейтинга приложения в зависимости от его признаков.
Результаты ошибки среднего отклонения от истинного значения целевой переменной в процентах для каждой модели:
Линейная регрессия – 6.13 %
Метод опорных векторов – 6.01%
Нейронная сеть – 6.41%
Таким образом, классические алгоритмы машинного обучения и нейросети показали приблизительно одинаковое качество. Это связано с тем, что нейросети хорошо обучаются на датасетах с большим размером и обычно применяются для решения задач, где зависимость в данных очень сложна. Поэтому для решения данной задачи можно обойтись применением классических алгоритмов и не прибегать к использованию нейросетей.
На гистограмме ниже представлены итоговые весовые коэффициенты a, полученные при обучении модели линейной регрессии. Чем больше столбик, тем выше влияние признака на целевую переменную. Если столбик направлен вверх, то он оказывает положительное влияние на рост целевой переменной, если вниз – то отрицательное. Другими словами, если приложение имеет жанр “Other” или “Tools”, то, скорее всего, его рейтинг будет высоким, а если у него категория “FAMILY” или “GAME” – то, вероятно, низким. Данная интерпретация весовых коэффициентов линейной регрессии бывает очень полезной при анализе данных.
Гистограмма значений коэффициентов линейной регрессии
Больше наших статей по машинному обучению и обработке изображений:
Искусственный интеллект, машинное обучение и глубокое обучение: в чём разница
Компьютер запросто диагностирует рак, управляет автомобилем и умеет обучаться. Почему же машины пока не захватили власть над человечеством?
Мы пользуемся Google-картами, позволяем сайтам подбирать для нас интересные фильмы и советовать, что купить. И, в общем-то, слышали, что под капотом всех этих умных вещей — искусственный интеллект, машинное обучение и deep learning. Но сможете ли вы с ходу отличить одно от другого? Разбираемся на примерах.
Что такое искусственный интеллект
Искусственный интеллект (англ. artificial intelligence) — это способность компьютера обучаться, принимать решения и выполнять действия, свойственные человеческому интеллекту.
Кроме того, ИИ — это наука на стыке математики, биологии, психологии, кибернетики и ещё кучи всего. Она изучает технологии, которые позволяют человеку писать «интеллектуальные» программы и учить компьютеры решать задачи самостоятельно. Главная задача ИИ — понять, как устроен человеческий интеллект, и смоделировать его.
В области искусственного интеллекта есть подразделы. К ним относятся робототехника, наука о компьютерном зрении, обработка естественного языка и машинное обучение.
Хотите знать, может ли машина мыслить и чувствовать как человек? Приходите на курс «Философия искусственного интеллекта». Здесь вы получите новые знания об ИИ, обсудите актуальные вопросы с преподавателями и однокурсниками и прокачаете навык публичных выступлений.
Пишет про digital и машинное обучение для корпоративных блогов. Топ-автор в категории «Искусственный интеллект» на Medium. Kaggle-эксперт.
Каким бывает искусственный интеллект
Исследователи обычно делят ИИ на три группы:
Слабый ИИ (Weak, или Narrow AI)
Слабый интеллект — тот, что нам уже удалось создать. Такой ИИ способен решать определённую задачу. Зачастую даже лучше, чем человек. Например, как Deep Blue — компьютерная программа, которая обыграла Гарри Каспарова в шахматы ещё в 1996 году. Но такая Deep Blue не умеет делать ничего другого и никогда этому не научится. Слабый ИИ используют в медицине, логистике, банковском деле, бизнесе:
Это несколько примеров, в реальности применений намного больше.
Сильный ИИ (Strong, или General AI)
Как выглядел бы сильный искусственный интеллект, можно увидеть в игре Detroit: Become Human.
Во вселенной Detroit роботы способны учиться, мыслить, чувствовать, осознавать себя и принимать решения. Одним словом, становятся похожи на человека. А в обычной жизни ближе всего к General AI чат-боты и виртуальные ассистенты, которые имитируют человеческое общение. Здесь ключевое слово — имитируют. Siri или Алиса не думают — и неспособны принимать решения в ситуациях, которым их не обучили. Сильный искусственный интеллект пока остаётся мечтой.
Суперинтеллект (Superintelligence)
Суперинтеллект мы не только не создали, но и не имеем пока что ни малейшего представления, как это сделать и можно ли вообще. Это не просто умные машины, а компьютеры, которые во всём превосходят людей. Проще говоря, что-то из области фантастики.
Машинное обучение: как учится ИИ
Машинное обучение (англ. machine learning) — это один из разделов науки об ИИ. Здесь используются алгоритмы для анализа данных, получения выводов или предсказаний в отношении чего-либо. Вместо того чтобы кодировать набор команд вручную, машину обучают и дают ей возможность научиться выполнять поставленную задачу самостоятельно.
Чтобы машина могла принимать решения, необходимы три вещи:
В машинном обучении много разных алгоритмов. Один из самых простых — линейная регрессия. Её применяют, если есть линейная зависимость между переменными. Пример: чем больше сумма заказа, тем больше вы оставите чаевых. По имеющимся данным можно предсказать сумму чаевых в будущем. В общем-то, простая математика.
Есть байесовские алгоритмы. В их основе применение теоремы Байеса и теории вероятности. Эти алгоритмы используют для работы с текстовыми документами — например, для спам-фильтрации. Программе нужно дать наборы данных по категориям «спам» и «не спам». Дальше алгоритм будет самостоятельно оценивать вероятность того, что слова «Бесплатные туры для пенсионеров» и «Закажи маме тур, пожалуйста» относятся к той или иной категории.
А ещё есть нейронные сети, о них вы наверняка слышали. Они относятся к методам глубокого машинного обучения, и об этом чуть подробнее.
Deep learning: глубокое обучение для разных целей
Глубокое обучение — подраздел машинного обучения. Алгоритмам глубокого обучения не нужен учитель, только заранее подготовленные (размеченные) данные.
Самый популярный, но не единственный метод глубокого обучения, — искусственные нейронные сети (ИНС). Они больше всего похожи на то, как устроен человеческий мозг.
Нейронные сети — это набор связанных единиц (нейронов) и нейронных связей (синапсов). Каждое соединение передаёт сигнал от одного нейрона к другому, как в мозге человека. Обычно нейроны и синапсы организованы в слои, чтобы обрабатывать информацию. Первый слой нейросети — это вход, который получает данные. Последний — выход, результат работы. Например, несколько категорий, к одной из которых мы просим отнести то, что было отправлено на вход. И между ними — скрытые слои, которые выполняют преобразование.
По сути, скрытые слои выполняют какую-то математическую функцию. Мы её не задаём, программа сама учится выводить результат. Можно научить нейросеть классифицировать изображения или находить на изображении нужный объект. Помните, как reCAPTCHA просит найти все изображения грузовиков или светофоров, чтобы доказать, что вы не робот? Нейронная сеть выполняет то же самое, что и наш мозг, — видит знакомые элементы и понимает: «О, кажется, это грузовик!»
А ещё нейросети могут генерировать объекты: музыку, тексты, изображения. Например, компания Botnik скормила нейросети все книги про Гарри Поттера и попросила написать свою. Получился «Гарри Поттер и портрет того, что выглядит как огромная куча пепла». Звучит немного странно, но как минимум с точки зрения грамматики это сочинение имеет смысл.
Сегодня нейронные сети могут применяться практически для любой задачи. Например, при диагностике рака, прогнозировании продаж, идентификации лиц в системах безопасности, машинных переводах, обработке фотографий и музыки.
Чтобы обучить нейросеть, нужны гигантские наборы тщательно отобранных данных. Например, для распознавания сортов огурцов нужно обработать 1,5 млн разных фотографий. Не получится просто слить рандомные картинки или текст из интернета — их нужно подготовить: привести к одному формату и удалить то, что точно не подходит (например, мы классифицируем пиццу, а в наборе данных у нас фото грузовика). На разметку данных — подготовку и систематизацию — уходят тысячи человеко-часов.
Чтобы создать новую нейросеть, требуется задать алгоритм, прогнать через него все данные, протестировать и неоднократно оптимизировать. Это сложно и долго. Поэтому иногда проще воспользоваться более простыми алгоритмами — например, регрессией.
Подведём итоги
Искусственный интеллект — одновременно и наука, которая помогает создавать «умные» машины, и способность компьютера обучаться и принимать решения.
Машинное обучение — одна из областей искусственного интеллекта. МО использует алгоритмы для анализа данных и получения выводов.
А глубокое обучение — лишь один из методов машинного обучения, в рамках которого компьютер учится без учителя подспудно, с помощью данных.
Если чувствуете, что вас привлекает проектирование машинного интеллекта, продолжить образование можно на нашем курсе. Вы научитесь писать алгоритмы, собирать и сортировать данные и получите престижную профессию Data Scientist — специалист по машинному обучению.