как формируются нейронные связи в головном мозге

Молекулы радости: как наш мозг создает нейронные связи и формирует привычки и интеллект

Теории и практики

Гормоны влияют на механизмы образования эмоций и действие различных нейрохимических веществ, и, как следствие, участвуют в формировании устойчивых привычек. Автор книги «Гормоны счастья» заслуженный профессор Калифорнийского университета Лоретта Грациано Бройнинг предлагает пересмотреть шаблоны нашего поведения и научиться запускать действие серотонина, дофамина, эндорфина и окситоцина. T&P публикуют главу из книги о том, как самонастраивается наш мозг, реагируя на опыт и формируя соответствующие нейронные связи.

как формируются нейронные связи в головном мозге. Смотреть фото как формируются нейронные связи в головном мозге. Смотреть картинку как формируются нейронные связи в головном мозге. Картинка про как формируются нейронные связи в головном мозге. Фото как формируются нейронные связи в головном мозге

Лоретта Грациано Бройнинг

основатель Inner Mammal Institute, заслуженный профессор Калифорнийского университета, автор нескольких книг, ведет блог «Your Neurochemical Self» на сайте PsychologyToday.com

Перекладывая нейронные пути

как формируются нейронные связи в головном мозге. Смотреть фото как формируются нейронные связи в головном мозге. Смотреть картинку как формируются нейронные связи в головном мозге. Картинка про как формируются нейронные связи в головном мозге. Фото как формируются нейронные связи в головном мозге

«Гормоны счастья»

Каждый человек рождается с множеством нейронов, но очень небольшим количеством связей между ними. Эти связи строятся по мере взаимодействия с окружающим нас миром и в конечном счете и создают нас такими, какие мы есть. Но иногда у вас возникает желание несколько модифицировать эти сформировавшиеся связи. Казалось бы, это должно быть легко, потому что они сложились у нас без особых усилий с нашей стороны еще в молодости. Однако формирование новых нейронных путей во взрослом возрасте оказывается неожиданно сложным делом. Старые связи настолько эффективны, что отказ от них создает у вас ощущение, что возникает угроза выживанию. Любые новые нервные цепочки являются весьма хрупкими по сравнению со старыми. Когда вы сможете понять, как трудно создаются в мозгу человека новые нейронные пути, вы будете радоваться своей настойчивости в этом направлении больше, чем ругать себя за медленный прогресс в их формировании.

Пять способов, с помощью которых самонастраивается ваш мозг

Мы, млекопитающие, способны в течение жизни создавать нейронные связи, в отличие от видов с устойчивыми связями. Эти связи создаются по мере того, как окружающий нас мир воздействует на наши органы чувств, которые посылают соответствующие электрические импульсы в мозг. Эти импульсы прокладывают нейронные пути, по которым в будущем быстрее и легче побегут другие импульсы. Мозг каждого отдельного человека настроен на индивидуальный опыт. Ниже приведены пять способов, с помощью которых опыт физически меняет ваш мозг.

как формируются нейронные связи в головном мозге. Смотреть фото как формируются нейронные связи в головном мозге. Смотреть картинку как формируются нейронные связи в головном мозге. Картинка про как формируются нейронные связи в головном мозге. Фото как формируются нейронные связи в головном мозге

Жизненный опыт изолирует молодые нейроны

Постоянно работающий нейрон с течением времени покрывается оболочкой из особого вещества, которое называется миелин. Это вещество значительно повышает эффективность нейрона как проводника электрических импульсов. Это можно сравнить с тем, что изолированные провода могут выдерживать значительно большую нагрузку, чем оголенные. Покрытые миелиновой оболочкой нейроны работают без затраты излишних усилий, что свойственно медленным, «открытым» нейронам. Нейроны с миелиновой оболочкой выглядят скорее белыми, чем серыми, поэтому мы разделяем наше мозговое вещество на «белое» и «серое».

В основном покрытие нейронов миелином завершается у ребенка к возрасту двух лет, по мере того как его тело научается двигаться, видеть и слышать. Когда рождается млекопитающее, в его мозгу должна сформироваться ментальная модель окружающего его мира, что предоставит ему возможности для выживания. Поэтому выработка миелина у ребенка максимальна при рождении, а к семи годам она несколько снижается. К этому времени вам уже не надо учить заново истины, что огонь обжигает, а земное тяготение может заставить вас упасть.

Если вы думаете, что миелин «зря расходуется» на усиление нейронных связей именно у молодых, то следует понимать, что природа устроила именно так по обоснованным эволюционным причинам. На протяжении большей части истории человечества люди заводили детей сразу по достижении половой зрелости. Нашим предкам нужно было успеть решить первоочередные насущные задачи, которые обеспечивали выживание их потомства. Во взрослом состоянии они больше использовали новые нейронные связи, чем перенастраивали старые.

С достижением периода полового созревания человека формирование миелина в его организме вновь активизируется. Это происходит из-за того, что млекопитающему предстоит осуществить новую настройку своего мозга на поиск наилучшего брачного партнера. Часто в период спаривания животные мигрируют в новые группы. Поэтому им приходится привыкать к новым местам в поисках пищи, а также к новым соплеменникам. В поисках брачной пары люди также нередко вынуждены перемещаться в новые племена или кланы и постигать новые обычаи и культуру. Рост выработки миелина в период полового созревания как раз всему этому и способствует. Естественный отбор устроил мозг таким, что именно в этот период он меняет ментальную модель окружающего мира.

Все, что вы целенаправленно и постоянно делаете в годы своего «миелинового расцвета», создает мощные и разветвленные нейронные пути в вашем мозгу. Именно поэтому так часто гениальность человека проявляется именно в детстве. Именно поэтому маленькие горнолыжники так лихо пролетают мимо вас на горных спусках, которые вы не можете освоить, сколько ни стараетесь. Именно поэтому таким трудным становится изучение иностранных языков с окончанием юношеского возраста. Будучи уже взрослыми, вы можете запоминать иностранные слова, но чаще всего вы не можете быстро подбирать их для выражения своих мыслей. Это происходит потому, что вербальная память концентрируется у вас в тонких, не покрытых миелином нейронах. Мощные миелинизированные нейронные связи заняты у вас высокой мыслительной деятельностью, поэтому новые электрические импульсы с трудом находят свободные нейроны. […]

Колебания активности организма в миелинизации нейронов могут помочь вам понять, почему у людей возникают те или иные проблемы в разные периоды жизни. […] Помните, что человеческий мозг не достигает своей зрелости автоматически. Поэтому часто говорят, что мозг у подростков еще не вполне сформировавшийся. Мозг «миелинирует» весь наш жизненный опыт. Так что если в жизни подростка будут иметь место эпизоды, когда он получает незаслуженное вознаграждение, то он накрепко запоминает, что награду можно получить и без усилий. Некоторые родители прощают подросткам плохое поведение, говоря, что «их мозг еще не полностью оформился». Именно поэтому очень важно целенаправленно контролировать тот жизненный опыт, который они впитывают. Если позволить подростку избегать ответственности за свои действия, то можно сформировать у него разум, который будет ожидать возможности уклонения от такой ответственности и в дальнейшем. […]

как формируются нейронные связи в головном мозге. Смотреть фото как формируются нейронные связи в головном мозге. Смотреть картинку как формируются нейронные связи в головном мозге. Картинка про как формируются нейронные связи в головном мозге. Фото как формируются нейронные связи в головном мозге

как формируются нейронные связи в головном мозге. Смотреть фото как формируются нейронные связи в головном мозге. Смотреть картинку как формируются нейронные связи в головном мозге. Картинка про как формируются нейронные связи в головном мозге. Фото как формируются нейронные связи в головном мозге

Жизненный опыт повышает эффективность работы синапса

Синапс — это место контакта (небольшой промежуток) между двумя нейронами. Электрический импульс в нашем мозгу может передвигаться только при том условии, что он достигает конца нейрона с достаточной силой, чтобы «перепрыгнуть» через этот промежуток к следующему нейрону. Эти барьеры помогают нам фильтровать на самом деле важную входящую информацию от не имеющего значения так называемого «шума». Прохождение электрического импульса через синаптические промежутки — это очень сложный природный механизм. Его можно представить себе так, что на кончике одного нейрона скапливается целая флотилия лодок, которая транспортирует нейронную «искру» в специальные приемные доки, имеющиеся у рядом расположенного нейрона. С каждым разом лодки лучше справляются с транспортировкой. Вот почему получаемый нами опыт увеличивает шансы передачи электрических сигналов между нейронами. В мозге человека имеется более 100 триллионов синаптических связей. И наш жизненный опыт играет важную роль, чтобы проводить по ним нервные импульсы так, чтобы это соответствовало интересам выживания.

На сознательном уровне вы не можете решать, какие именно синаптические связи вам следует развивать. Они формируются двумя основными способами:

1) Постепенно, путем многократного повторения.

2) Одномоментно, под воздействием сильных эмоций.

[…] Синаптические связи строятся на основе повторения или эмоций, пережитых вами в прошлом. Ваш разум существует за счет того, что ваши нейроны образовали связи, которые отражают удачный и неудачный опыт. Некоторые эпизоды из этого опыта были «закачаны» в ваш мозг благодаря «молекулам радости» или «молекулам стресса», другие были закреплены в нем благодаря постоянным повторениям. Когда модель окружающего мира соответствует той информации, которая содержится в ваших синаптических связях, электрические импульсы пробегают по ним легко, и вам кажется, что вы вполне в курсе происходящих вокруг вас событий.

как формируются нейронные связи в головном мозге. Смотреть фото как формируются нейронные связи в головном мозге. Смотреть картинку как формируются нейронные связи в головном мозге. Картинка про как формируются нейронные связи в головном мозге. Фото как формируются нейронные связи в головном мозге

Нейронные цепочки формируются только за счет активных нейронов

Те нейроны, которые активно не используются мозгом, начинают постепенно ослабевать уже у двухлетнего ребенка. Как ни странно, это способствует развитию его интеллекта. Сокращение числа активных нейронов позволяет малышу не скользить рассеянным взглядом по всему вокруг, что свойственно новорожденному, а опираться на нейронные пути, которые у него уже сформировались. Двухлетний малыш способен уже самостоятельно концентрироваться на том, что доставляло ему в прошлом приятные ощущения типа знакомого лица или бутылочки с его любимой едой. Он может остерегаться того, что в прошлом вызвало у него отрицательные эмоции, например драчливый товарищ по играм или закрытая дверь. Юный мозг полагается уже на свой небольшой жизненный опыт в том, что касается удовлетворения нужд и избегания потенциальных угроз.

Как бы ни строились нейронные связи в мозге, вы ощущаете их как «истину»

В возрасте от двух до семи лет процесс оптимизации мозга у ребенка продолжается. Это заставляет его соотносить новый опыт со старым, вместо того чтобы накапливать новые переживания каким-то отдельным блоком. Тесно переплетенные нейронные связи и нервные пути составляют основу нашего интеллекта. Мы создаем их, разветвляя старые нейронные «стволы», вместо того чтобы создавать новые. Таким образом, к семи годам мы обычно четко видим то, что уже однажды видели, и слышим уже однажды услышанное.

Вы можете подумать, что это плохо. Однако подумайте над ценностью всего этого. Представьте себе, что вы солгали шестилетнему ребенку. Он верит вам, потому что его мозг жадно впитывает все, что ему предлагается. Теперь предположите, что вы обманули ребенка восьми лет. Он уже подвергает ваши слова сомнению, потому что сравнивает поступающую информацию с уже имеющейся у него, а не просто «проглатывает» новые сведения. В возрасте восьми лет ребенку уже труднее формировать новые нейронные связи, что толкает его на использование уже имеющихся. Опора на старые нейронные цепочки позволяет ему распознать ложь. Это имело огромное значение с точки зрения выживания для того времени, когда родители умирали молодыми и детям с малых лет приходилось привыкать заботиться о себе. В юные годы мы формируем определенные нейронные связи, позволяя другим постепенно угасать. Некоторые из них исчезают, как ветер уносит осенние листья. Это помогает сделать мыслительный процесс человека более эффективным и целенаправленным. Конечно, с возрастом вы получаете все новые знания. Однако эта новая информация концентрируется в тех областях мозга, в которых уже существуют активные электрические пути. Например, если наши предки рождались в охотничьих племенах, то быстро набирали опыт охотника, а если в племенах землепашцев — сельскохозяйственный опыт. Таким образом мозг настраивался на выживание в том мире, в котором они реально существовали. […]

как формируются нейронные связи в головном мозге. Смотреть фото как формируются нейронные связи в головном мозге. Смотреть картинку как формируются нейронные связи в головном мозге. Картинка про как формируются нейронные связи в головном мозге. Фото как формируются нейронные связи в головном мозге

как формируются нейронные связи в головном мозге. Смотреть фото как формируются нейронные связи в головном мозге. Смотреть картинку как формируются нейронные связи в головном мозге. Картинка про как формируются нейронные связи в головном мозге. Фото как формируются нейронные связи в головном мозге

Между активно используемыми вами нейронами образуются новые синаптические связи

Каждый нейрон может иметь много синапсисов, потому что у него бывает много отростков или дендритов. Новые отростки у нейронов образуются при его активной стимуляции электроимпульсами. По мере того как дендриты растут в направлении точек электрической активности, они могут приблизиться настолько, что электрический импульс от других нейронов может преодолеть расстояние между ними. Таким образом рождаются новые синаптические связи. Когда подобное происходит, на уровне сознания вы получаете связь между двумя идеями, например.

Свои синаптические связи вы ощущать не можете, но легко можете увидеть это в других. Человек, любящий собак, смотрит на весь окружающий мир через призму этой привязанности. Человек, увлеченный современными технологиями, все на свете связывает с ними. Любитель политики оценивает окружающую реальность политически, а религиозно убежденный человек — с позиций религии. Один человек видит мир позитивно, другой — негативно. Как бы ни строились нейронные связи в мозге, вы не ощущаете их как многочисленные отростки, похожие на щупальца осьминога. Вы ощущаете эти связи как «истину».

как формируются нейронные связи в головном мозге. Смотреть фото как формируются нейронные связи в головном мозге. Смотреть картинку как формируются нейронные связи в головном мозге. Картинка про как формируются нейронные связи в головном мозге. Фото как формируются нейронные связи в головном мозге

Рецепторы эмоций развиваются или атрофируются

Для того чтобы электрический импульс мог пересечь синаптическую щель, дендрит с одной стороны должен выбросить химические молекулы, которые улавливаются специальными рецепторами другого нейрона. Каждое из нейрохимических веществ, вырабатываемых нашим мозгом, имеет сложную структуру, которая воспринимается только одним специфическим рецептором. Она подходит к рецептору, как ключ к замку. Когда вас захлестывают эмоции, то вырабатывается больше нейрохимических веществ, чем может уловить и обработать рецептор. Вы чувствуете себя ошеломленным и дезориентированным до тех пор, пока ваш мозг не создаст больше рецепторов. Так вы адаптируетесь к тому, что «вокруг вас что-то происходит».

Когда рецептор нейрона продолжительное время неактивен, он исчезает, оставляя место для появления других рецепторов, которые могут вам понадобиться. Гибкость в природе означает, что рецепторы у нейронов должны либо использоваться, либо они могут потеряться. «Гормоны радости» постоянно присутствуют в мозге, осуществляя поиск «своих» рецепторов. Именно так вы и «узнаете» причину своих позитивных ощущений. Нейрон «срабатывает», потому что подходящие молекулы гормонов открывают замок его рецептора. А затем на основе этого нейрона создается целая нейронная цепь, которая подсказывает вам, откуда ожидать радости в будущем.

Источник

Всё, что вы всегда хотели знать о взрослом нейрогенезе, но боялись спросить

Всё, что вы всегда хотели знать о взрослом нейрогенезе, но боялись спросить

Картина художника и дипломированного нейрофизиолога Грега Данна, изображающая одну из главных зон взрослого нейрогенеза — гиппокамп.

Автор
Редакторы

Статья на конкурс «био/мол/текст»: Выражение «нервные клетки не восстанавливаются» является одним из лидеров среди расхожих в быту утверждений о человеческом мозге. При этом уже 20 лет как доказана его ложность, а количество рассматривающих это самое восстановление статей до сих пор увеличивается чуть ли не по экспоненте. Уже установлены зоны, где оно проходит, его функциональное значение, а также огромное количество влияющих на него факторов. А сколько еще предстоит открыть.

как формируются нейронные связи в головном мозге. Смотреть фото как формируются нейронные связи в головном мозге. Смотреть картинку как формируются нейронные связи в головном мозге. Картинка про как формируются нейронные связи в головном мозге. Фото как формируются нейронные связи в головном мозге

Конкурс «био/мол/текст»-2015

Эта работа опубликована в номинации «Лучшая обзорная статья» конкурса «био/мол/текст»-2015.

Спонсором номинации «Лучшая статья о механизмах старения и долголетия» является фонд «Наука за продление жизни». Спонсором приза зрительских симпатий выступила фирма Helicon.

Спонсоры конкурса: лаборатория биотехнологических исследований 3D Bioprinting Solutions и студия научной графики, анимации и моделирования Visual Science.

Пошатнуть стереотип оказалось непросто.

Еще в начале прошлого века потеря нейронов в результате травмы или старения считалась фатальной — ведь даже лучшие умы настаивали на невозможности новообразования нейронов (или нейрогенез) у взрослых особей высших позвоночных. Впервые это постулировал гениальный С. Рамон-и-Кахаль [1], у которого на тот момент просто не могло быть инструментов исследования мозга, способных фиксировать малоинтенсивные постнатальные процессы. Авторитет Рамон-и-Кахаля был огромен, к тому же было известно, что с возрастом масса мозга снижается. О наличии малого пула стволовых клеток поводов задуматься не было, а отсутствие знаний о пластичности мозга не позволяло решить проблему интеграции новых нейронов в сложнейшую систему старых.

В результате убежденность в невозможности образования нервных клеток во взрослом состоянии была настолько твердой, что стала причиной ряда драматических историй в науке. Одним из первых, кто говорил о существовании взрослого нейрогенеза, был Джозеф Альтман. Используя новый для того времени метод авторадиографии с меченым тимидином (рис. 1), он и его сотрудники выпустили в 60-х целый ряд работ, утверждавших протекание нейрогенеза в зубчатой фасции гиппокампа, обонятельных луковицах и коре головного мозга у взрослых крыс, морских свинок, а также в новой коре у кошек [2].

как формируются нейронные связи в головном мозге. Смотреть фото как формируются нейронные связи в головном мозге. Смотреть картинку как формируются нейронные связи в головном мозге. Картинка про как формируются нейронные связи в головном мозге. Фото как формируются нейронные связи в головном мозге

Рисунок 1. Первые признаки взрослого нейрогенеза. Животным вводили 3 Н-тимидин — радиоактивный аналог обычного нуклеотида тимидина, — который тоже встраивается в ДНК делящейся клетки, но который потом можно регистрировать методом авторадиографии.

Альтман также предположил, что «взрослорождённые» нейроны имеют ключевое значение в процессах обучения и формирования памяти. Несмотря на то, что работы были выпущены в ведущих научных журналах, ученое сообщество проигнорировало их выводы, противоречившие установившемуся стереотипу. В результате Альтман прекратил работы по этому направлению. В начале 80-х его утверждения дополнились ультраструктурными доказательствами того, что возникающие в мозге взрослых крыс клетки похожи на нейроны. Кроме того, процессы деления были зафиксированы уже в мозге взрослых приматов — макак. Эти результаты получил Майкл Каплан, известный биолог и врач, позднее работавший в Университете Джонса Хопкинса и Национальном институте по проблемам старения (США). В ответ на его статьи некоторые именитые ученые говорили, что подобные результаты, полученные на крысах, не могут быть показательными, так как крысы не прекращают расти в течение жизни, следовательно, не могут когда-либо считаться «взрослыми». А обнаруженные деления в мозге макак сочли недостаточными для доказательства существования у них значительного нейрогенеза. Такие реакции не вдохновляли Каплана на продолжение исследований этой проблемы, и он занялся реабилитационной медициной [3].

. и всё же это удалось!

Одним из поворотных моментов в изучении нейрогенеза стала серия статей Фернандо Ноттебома, вышедшая в 80-х и 90-х годах. Сейчас Ноттебом — глава отдела экологии и этологии Рокфеллеровского университета, а тогда он занимался мозгом птиц, в частности — вокальным центром канареек. В ходе его работы выяснилось, что в отделах их мозга, гомологичных коре и гиппокампу приматов, помимо гибели происходит образование огромного количества новых клеток! При этом многие новые клетки являются нейронами и образуют синапсы, а активность всего этого процесса коррелирует со сложностью окружающей птицу среды. Несмотря на то, что многими эти результаты списывались на некую специфику птиц, они сильно сдвинули общественное мнение [3].

Исследование нейрогенеза продолжилось с новыми силами после введения в научную практику синтетических аналогов тимидина. Такие аналоги куда легче потом обнаружить в тканях, чем радиоактивные, которые использовал Альтман. Кроме того, были открыты маркеры клеток разных типов: нейронов различной степени зрелости, клеток глии, а также любых клеток, находящихся в фазе митоза, то есть делящихся. Это позволило еще увереннее говорить об активном нейрогенезе в зубчатой фасции гиппокампа и в стенках желудочков мозга с проекциями в обонятельные луковицы (рис. 2) [4]. Последние работы демонстрируют нейрогенез и в ряде других структур мозга: в хвостатом ядре, фронтальной коре, первичной и вторичной моторной и соматосенсорной коре (рис. 3) [5], [6]. Но недостаточно высокая активность процесса всё же не позволяет называть эти зоны нейрогенными, в отличие от двух вышеназванных.

как формируются нейронные связи в головном мозге. Смотреть фото как формируются нейронные связи в головном мозге. Смотреть картинку как формируются нейронные связи в головном мозге. Картинка про как формируются нейронные связи в головном мозге. Фото как формируются нейронные связи в головном мозге

Рисунок 2. Зоны мозга, в которых происходит нейрогенез: субвентрикулярная зона мозга (SVZ) в боковых стенках первых двух желудочков и субгранулярная зона зубчатой фасции гиппокампа (SGZ). У грызунов образующиеся в SVZ клетки потом мигрируют по ростральному миграционному тракту в обонятельные луковицы.

как формируются нейронные связи в головном мозге. Смотреть фото как формируются нейронные связи в головном мозге. Смотреть картинку как формируются нейронные связи в головном мозге. Картинка про как формируются нейронные связи в головном мозге. Фото как формируются нейронные связи в головном мозге

Рисунок 3. Зоны мозга человека, в которых происходит нейрогенез. У приматов клетки, образующиеся в субвентрикулярной области, мигрируют еще и в полосатое тело, которое представляет собой анатомическую структуру мозга, отвечающую за мышечный тонус, формирование условных рефлексов, а также регулирующую некоторые поведенческие реакции.

Нейрогенез в желудочках мозга значительно усиливается при каком-либо обонятельном опыте, а также при беременности у грызунов, так как узнавание детенышей у них сильно связано с обонянием [7], [8]. Результаты работ по исследованию нейрогенеза в этой зоне у человека пока не приводят к окончательным выводам: часть из них свидетельствует о его протекании у человека, другая ставит под сомнение миграцию нейронов в обонятельные луковицы. Недавно было показано, что у приматов новообразованные нейроны из субвентрикулярной зоны могут мигрировать в полосатое тело (или стриатум), отвечающее за сложные двигательные реакции и формирование условных рефлексов [9]. С повреждениями стриатума связан синдром Туретта, а также более серьезные проблемы, такие как болезни Паркинсона и Хантингтона. Поэтому в будущем можно рассчитывать на появление ряда работ по связанному с этой областью нейрогенезу.

Нейрогенез оказался важным инструментом в нашем организме.

Пожалуй, для человека самой важной нейрогенной зоной всё же можно назвать зубчатую фасцию гиппокампа. Гиппокамповая формация является частью лимбической системы и участвует в исполнении таких функций мозга, как интеграция и распределение по мозгу сенсорной информации, ответ на новизну, регуляция настроения и активности организма. Будучи частью круга Пейпеца, гиппокамп удерживает информацию при бодрствовании и участвует в ее переводе в кору больших полушарий во время сна, то есть из кратковременной памяти в долговременную. Нейрогенез вовлечен в осуществление некоторых из этих функций, выполнение которых становится возможным благодаря специфическим характеристикам образующихся клеток — в частности, молодые гранулярные клетки зубчатой фасции имеют более низкий порог долговременной потенциации, чем старшие [10]. Считается, что подобная пластичность играет роль в процессах обучения и памяти [11].

Скорость образования новых нейронов гиппокампа для взрослой крысы оценивается в 9000 клеток в сутки, однако большинство новообразованных клеток погибает между первой и второй неделями после своего рождения, из-за чего число окончательно интегрировавшихся в гиппокамп новых нейронов в месяц равно примерно 25000, что составляет около 3,3% их популяции [12]. Скорость нейрогенеза у человека оценивается в 700 нейронов ежедневно, а в год обновляется около 1,75% всего гиппокампа или же 0,004% нейронов его зубчатой фасции [13]. Половая специфика в этих показателях отсутствует, а с возрастом активность процесса снижается, при этом «качество» предшественников остается прежним, так как in vitro они культивируются так же хорошо, как и в молодом возрасте. Это позволяет предположить, что с возрастом происходит удлинение продолжительности клеточного цикла предшественников нервных клеток in vivo [14].

Стадии нейрогенеза в зубчатой фасции подробно описаны по морфологии клеток и набору специфических клеточных маркеров (рис. 4) [15].

как формируются нейронные связи в головном мозге. Смотреть фото как формируются нейронные связи в головном мозге. Смотреть картинку как формируются нейронные связи в головном мозге. Картинка про как формируются нейронные связи в головном мозге. Фото как формируются нейронные связи в головном мозге

Рисунок 4. Схема дифференцировки нервных стволовых клеток зубчатой фасции со специфическими маркерами разных стадий. Покоящиеся нервные предшественники (quiescent neural progenitors, в ранней классификации называемые радиальной глией) после активации цитокинами, ростовыми или иными факторами начинают делиться асимметричным митозом с образованием в базальной части делящегося нервного предшественника (amplifying neural progenitor, в ранней классификации — нерадиальный предшественник). Он, в свою очередь дважды поделившись, выходит из клеточного цикла и становится постмитотическим нейробластом (neuroblast 1, ранее — промежуточный прогенитор). Именно на этой стадии погибает большинство клеток. Оставшиеся превращаются в нейробласты второго порядка (neuroblasts 2, ранее — нейробласты) и затем в незрелые нейроны, мигрирующие в гранулярный слой, где завершается их созревание. Полное превращение нервной (нейральной) стволовой клетки в функциональный нейрон занимает около месяца.

В настоящее время ведутся споры относительно судьбы QNP (quiescent neural progenitors, покоящихся нервных предшественников) после деления. Согласно «оптимистической» модели, стволовые клетки мозга — по аналогии с гемопоэтическими стволовыми клетками — являются самовозобновляемыми: в результате асимметричного деления они дают клетку, дифференцирующуюся потом в нейрон, а затем возвращаются в покоящееся состояние и могут быть заново активированы. В противоположность этому, согласно «пессимистической» модели, стволовые клетки зубчатой фасции не способны к самовоспроизведению, и их активация в конечном итоге приводит к превращению в астроциты. Предполагают, что сами стволовые клетки используются только единожды в течение взрослой жизни, выходя из этого пула после серии быстрых делений, в результате которых образуются прогениторы. Это объясняет и связывает между собой снижение темпов нейрогенеза и рост количества астроцитов в течение жизни (рис. 5) [16].

как формируются нейронные связи в головном мозге. Смотреть фото как формируются нейронные связи в головном мозге. Смотреть картинку как формируются нейронные связи в головном мозге. Картинка про как формируются нейронные связи в головном мозге. Фото как формируются нейронные связи в головном мозге

Рисунок 5. «Оптимистическая» (слева) и «пессимистическая» (справа) модели деления стволовых клеток.

В то же время вторая модель не исключает возможности нахождения в зубчатой фасции или малых популяций самовоспроизводящихся стволовых клеток, или клеток с удлиненными G2/M-фазами, или же каких-то специфических клеток, не экспрессирующих нестин. В последнем случае их просто не удалось бы обнаружить при использованном дизайне эксперимента.

. на работу которого многое может повлиять

Уровень новообразования нервных клеток — в частности, в зубчатой фасции — может меняться под воздействием множества факторов. Если принять во внимание «пессимистическую» модель и роль нейрогенеза в осуществлении некоторых функций гиппокампа, а также патогенез ряда нейродегенеративных заболеваний, станет очевидной важность определения мишеней для этих факторов — влияют ли они на молчащие стволовые клетки, расходуя их пул, или же способствуют выживаемости их потомков, или увеличивают количество их делений. Все влияния на нейрогенез в конечном итоге можно подразделить по результату их действия на положительные и отрицательные. К первым относятся как банальные (содержание в обогащенной среде, физическая нагрузка, прием антидепрессантов или мелатонина, социальные взаимодействия), так и специфические — вроде одноночной бессонницы или приема каннабиноидов. Ко вторым — радиация, стресс, хроническое недосыпание, злоупотребление опиатами, алкоголем и множество прочих общенегативных для мозга вещей.

Хотя в целом результат воздействия многих перечисленных факторов можно предугадать, механизм их воздействия, а также влияние их комбинаций требуют изучения — как для выстраивания правильной общей профилактики, так и для лечения конкретных заболеваний. Среди так называемых позитивных факторов особенно эффективным является обогащенная среда, включающая в себя физические упражнения. По различным данным, нахождение в течение небольшого количества времени (примерно от недели до месяца) в такой среде стабильно и значимо повышает уровень нейрогенеза, причем увеличение может быть даже пятикратным — в зависимости от возраста, состояния здоровья и других параметров [17]. Несмотря на активное изучение эффектов обогащенной среды на нейрогенез, на современном этапе исследований остается открытым вопрос о том, какие именно из ее компонентов (физическая или исследовательская активность) оказывают влияние на процесс формирования новых нейронов в мозге, а также на какие этапы нейрогенеза эти эффекты распространяются. Разрешение этих вопросов важно для поиска новых терапевтических и нейропротекторных воздействий и для нахождения эффективных путей регуляции нейрогенеза во взрослом мозге. Именно поэтому интерес к этой теме лишь усиливается, и количество статей по ней будет расти еще долгое время.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *