как мозг обрабатывает зрительную информацию
Мозг обрабатывает изображения за 13 миллисекунд
Нейробиологи из Массачусетского технологического института установили минимальное время, в течение которого человеку нужно показывать изображение, чтобы мозг сумел его обработать. Показатель равен 13 миллисекундам. Это значительно меньше, чем предполагалось. Раньше учёные оценивали время обработки информации примерно в 100 миллисекунд.
Во время эксперимента испытуемым предлагалось сигнализировать, если они увидят определённый тип картинки, такой как «пикник» или «улыбающаяся пара», при этом им демонстрировали серию из 6 или 12 изображений с промежутком 13-80 миллисекунд. На иллюстрации выше показан образец такой последовательности кадров.
Учёные считают, что столь высокая скорость обработки информации мозгом помогает управлять глазами и выбирать объекты для рассмотрения. Глаз способен передвигаться со скоростью 3 раза в секунду, и за это время мозг должен распознать всю информацию в поле зрения, осознать увиденное и принять решение, куда посмотреть дальше.
Начиная эксперимент, учёные предполагали, что могут установить предел распознавания мозга вдвое меньше, чем считавшиеся ранее стандартными 100 миллисекунд. К их удивлению, участники эксперимента демонстрировали явное отличие от случайного угадывания при каждом увеличении скорости показа изображений: 80 мс, 53 мс, 40 мс, 27 мс и 13 мс. Показатель 13 мс был минимально возможным временем обновления картинки на компьютерном мониторе, поэтому с дальнейшим сокращением лимита экспериментировать не получилось. Но вполне возможно, что быстродействие мозга ещё выше, чем установлено в рамках данного исследования.
Правда, учёные предполагают, что обработка изображений на самом деле может продолжаться в «фоновом режиме» и после экспонирования картинки, то есть дольше, чем 13 миллисекунд. В рамках данного эксперимента установить этот факт не удалось, потому что испытуемых опрашивали через некоторое время после показа последовательности изображений. Но очевидно, что картинки не «стираются» из памяти через 13 миллисекунд, иначе бы люди не смогли правильно ответить на вопрос. То есть фотографии остаются в каком-то отделе памяти после обработки. Известно также, что решение о конкретном направлении перемещения глаз принимается за 100-140 миллисекунд.
Теоретически, данное исследование позволяет сделать вывод, что человек способен распознавать видеоряд с частотой 77 кадров в секунду или больше, что ранее считалось невозможным. Теперь придётся и обновить информацию на соответствующей странице в Википедии, которая заявляет о способности мозга обрабатывать всего 10-12 раздельных изображений в секунду.
Научная работа опубликована в журнале ”Attention, Perception, & Psychophysics” (бесплатный доступ).
PsyAndNeuro.ru
Обработка визуальной информации: от сетчатки до V1
В обработку визуальных сигналов вовлечено большое количество структур мозга, взаимосвязи которых многочисленны и до конца не изучены. Информация об анализе визуальных стимулов, которой мы обладаем на данный момент, по крупицам собрана из огромного количества отдельных исследований. Каждое исследование предоставляет результаты одного или серии экспериментов, а их сумма позволяет составить общее впечатление о некоторых аспектах работы головного мозга, доказать или опровергнуть выдвигаемые гипотезы.
Визуальная система часто изучается в ходе фундаментальных исследований в области нейронаук по ряду причин. Во-первых, она связана со зрением — основным каналом получения информации из окружающего мира, но при этом она также узкоспециализирована, что позволяет разрабатывать разнообразную методологию исследований. Во-вторых, область зрительной коры удобна для изучения на обезьянах с использованием инвазивных методов регистрации активности мозга в виду своего расположения; в экспериментах с участием людей успешно применяются неинвазивные методы. Кроме того, спектр вопросов, которые представляется возможным прояснить в ходе исследований, достаточно широк: аспекты осознанного/неосознанного восприятия, природа воображения, обработка и фильтрация визуальной информации, распределение внимания, повреждения мозга и связанные с ними расстройства и др. В данной статье мы сосредоточимся в основном на первичной зрительной коре, оговорим предшествующий ей путь нервных сигналов и некоторые общие свойства зрительной коры.
Визуальная система
Когда мы видим изображение, ганглионарные клетки сетчатки генерируют нервные импульсы и передают их в латеральное (оно же наружное) коленчатое тело (ЛКТ), которое расположено в таламусе. Оно состоит из шести слоев, первые два из них представлены магноцеллюлярными клетками, остальные четыре — парвоцеллюлярными. Магноцеллюлярные клетки передают информацию об изображениях с низкой контрастностью, движущихся объектах, они не восприимчивы к цвету, их сигналы быстрые и кратковременные, они дают представление о воспринимаемой информации в целом, то есть, быстро и схематично, в низком разрешении. Парвоцеллюлярные клетки чувствительны к цвету и лучше воспринимают высококонтрастные изображения, они передают более медленные и длительные сигналы, что позволяет получить более детальную, хотя и медленную информацию.
Через латеральное коленчатое тело сигналы передаются далее в затылочные доли обоих полушарий, которые ответственны за обработку зрительных стимулов. Первая кортикальная область, куда попадают эти сигналы — первичная зрительная кора (V1). V1 расположена в заднем полюсе затылочных долей, это самая древняя и простая из кортикальных зон, однако, наиболее изученная. V1 обрабатывает информацию о движущихся и статичных объектах, отвечает за распознавание простых образов (например, геометрических форм).
V1 состоит из шести слоев, наибольшее количество аксонов ЛКТ подходит к IV слою, который разделяется еще на четыре подслоя. Клетки V1 бывают двух видов: простые и сложные. Простые клетки встречаются в слоях IV и VI, они реагируют на ориентацию (угол), расположение (относительно центра визуального поля) и яркость объектов. По строению они имеют возбуждающий центр и тормозящую периферию или наоборот (см. рис.). Их ответ на стимул прямо пропорционален соответствию этого стимула «идеалу». Другими словами, у клетки есть «идеальный» стимул, в ответ на который реакция будет наиболее интенсивна, чем дальше стимул от «идеального», тем менее интенсивна реакция. Сложные клетки находятся в слоях II, III, и V, они также имеют предпочитаемую ориентацию, но не чувствительны к местонахождению и яркости объекта. Сложная клетка совмещает в себе две простые клетки с совпадающей предпочитаемой ориентацией, центр клетки полярен периферийным частям.
Разница реакций простых и сложных клеток
Условия эксперимента: несколько оптимально ориентированных линий движутся через визуальное поле.
Реакция простых клеток: Клетки реагируют синусоидальными колебаниями мембранного потенциала в соответствии с чередованием черных линий и просветов, проходящих через визуальное поле. Потенциалы действия возникают только в фазе деполяризации.
Реакция сложных клеток: Наблюдается постоянная деполяризация, потенциалы действия выглядят беспорядочными.
Ice Cube Model
Эта гипотетическая кубическая модель придумана для пояснения устройства клеток первичной визуальной коры, а именно – как устроены предпочитаемые ориентации и, соответственно, реакции нейронов V1. Так, V1 можно условно поделить на кубы 2 ммˆ3, каждый из которых получает сигналы от обоих глаз. Клетки с одинаковыми ориентационными предпочтениями формируют горизонтальные колонки, при этом соседние вертикальные колонки имеют слегка отличающиеся ориентационные предпочтения.
Чувствительные к цветам клетки также собраны в столбцы (также их называют каплями, гиперколонками, шариками) 0,5 мм в диаметре в зонах соответствующих превалирующих глаз (картинка с цилиндрами). Каждый такой столбец содержит реагирующие либо на красно-зеленый, либо на сине-желтый контрасты.
Оптическая репрезентация карты зрительной коры у млекопитающих (кошки)
Суть эксперимента: Данные регистрируются инвазивным способом. В черепной кости делается отверстие в необходимой зоне (в данном случае V1), кора подсвечивается, на нее направляется линза и камера, которая позволяет регистрировать изменение кровяного потока. Данные регистрируются до и после предъявления животному стимула (линии с определенной ориентацией), две картинки сравниваются для выявления наиболее активных в момент демонстрации стимула зон. Эксперимент повторяется много раз со стимулами разной ориентации, для каждой из них берется сумма значений.
Подписи к картинке: (А) Организация эксперимента: – экран, на котором показана светлая полоска; – регистрация сигналов со зрительной коры. (В) – ориентация презентуемых стимулов; – реакция на стимулы; – время (секунды).
Затем каждая ориентация кодируется определённым цветом для построения карты, где цвета накладываются друг на друга и отображают скопления нейронов с одинаковыми ориентационными предпочтениями, кроме того, соседние цветовые сегменты карты имеют похожие предпочтения. На пересечениях цветовых сегментов ориентационное предпочтение быстро меняется упорядоченным образом, т.е. в этих областях происходят отклики на стимулы с разной ориентацией. Однако данный эксперимент измеряет активацию нейронов только косвенным образом. Вывод можно сделать следующий: организация кортикальных нейронов в аспекте ориентационных предпочтений несколько сложнее, нежели в кубической модели.
Составление ориентационных карт:
Ориентация и зрение
Подписи к картинке: (А) ориентационные предпочтения; (В) окулярная доминантность – пересечения – пики доминантности; (C) пики пересечений и окулярной доминантности на карте доминантности; (D) бинарная карта окулярной доминантности с пересечениями
Свойства образования топографической карты в зрительной системе
В ретинотопических картах соседние клетки сетчатки представлены соседними клетками V1, такая карта демонстрирует изоморфизм и непрерывное отображение. Также как в других полушарных структурах мозга, репрезентация левого визуального поле отражается в правой части зрительной коры и наоборот. Также ввиду большего количества рецепторов в центре сетчатки, он шире представлен в зрительной коре, нежели периферия. В топографической карте отображаются: ориентационные предпочтения, доминирующий глаз, пространственное разрешение.
Слепое зрение
Слепое зрение — возможность видеть и распознавать объекты, будучи неосведомленным об этом. Феномен проявляется в некоторых случаях повреждения зрительной коры и говорит о том, что видеть и быть осведомленным — разные мозговые функции.
Условия эксперимента, доказывающего феномен слепого зрения: субъекту предъявляются стимулы, которые движутся либо в одну, либо в другую сторону. И хотя субъект утверждает, что не видит их, при просьбе его «угадать» в какую сторону двигался объект, то правильные ответы статистически значительно превышали случайную вероятность. Из этого эксперимента можно заключить, что сетчатка может иметь путь передачи визуальной информации помимо латерального коленчатого тела, и эта информация каким-то образом анализируется мозгом.
Подготовила: Алмазова Т.А.
H. Hubel, T. N. Wiesel. Receptive fields of single neurones in the cat’s striate cortex, – J Physiol. 1959 Oct; 148(3): 574–591.
Carandini, D. Ferster Membrane. Potential and Firing Rate in Cat Primary Visual Cortex, – Journal of Neuroscience, 1 January 2000, 20 (1) 470-484.
G. Matthews. Neurobiology: Molecules, Cells and Systems, – Blackwell Science, 1998.
К. Ю. М. Смит. Биология сенсорных систем, – М.: БИНОМ, 2013.
Как мозг обрабатывает зрительную информацию
Человеческий мозг сначала воспринимает изображение, затем сравнивает его с неким «шаблоном», хранящимся в памяти, а после уже оценивает увиденное — принимает решение. На этом этапе и сосредоточили внимание петербургские учёные.
Специалисты Институт физиологии им. И. П. Павлова РАН и Военно-медицинской академии исследуют области головного мозга, анализирующие изображение. Они установили, что форму наблюдаемого объекта определяют несколько участков фронтальной коры головного мозга. Учёные применили новый метод — трактографию проводящих путей в головном мозге живого человека. Он позволяет установить, как происходит взаимодействие между различными областями фронтальной коры и какие области мозга посылают туда информацию после предварительной обработки. Работу учёных поддержал РФФИ.
Главным образом, специалистов интересовало, один или несколько центров принятия решений существуют в головном мозге человека.
Для ответа на этот вопрос исследователи создали аппаратно-программный комплекс, который позволяет проводить электрофизиологические и психофизические измерения, функциональную магнитно-резонансную томографию для пространственного картирования активированных областей мозга, а также анатомическую магнитно-резонансную томографию и математическое моделирование. Испытуемым показывали голографические изображения — решётки различной ориентации, которые надо было определить.
После сложного анализа многочисленных данных учёные предположили, что в первые 100 мс в затылочной коре происходит оценка первичных физических характеристик изображения, таких как яркость, контраст и ориентация. Примерно через 200 мс происходит восприятие более сложных характеристик стимула: целостного изображения и ориентации. Через фронтальные доли определяют, что им показывают, и, наконец, через решение принято окончательно.
Исследователи выяснили, какие участки фронтальной коры определяют структуру изображения. Частично эти зоны совпадают с теми, которые осуществляют выбор между разными объектами, но отличаются от зон, которые реагируют на эмоциональные стимулы. Очень важно, что различные задачи, возникающие при оценке изображения, решают разные участки коры и что фронтальная кора головного мозга содержит несколько областей, которые оценивают ориентацию элементов изображения.
NAME] => URL исходной статьи [
Ссылка на публикацию: STRF.ru
Код вставки на сайт
Как мозг обрабатывает зрительную информацию
Человеческий мозг сначала воспринимает изображение, затем сравнивает его с неким «шаблоном», хранящимся в памяти, а после уже оценивает увиденное — принимает решение. На этом этапе и сосредоточили внимание петербургские учёные.
Специалисты Институт физиологии им. И. П. Павлова РАН и Военно-медицинской академии исследуют области головного мозга, анализирующие изображение. Они установили, что форму наблюдаемого объекта определяют несколько участков фронтальной коры головного мозга. Учёные применили новый метод — трактографию проводящих путей в головном мозге живого человека. Он позволяет установить, как происходит взаимодействие между различными областями фронтальной коры и какие области мозга посылают туда информацию после предварительной обработки. Работу учёных поддержал РФФИ.
Главным образом, специалистов интересовало, один или несколько центров принятия решений существуют в головном мозге человека.
Для ответа на этот вопрос исследователи создали аппаратно-программный комплекс, который позволяет проводить электрофизиологические и психофизические измерения, функциональную магнитно-резонансную томографию для пространственного картирования активированных областей мозга, а также анатомическую магнитно-резонансную томографию и математическое моделирование. Испытуемым показывали голографические изображения — решётки различной ориентации, которые надо было определить.
После сложного анализа многочисленных данных учёные предположили, что в первые 100 мс в затылочной коре происходит оценка первичных физических характеристик изображения, таких как яркость, контраст и ориентация. Примерно через 200 мс происходит восприятие более сложных характеристик стимула: целостного изображения и ориентации. Через фронтальные доли определяют, что им показывают, и, наконец, через решение принято окончательно.
Исследователи выяснили, какие участки фронтальной коры определяют структуру изображения. Частично эти зоны совпадают с теми, которые осуществляют выбор между разными объектами, но отличаются от зон, которые реагируют на эмоциональные стимулы. Очень важно, что различные задачи, возникающие при оценке изображения, решают разные участки коры и что фронтальная кора головного мозга содержит несколько областей, которые оценивают ориентацию элементов изображения.
Урок 1. Как устроено зрение человека

Человеческий глаз обладает совершенным строением и обеспечивает зрение не только в цвете, но также в трёх измерениях и с высочайшей резкостью. Он обладает способностью моментально менять фокус на самые разные расстояния, осуществлять регуляцию объёма поступающего света, различать между собой огромное количество цветов и ещё большее количество оттенков, производить коррекцию сферических и хроматических аберраций и т.д. С мозгом глаз связывают шесть уровней сетчатки, в которых ещё перед тем как информация будет отправлена в мозг, данные проходят через этап компрессии.
Но как же устроено наше с вами зрение? Как посредством усиления цвета, отражённого от предметов, мы трансформируем его в изображение? Если подумать об этом серьёзно, можно сделать вывод, что устройство зрительной системы человека до мельчайших подробностей «продумано» создавшей его Природой. Если же вы предпочитаете верить в то, что за создание человека ответственен Создатель или некая Высшая Сила, то эту заслугу можете приписать им. Но давайте не будем разбираться в тайнах бытия, а продолжим разговор об устройстве зрения.
Огромное количество деталей
Строение глаза и его физиологию можно без обиняков назвать действительно идеальными. Подумайте сами: оба глаза находятся в костных впадинах черепа, которые защищают их от всевозможных повреждений, однако выступают из них они именно так, чтобы обеспечивался максимально широкий горизонтальный обзор.
Расстояние, на котором глаза находятся друг от друга, обеспечивает пространственную глубину. А сами глазные яблоки, как доподлинно известно, обладают шарообразной формой, благодаря чему способны вращаться в четырёх направлениях: влево, вправо, вверх и вниз. Но каждый из нас воспринимает всё это, как само собой разумеющееся – мало кому приходит в голову представить, что было бы, если бы наши глаза были квадратными или треугольными или их движение было бы хаотичным – это бы сделало зрение ограниченным, сумбурным и малоэффективным.
Итак, устройство глаза предельно сложно, но как раз это и делает возможным работу примерно четырёх десятков его различных составляющих. И даже если бы не было хоть одного из этих элементов, процесс зрения перестал бы осуществляться так, как ему следует осуществляться.
Чтобы убедиться в том, насколько сложно устроен глаз, предлагаем вам обратить своё внимание на рисунок ниже:
Давайте же поговорим о том, как реализуется на практике процесс зрительного восприятия, какие элементы зрительной системы в этом участвуют, и за что каждый из них отвечает.
Прохождение света
По мере приближения света к глазу световые лучи сталкиваются с роговицей (иначе её называют роговой оболочкой). Прозрачность роговицы позволяет свету проходить сквозь неё во внутреннюю поверхность глаза. Прозрачность, кстати, является важнейшей характеристикой роговицы, и прозрачной она остаётся по причине того, что особый протеин, который в ней содержится, сдерживает развитие кровеносных сосудов – процесс, происходящий практически в каждой из тканей человеческого тела. В том случае если бы роговица прозрачной не была, остальные компоненты зрительной системы не имели бы никакого значения.
Помимо прочего, роговица не даёт попадать во внутренние полости глаза сору, пыли и каким-либо химическим элементам. А кривизна роговой оболочки позволяет ей преломлять свет и помогать хрусталику фокусировать световые лучи на сетчатке.
После того как свет прошёл сквозь роговицу, он проходит через маленькое отверстие, расположенное посередине радужки глаза. Радужка же представляет собой круглую диафрагму, которая находится перед хрусталиком сразу за роговицей. Радужка также является тем элементом, который придаёт глазу цвет, а цвет зависит от преобладающего в радужке пигмента. Центральное отверстие в радужке – это и есть знакомый каждому из нас зрачок. Размер этого отверстия имеет возможность изменяться, чтобы контролировать количество поступающего в глаз света.
Размер зрачка изменятся непосредственно радужкой, а обусловлено это её уникальнейшим строением, ведь состоит она из двух различных видов мышечных тканей (даже здесь есть мышцы!) Первая мышца является круговой сжимающей – она располагается в радужке кругообразно. Когда свет яркий, происходит её сокращение, вследствие чего зрачок сокращается, как бы втягиваясь мышцей внутрь. Вторая мышца является расширяющей – она расположена радиально, т.е. по радиусу радужки, что можно сравнить со спицами в колесе. При тёмном освещении происходит сокращение этой второй мышцы, и радужка раскрывает зрачок.
Многие специалисты-эволюционисты до сих пор испытывают некоторые затруднения, когда пытаются объяснить, каким же всё-таки образом происходит формирование вышеназванных элементов зрительной системы человека, ведь в любой другой промежуточной форме, т.е. на каком-либо эволюционном этапе работать они просто не смогли бы, но человек видит с самого начала своего существования. Загадка…
Фокусировка
Минуя названные выше этапы, свет начинает проходить через хрусталик, находящийся за радужкой. Хрусталик является оптическим элементом, имеющим форму выпуклого продолговатого шара. Хрусталик абсолютно гладок и прозрачен, в нём нет кровеносных сосудов, а сам он расположен в эластичном мешочке.
Проходя сквозь хрусталик, свет преломляется, после чего происходит его фокусировка на ямке сетчатки – самом чувствительном месте, содержащем максимальное количество фоторецепторов:
Важно заметить, что уникальное строение и состав обеспечивают роговице и хрусталику большую силу преломления, гарантирующую короткое фокусное расстояние. И как же удивительно, что такая сложная система вмещается всего в одном глазном яблоке (подумайте только, как бы мог выглядеть человек, если бы для фокусировки световых лучей, идущих от предметов, требовался бы, например, метр!)
Не менее интересно и то, что совместная преломляющая сила этих двух элементов (роговицы и хрусталика) находится в прекрасном соотношении с глазным яблоком, а это можно смело назвать ещё одним доказательством того, что зрительная система создана просто непревзойдённо.
Если же речь идёт о предметах расположенных близко к глазу, то здесь всё ещё любопытнее, ведь в этой ситуации преломление световых лучей оказывается ещё более сильным. Обеспечивается же это увеличением кривизны хрусталика. Хрусталик соединён посредством цилиарных поясков с ресничной мышцей, которая, сокращаясь, даёт хрусталику возможность принимать более выпуклую форму, тем самым увеличивая свою преломляющую силу.
И здесь снова нельзя не упомянуть о сложнейшем строении хрусталика: составляют его множество ниточек, которые состоят из соединённых друг с другом клеточек, а тонкие пояски связывают его с цилиарным телом. Фокусировка осуществляется под контролем головного мозга крайне быстро и на полном «автомате», т.е. неосознанно.
Значение «фотоплёнки»
Результатом фокусировки становится сосредоточение изображения на сетчатке, представляющей собой многослойную ткань, чувствительную к свету, покрывающую заднюю часть глазного яблока. В сетчатке содержится примерно 130 миллионов фоторецепторов (для сравнения можно привести современные цифровые фотоаппараты, в которых подобных сенсорных элементов не более 10 000 000) [Kumaramanickavel G., Denton M.J., Legge M., 2015]. Такое громадное количество фоторецепторов обусловлено тем, что расположены они крайне плотно – примерно 400 000 на 1 мм².
Здесь не будет лишним привести слова специалиста по микробиологии Алана Л. Гиллена, говорящего в своей книге «Тело по замыслу» о сетчатке глаза, как о шедевре инженерного проектирования. Он считает, что сетчатка является самым удивительным элементом глаза, сравнимым с фотоплёнкой. Светочувствительная сетчатка, расположенная на задней стороне глазного яблока, намного тоньше целлофана (её толщина составляет не более 0,2 мм) и гораздо чувствительнее, чем любая, созданная человеком фотоплёнка. Клетки этого уникального слоя способны обрабатывать до 10 миллиардов фотонов, в то время как самый чувствительный фотоаппарат способен обработать лишь несколько их тысяч [Gillen A. L., 2001]. Но ещё удивительнее то, что человеческий глаз может улавливать единицы фотонов даже в темноте:
Всего сетчатку составляют 10 слоёв фоторецепторных клеток, 6 слоёв из которых являются слоями светочувствительных клеток. 2 вида фоторецепторов имеют особую форму, по причине чего их называют колбочками и палочками. Палочки крайне восприимчивы к свету и обеспечивают глазу чёрно-белое восприятие и ночное зрение. Колбочки, в свою очередь, не так восприимчивы к свету, но способны различать цвета – оптимальная работа колбочек отмечается в дневное время суток.
Благодаря работе фоторецепторов световые лучи трансформируются в комплексы электрических импульсов и посылаются в мозг на невероятно большой скорости, а сами эти импульсы за доли секунд преодолевают свыше миллиона нервных волокон.
Связь фоторецепторных клеток в сетчатке очень сложна. Колбочки и палочки никак напрямую с мозгом не связаны. Получив сигнал, они переадресовывают его биполярным клеткам, а те перенаправляют уже обработанные собою сигналы ганглиозным клеткам, более миллиона аксонов (нейритов, по которым передаются нервные импульсы) которых составляют единый зрительный нерв, по которому данные и поступают в мозг:
Два слоя промежуточных нейронов, до того как зрительные данные будут отправлены в мозг, способствуют параллельной обработке этой информации шестью уровнями восприятия, находящимися в сетчатке глаза. Необходимо это для того чтобы изображения распознавались как можно быстрее.
Восприятие мозга
После того как обработанная зрительная информация поступает в мозг, он начинает её сортировку, обработку и анализ, а также формирует цельное изображение из отдельных данных. Конечно же, о работе человеческого мозга ещё много чего неизвестно, однако даже того, что научный мир может предоставить сегодня, вполне достаточно, чтобы поразиться.
При помощи двух глаз формируются две «картинки» мира, который окружает человека – по одной на каждую сетчатку. Обе «картинки» передаются в мозг, и в действительности человек видит два изображения в одно и то же время. Но как?
А дело вот в чём: точка сетчатки одного глаза точно соответствует точке сетчатки другого, а это говорит о том, чтоб оба изображения, попадая в мозг, могут накладываться друг на друга и сочетаться вместе для получения единого изображения. Информация, полученная фоторецепторами каждого из глаз, сходится в зрительной коре головного мозга, где и появляется единое изображение.
По причине того, что у двух глаз может быть разная проекция, могут наблюдаться и некоторые несоответствия, однако мозг сопоставляет и соединяет изображения таким образом, что человек никаких несоответствий не ощущает. Мало того, эти несоответствия могут быть использованы с целью получения чувства пространственной глубины.
Как известно, из-за преломления света зрительные образы, поступающие в мозг, изначально являются очень маленькими и перевёрнутыми, однако «на выходе» мы получаем то изображение, которое привыкли видеть.
Помимо этого в сетчатке изображение делится мозгом надвое по вертикали – через линию, которая проходит через ямку сетчатки. Левые части изображений, полученных обоими глазами, перенаправляются в правое полушарие, а правые части – в левое. Так, каждое из полушарий смотрящего человека получает данные только от одной части того, что он видит. И снова – «на выходе» мы получаем цельное изображение без каких бы то ни было следов соединения.
Разделение изображений и крайне сложные оптические пути делают так, что мозг видит отдельно каждым из своих полушарий с использованием каждого из глаз. Это позволяет ускорить обработку потока входящей информации, а также обеспечивает зрение одним глазом, если вдруг человек по какой-либо причине перестаёт видеть другим.
Можно заключить, что мозг в процессе обработки зрительной информации убирает «слепые» пятна, искажения из-за микродвижений глаз, морганий, угла зрения и т.п., предлагая своему хозяину адекватное целостное изображение наблюдаемого.
Движение глаз
Ещё одним из важных элементов зрительной системы является движение глаз. Умалять значение этого вопроса никак нельзя, т.к. чтобы вообще иметь возможность использовать зрение должным образом мы должны уметь поворачивать глаза, поднимать их, опускать, короче говоря – двигать глазами.
Всего можно выделить 6 внешних мышц, которые соединяются с внешней поверхностью глазного яблока. К этим мышцам относятся 4 прямые (нижняя, верхняя, боковая и средняя) и 2 косые (нижняя и верхняя):
В тот момент, когда какая-либо из мышц сокращается, мышца, являющаяся для неё противоположной, расслабляется – это обеспечивает ровное движение глаз (в противном случае все движения глазами осуществлялись бы рывками).
При повороте двух глаз автоматически изменяется движение всех 12 мышц (по 6 мышц на каждый глаз). И примечательно то, что процесс этот является непрерывным и очень хорошо скоординированным.
Контроль и координация связи органов и тканей с центральной нервной системой посредством нервов (это называется иннервацией) всех 12 глазных мышц представляет собой один из очень сложных процессов, происходящих в мозге. Если же добавить к этому точность перенаправления взора, плавность и ровность движений, скорость, с которой может вращаться глаз (а она составляет в сумме до 700° в секунду), и соединить всё это, мы получим на самом деле феноменальную по части исполнения подвижную глазную систему. А то, что человек имеет два глаза, делает её ещё более сложной – при синхронном движении глаз необходима одинаковая мускульная иннервация.
Мышцы, которые вращают глаза, отличны от мышц скелета, т.к. их составляет множество всевозможных волокон, а контролируются они ещё большим числом нейронов, иначе точность движений стала бы невозможной. Данные мышцы можно назвать уникальными ещё и потому, что они способны быстро сокращаться и практически не устают.
Очистка глаз
Учитывая то, что глаз – это один из наиболее важных органов человеческого организма, он нуждается в непрерывном уходе. Именно для этого как раз и предусмотрена, если так можно назвать, «интегрированная система очистки», которая состоит из бровей, век, ресниц и слёзных желёз:
При помощи слёзных желёз регулярно производится липкая жидкость, с медленной скоростью движущаяся вниз по внешней поверхности глазного яблока. Эта жидкость смывает различный сор (пыль и т.п.) с роговицы, после чего входит во внутренний слёзный канал и затем стекает по носовому каналу, выводясь из организма.
В слезах содержится очень сильное антибактериальное вещество, уничтожающее вирусы и бактерии. Веки выполняют функцию стеклоочистителей – они очищают и увлажняют глаза благодаря непроизвольному морганию с интервалом в 10-15 секунд. Вместе с веками работают ещё и ресницы, предотвращая попадание в глаз любого сора, грязи, микробов и т.п.
Если бы веки не выполняли свою функцию, глаза человека постепенно бы засохли и покрылись рубцами. Если бы не было слёзного протока, глаза бы постоянно заливались слёзной жидкостью. Если бы человек не моргал, в его глаза попадал бы мусор, и он мог бы даже ослепнуть. Вся «очистительная система» должна включать в себя работу всех элементов без исключения, в противном случае она просто перестала бы функционировать.
Глаза как показатель состояния
Глаза человека способны передавать немало информации в процессе его взаимодействия с другими людьми и окружающим миром. Глаза могут излучать любовь, гореть от гнева, отражать радость, страх или беспокойство, говорить о тревоге или усталости. Глаза показывают, куда смотрит человек, заинтересован он в чём-либо или же нет.
Например, когда люди закатывают глаза, беседуя с кем-то, это можно расценивать совершенно иначе, нежели обычный взгляд, направленный вверх. Большие глаза у детей вызывают у окружающих восторг и умиление. А состояние зрачков отражает то состояние сознания, в котором в данный момент времени находится человек. Глаза – это показатель жизни и смерти, если уж говорить в глобальном смысле. Наверное, именно по этой причине их называют зеркалом души.
Вместо заключения
В этом уроке мы с вами рассмотрели устройство зрительной системы человека. Естественно, мы упустили немало деталей (сама по себе эта тема очень объёмна и вместить её в рамки одного урока проблематично), но всё же постарались донести материал так, чтобы вы получили общее представление о том, КАК видит человек.
Вы не могли не заметить, что как сложность, так и возможности глаза позволяют этому органу многократно превосходить даже самые современные технологии и научные разработки. Глаз является наглядной демонстрацией сложности инженерии в огромном количестве нюансов.
Но знать об устройстве зрения – это, конечно же, хорошо и полезно, однако наиболее важно знать о том, как зрение можно восстанавливать. Дело в том, что и образ жизни человека, и условия, в которых он живёт, и некоторые другие факторы (стрессы, генетика, вредные привычки, заболевания и многое другое) – всё это нередко способствует тому, что с годами зрение может ухудшаться, т.е. зрительная система начинает давать сбои.
Но ухудшение зрения в большинстве случаев не является необратимым процессом – зная определённые методики, данный процесс можно повернуть вспять, и сделать зрение, если уж и не таким, как у младенца, то хорошим настолько, насколько вообще это возможно для каждого отдельно взятого человека.
Проверьте свои знания
Если вы хотите проверить свои знания по теме данного урока, можете пройти небольшой тест, состоящий из нескольких вопросов. В каждом вопросе правильным может быть только один вариант. После выбора вами одного из вариантов система автоматически переходит к следующему вопросу. На получаемые вами баллы влияет правильность ваших ответов и затраченное на прохождение время. Обратите внимание, что вопросы каждый раз разные, а варианты перемешиваются.
Напоминаем, что для полноценной работы сайта вам необходимо включить cookies, javascript и iframe. Если вы ввидите это сообщение в течение долгого времени, значит настройки вашего браузера не позволяют нашему порталу полноценно работать.
Следующий урок посвящён методам восстановления зрения.

















