как мозг воспринимает информацию

Как мозг обрабатывает зрительную информацию

как мозг воспринимает информацию. Смотреть фото как мозг воспринимает информацию. Смотреть картинку как мозг воспринимает информацию. Картинка про как мозг воспринимает информацию. Фото как мозг воспринимает информацию

Человеческий мозг сначала воспринимает изображение, затем сравнивает его с неким «шаблоном», хранящимся в памяти, а после уже оценивает увиденное — принимает решение. На этом этапе и сосредоточили внимание петербургские учёные.

Специалисты Институт физиологии им. И. П. Павлова РАН и Военно-медицинской академии исследуют области головного мозга, анализирующие изображение. Они установили, что форму наблюдаемого объекта определяют несколько участков фронтальной коры головного мозга. Учёные применили новый метод — трактографию проводящих путей в головном мозге живого человека. Он позволяет установить, как происходит взаимодействие между различными областями фронтальной коры и какие области мозга посылают туда информацию после предварительной обработки. Работу учёных поддержал РФФИ.

Главным образом, специалистов интересовало, один или несколько центров принятия решений существуют в головном мозге человека.

Для ответа на этот вопрос исследователи создали аппаратно-программный комплекс, который позволяет проводить электрофизиологические и психофизические измерения, функциональную магнитно-резонансную томографию для пространственного картирования активированных областей мозга, а также анатомическую магнитно-резонансную томографию и математическое моделирование. Испытуемым показывали голографические изображения — решётки различной ориентации, которые надо было определить.

После сложного анализа многочисленных данных учёные предположили, что в первые 100 мс в затылочной коре происходит оценка первичных физических характеристик изображения, таких как яркость, контраст и ориентация. Примерно через 200 мс происходит восприятие более сложных характеристик стимула: целостного изображения и ориентации. Через фронтальные доли определяют, что им показывают, и, наконец, через решение принято окончательно.

Исследователи выяснили, какие участки фронтальной коры определяют структуру изображения. Частично эти зоны совпадают с теми, которые осуществляют выбор между разными объектами, но отличаются от зон, которые реагируют на эмоциональные стимулы. Очень важно, что различные задачи, возникающие при оценке изображения, решают разные участки коры и что фронтальная кора головного мозга содержит несколько областей, которые оценивают ориентацию элементов изображения.

NAME] => URL исходной статьи [

Ссылка на публикацию: STRF.ru

Код вставки на сайт

Как мозг обрабатывает зрительную информацию

как мозг воспринимает информацию. Смотреть фото как мозг воспринимает информацию. Смотреть картинку как мозг воспринимает информацию. Картинка про как мозг воспринимает информацию. Фото как мозг воспринимает информацию

Человеческий мозг сначала воспринимает изображение, затем сравнивает его с неким «шаблоном», хранящимся в памяти, а после уже оценивает увиденное — принимает решение. На этом этапе и сосредоточили внимание петербургские учёные.

Специалисты Институт физиологии им. И. П. Павлова РАН и Военно-медицинской академии исследуют области головного мозга, анализирующие изображение. Они установили, что форму наблюдаемого объекта определяют несколько участков фронтальной коры головного мозга. Учёные применили новый метод — трактографию проводящих путей в головном мозге живого человека. Он позволяет установить, как происходит взаимодействие между различными областями фронтальной коры и какие области мозга посылают туда информацию после предварительной обработки. Работу учёных поддержал РФФИ.

Главным образом, специалистов интересовало, один или несколько центров принятия решений существуют в головном мозге человека.

Для ответа на этот вопрос исследователи создали аппаратно-программный комплекс, который позволяет проводить электрофизиологические и психофизические измерения, функциональную магнитно-резонансную томографию для пространственного картирования активированных областей мозга, а также анатомическую магнитно-резонансную томографию и математическое моделирование. Испытуемым показывали голографические изображения — решётки различной ориентации, которые надо было определить.

После сложного анализа многочисленных данных учёные предположили, что в первые 100 мс в затылочной коре происходит оценка первичных физических характеристик изображения, таких как яркость, контраст и ориентация. Примерно через 200 мс происходит восприятие более сложных характеристик стимула: целостного изображения и ориентации. Через фронтальные доли определяют, что им показывают, и, наконец, через решение принято окончательно.

Исследователи выяснили, какие участки фронтальной коры определяют структуру изображения. Частично эти зоны совпадают с теми, которые осуществляют выбор между разными объектами, но отличаются от зон, которые реагируют на эмоциональные стимулы. Очень важно, что различные задачи, возникающие при оценке изображения, решают разные участки коры и что фронтальная кора головного мозга содержит несколько областей, которые оценивают ориентацию элементов изображения.

Источник

Оперативная память мозга: что общего между компьютером и мозгом

как мозг воспринимает информацию. Смотреть фото как мозг воспринимает информацию. Смотреть картинку как мозг воспринимает информацию. Картинка про как мозг воспринимает информацию. Фото как мозг воспринимает информацию

У меня есть компьютер. Думаю, у вас тоже. Общий перечень наших с вами задач, решаемых с помощью компьютера, можно свести к двум основополагающим вещам: хранение и преобразование информации. Головной мозг выполняет схожие функции. Например, фоторецепторные клетки в глазах принимают электромагнитное излучение и преобразуют его в нервный импульс. Мозг обрабатывает эту информацию и на основе нее строит изображение. Помимо функционального сходства, мозг и компьютер имеют и общие структурные черты: у нас тоже есть некоторое подобие процессора и памяти. Причем наша память, как и память компьютера, бывает разных видов. В этой статье пойдет речь о нашем аналоге оперативной памяти и о том, как он работает.

Когнитивность

Как работает наш мозг? На столь обширный вопрос есть несколько философский ответ — недостаточно хорошо. Действительно, вы наверняка хотели бы не вспоминать перед сном все свои неудачи и просчеты или не забывать, куда положили ключи. Переформулируем и сузим вопрос: как человеческий мозг воспринимает и использует информацию?

Получение информации

как мозг воспринимает информацию. Смотреть фото как мозг воспринимает информацию. Смотреть картинку как мозг воспринимает информацию. Картинка про как мозг воспринимает информацию. Фото как мозг воспринимает информацию

Что дальше?

Попадая в мозг, нервные импульсы преобразуются в соответствующие образы и чувства. Но на данный момент эти образы всего лишь образы. Если человек не умеет читать, то для его мозга текст будет лишь набором закорючек. В психологии есть термин когнитивность. Он отражает способность человека к умственному восприятию и переработке внешней информацию сквозь собственную систему взглядов, зависящую от мышления, памяти, обучения и т. д. Коротко говоря, мозг в течение жизни обучается, получает новую информацию и, в зависимости от текущего типа мышления, багажа знаний и умений, обрабатывает получаемую информацию соответствующим образом.

как мозг воспринимает информацию. Смотреть фото как мозг воспринимает информацию. Смотреть картинку как мозг воспринимает информацию. Картинка про как мозг воспринимает информацию. Фото как мозг воспринимает информацию

Память мозга

Память можно определить как способность мозга сохранять и восстанавливать информацию. Очевидно, что работа мозга очень сильно зависит от памяти и ее роль сложно переоценить. Классифицировать память можно по разным критериям. Но нас будет интересовать конкретно разделение по времени хранения информации. Итак, память мозга условно можно разделить на следующие виды:

Кратковременная память

Изначально, информация от органов чувств попадает в кратковременную память. Как понятно из названия, она хранится там небольшой промежуток времени. При этом информация от органов чувств фильтруется. В кратковременную память попадает та информация, на которую мы обратили своё внимание. Причем как произвольно, так и под действием каких-либо факторов. Например, обычно мы не обращаем внимание на ощущения от надетой на нас одежды, но если она вызовет дискомфорт, то мы обратим внимание, и эта информация попадет к нам в кратковременную память. Помимо органов чувств, источником информации может являться и долговременная память как итог процесса вспоминания, как целенаправленного, так и спонтанного.

Модель Аткинсона-Шиффрина

В целом идеи о том, что человеческая память не является единой сущностью, возникли ещё в 19 веке. Более конкретная теория взаимодействия между кратковременной и долговременной памятью появилась в середине 20-го века в множественной модели Аткинсона-Шиффрина.

Согласно данной модели, наша память состоит из трех структур:

Механизм перехода из кратковременной памяти в долговременную точно не ясен. При этом, способность вспоминать события из прошлого зависят от гиппокампа. К этому выводу пришли Бренда Милнер и Уильям Сковилл, изучая пациента, которому для лечения эпилепсии был удален гиппокамп. Пациент не мог вспомнить, что с ним происходило в прошлом, но при этом другие структуры памяти сохранились. Он помнил факты об устройстве мира, но новые ему выучить было сложно. Также у него отлично работала кратковременная память.

как мозг воспринимает информацию. Смотреть фото как мозг воспринимает информацию. Смотреть картинку как мозг воспринимает информацию. Картинка про как мозг воспринимает информацию. Фото как мозг воспринимает информацию

Объем кратковременной памяти

Информация без повторения хранится в кратковременной памяти на протяжении примерно 20 секунд. При этом ее объем однозначно определить очень сложно. Американский психолог Джордж Миллер в своей работе «Магическое число семь плюс-минус два« определил, что человек, как правило, не может запомнить и воспроизвести больше 7±2 объектов (данная характеристика является усредненной и не отрицает существование уникумов, способных запоминать большое количество информации)

Но что такое объект? На основе своих исследований (проверка, сколько человек может запомнить), Миллер приводит следующую характеристику — человек в среднем способен запомнить девять двоичных чисел, восемь десятичных, семь букв алфавита и пять односложных слов. Информационная содержательность этих объектов не столь большая. В этом кроется и следующее различие между кратковременной и долговременной памятью — объем информации. Объектом может являться как слово, так и изображение — например, пейзаж. Но степень его детализации будет определяться объемом кратковременной памяти и вряд ли вы запомните его в деталях без повторения.

Рабочая память

Рабочая память (РП) — это тип памяти, с помощью которого человек способен сохранять в уме информацию, с которой работает. РП также позволяет комбинировать информацию, полученную от органов восприятия, с долговременной и кратковременной памятью.

Термин «Рабочая память» был введен Джорджем Миллером, Евгением Галантером и Карлом Прибрамом в контексте теории, в которой человеческий ум сравнивался с компьютером. Изначально понятие рабочей памяти не было конкретизировано, поэтому его использовали Ричард Аткинсон и Ричард Шиффрин в своей модели кратковременной памяти. Однако они не сделали акцента на ее функциональной части, поэтому Алан Бэддели и Грэм Хитч переработали их модель. Главное отличие нового взгляда на РП заключалось в том, что кратковременная память может быть разделена на субкомпоненты и что такая система способна на сложные когнитивные действия. На данный момент многие ученые используют концепцию РП в качестве замены или расширения концепции краткосрочной памяти, делая акцент на манипулировании информацией, а не на ее простом хранении.

Модель рабочей памяти

В 1974 году Алан Бэддели и Грэм Хитч предложили многокомпонентную модель РП, переработав модель кратковременной памяти Аткинсона-Шиффрина. Изначально модель содержала три компонента. Первый компонент — это система контроля над вниманием, называемая центральным исполнителем (ЦИ). ЦИ направляет внимание на информацию, подавляя отвлечение (на нерелевантную информацию и неподходящие действия) и координируя когнитивные процессы при одновременном выполнении множества задач. У ЦИ «в подчинении» находятся две системы временного хранения: фонологическая петля и визуально-пространственный блокнот.

как мозг воспринимает информацию. Смотреть фото как мозг воспринимает информацию. Смотреть картинку как мозг воспринимает информацию. Картинка про как мозг воспринимает информацию. Фото как мозг воспринимает информацию

Фонологическая петля — это когнитивная система временного хранения, которая может хранить информацию, представленную в речевой и звуковой форме, с помощью проговаривания про себя (субвокальные повторения). Одним из доказательств этого служит эффект фонологического сходства: слова, со сходным звучанием, запоминаются труднее, чем слова, звучащие по-разному. Представим, что вы хотите запомнить набор терминов. Если слова схожи по звучанию, то это приведет к путанице и плохому результату. Попробуйте запомнить два ряда слов: «код», «год», «кот», «рот» и «солнце», «горячий», «корова», «день». Скорее всего, «производительность» запоминания в первом случае будет хуже. Фонологической петле совсем не важны значения, поэтому человек запоминает ряд из нескольких слов, обозначающих одно и тоже, так же, как и разные слова. В этом заключается отличие рабочей памяти от долговременной. Если увеличить количество слов в последовательности, например до 10, и дать людям запомнить их, то звучание уйдет на второй план, а значение станет намного важней. Таким образом у человека имеется система, которая может хранить информацию путем проговаривания про себя. Она не важна для понимания речи (если вы способны нормально говорить и слышать), однако играет существенную роль в пополнении словарного запаса на раннем этапе обучения чтению, когда нужно удержать в памяти последовательность звуков в точном порядке.

Визуально-пространственный блокнот — это когнитивная система, одновременно хранящая пространственную и визуальную информацию. Визуальная информация включает в себя такие вещи, как цвет и форма, а пространственная — данные о местоположении. Например, использование карты или проектирование здания включает пространственную информацию. Изучение иероглифов, запоминание цвета — это больше визуальное задание. Системы вербальной, пространственной и визуальной информации могут поддерживаться потоками информации, не охватываемыми подчиненными системами (например, тактильные ощущения, семантическая информация, музыкальная информация, эмоциональная составляющая и т. п.).

Так как речь идет о серии потоков восприятия, в 2000 году Бэддели расширил модель, добавив четвертую систему — эпизодический буфер, в котором потоки информации объединяются. У буфера есть несколько измерений: визуальное, пространственное семантическое и перцептивное. Он объединяет их вместе и делает доступными сознанию, связывая всю информацию РП в единое эпизодическое представление. Таким образом эпизодический буфер — это связующие звено между рабочей и долговременной памятью. Если проводить аналогии, то эпизодический буфер чем-то напоминает экран, на который проецируются события.

Где и как мозг хранит информацию

РП располагается в нескольких частях мозга. С появлением методов визуализации мозга (ПЭТ и фМРТ) определение локализации функций в головном мозге людей значительно упростилось. Обзор многочисленных исследований показывает, что области активации во время задач рабочей памяти, разбросаны по большой части коры. Определение Фонологическая петля расположена главным образом в области между височной и теменной долями левого полушария. Процесс повторения информации по большей части включает лобную область, известную как центр Брока.

Визуально-пространственная система вовлекает в основном правое полушарие, однако она может простираться и до затылочных долей, в направлении к задней части мозга. Эта область задействуется в визуальных изображениях. Более центральные теменные области ответственны за пространственную информацию.

как мозг воспринимает информацию. Смотреть фото как мозг воспринимает информацию. Смотреть картинку как мозг воспринимает информацию. Картинка про как мозг воспринимает информацию. Фото как мозг воспринимает информацию

Сам факт активации каких-то областей мозга вовсе не означает, что именно там хранится информация. В этом заключается одна из проблем использования функциональной визуализации для понимания работы памяти. При изучении какой-либо когнитивной задачи ученые наблюдают активность области, но не знают, действительно ли она необходима для нее. Представьте, что вы обращается к информации в памяти компьютера и получаете её на экране. Вы узнаете, что было в хранилище и какие подсистемы были задействованы для отображения информации. Но где конкретно хранилась информация и как она была извлечена вам не известно. Пока что в научном сообществе нет консенсуса о том, как точно устроена и функционирует память.

Что влияет на рабочую память

РП страдает от интенсивного стресса. Это было обнаружено в исследованиях Арнстена и его коллег на разных видах животных. Например, в одном из исследований Арнстен исследует влияние стресса, вызванного шумом, на когнитивные функции префронтальной коры у резус-макак. Экспериментаторы заполняли едой одну из лунок, а затем накрывали их непрозрачным экраном. Через определенные промежутки времени экран убирали, и макаки выбирали одну из лунок (задача с отложенным ответом). После некоторой серии экспериментов подопытных подвергали воздействию непрерывным громким шумом (100-110 Дб) в течении 30 минут перед тестированием. Испытав стресс, животные хуже справлялись с заданием: чаще забывали, в какой лунке находятся лакомства. В ходе исследований выяснилось, что высвобождение физиологически активных веществ, катехоламинов, в префронтальную кору, вызванное стрессом, снижает срабатывание нейронов и емкость памяти. Воздействие хронического стресса может привести к глубоким нарушениями РП. Чем больше стресса в жизни, тем ниже эффективность РП при выполнении простых познавательных задач. Злоупотребление алкоголем также может вызывать нарушения РП из-за повреждения мозга.

Индивидуальные различия в объеме РП в некоторой степени наследуемы. Пока что мало известно о том, какие гены связаны с функционированием РП. В рамках многокомпонентной модели был предложен один ген-кандидат, ROBO1 для гипотетической фонологической петли рабочей памяти. Генетический компонент РП в значительной степени разделяется с таковым для подвижного интеллекта, поэтому исследования связи памяти и генетики возможно поможет также лучше понять работу интеллекта.

Существует несколько гипотез о том, что РП может быть натренирована, например при помощи специальных компьютерных программ или таких задач, как n-назад. Но при этом люди не демонстрируют значительных улучшений в таких активностях, как обучение математике, чтение или выполнение тестов на уровень интеллекта. Если тренировка рабочей памятью интеллекта работает, то скорее всего эффект будет незначительным.

Компьютер как мозг

Текущие развитие процессоров во многом основывается на уменьшении техпроцесса. Время идет и эффективность такого подхода снижается. Возможно ли замена нынешней архитектуры на архитектуру, схожую с мозгом человека? Конечно, в реалиях недостатка знаний о мозге данное сравнение некорректно, но давайте пофантазируем. В чем преимущества мозга перед компьютером? Первое, что приходит на ум — это наличие сознания и способность к творческой деятельности. Но не совсем понятно, в чем разница между ними и их компьютерной симуляцией? Проблему квалиа и подобные вопросы лучше оставить философам и сконцентрироваться на более практических аспектах. Понятно, что в некоторых задачах, зависящих от скорости обработки информации мы проигрываем. Но при этом у мозга множество преимуществ перед современными компьютерами:

Практика показывает, что лучше заимствовать лучшее, но, как упоминалось выше, недостаток знаний о мозге не позволяет сделать этого.

Облачные серверы от Маклауд быстрые и безопасные.

Зарегистрируйтесь по ссылке выше или кликнув на баннер и получите 10% скидку на первый месяц аренды сервера любой конфигурации!

Источник

PsyAndNeuro.ru

Обработка визуальной информации: от сетчатки до V1

как мозг воспринимает информацию. Смотреть фото как мозг воспринимает информацию. Смотреть картинку как мозг воспринимает информацию. Картинка про как мозг воспринимает информацию. Фото как мозг воспринимает информацию

В обработку визуальных сигналов вовлечено большое количество структур мозга, взаимосвязи которых многочисленны и до конца не изучены. Информация об анализе визуальных стимулов, которой мы обладаем на данный момент, по крупицам собрана из огромного количества отдельных исследований. Каждое исследование предоставляет результаты одного или серии экспериментов, а их сумма позволяет составить общее впечатление о некоторых аспектах работы головного мозга, доказать или опровергнуть выдвигаемые гипотезы.

Визуальная система часто изучается в ходе фундаментальных исследований в области нейронаук по ряду причин. Во-первых, она связана со зрением — основным каналом получения информации из окружающего мира, но при этом она также узкоспециализирована, что позволяет разрабатывать разнообразную методологию исследований. Во-вторых, область зрительной коры удобна для изучения на обезьянах с использованием инвазивных методов регистрации активности мозга в виду своего расположения; в экспериментах с участием людей успешно применяются неинвазивные методы. Кроме того, спектр вопросов, которые представляется возможным прояснить в ходе исследований, достаточно широк: аспекты осознанного/неосознанного восприятия, природа воображения, обработка и фильтрация визуальной информации, распределение внимания, повреждения мозга и связанные с ними расстройства и др. В данной статье мы сосредоточимся в основном на первичной зрительной коре, оговорим предшествующий ей путь нервных сигналов и некоторые общие свойства зрительной коры.

Визуальная система

Когда мы видим изображение, ганглионарные клетки сетчатки генерируют нервные импульсы и передают их в латеральное (оно же наружное) коленчатое тело (ЛКТ), которое расположено в таламусе. Оно состоит из шести слоев, первые два из них представлены магноцеллюлярными клетками, остальные четыре — парвоцеллюлярными. Магноцеллюлярные клетки передают информацию об изображениях с низкой контрастностью, движущихся объектах, они не восприимчивы к цвету, их сигналы быстрые и кратковременные, они дают представление о воспринимаемой информации в целом, то есть, быстро и схематично, в низком разрешении. Парвоцеллюлярные клетки чувствительны к цвету и лучше воспринимают высококонтрастные изображения, они передают более медленные и длительные сигналы, что позволяет получить более детальную, хотя и медленную информацию.

Через латеральное коленчатое тело сигналы передаются далее в затылочные доли обоих полушарий, которые ответственны за обработку зрительных стимулов. Первая кортикальная область, куда попадают эти сигналы — первичная зрительная кора (V1). V1 расположена в заднем полюсе затылочных долей, это самая древняя и простая из кортикальных зон, однако, наиболее изученная. V1 обрабатывает информацию о движущихся и статичных объектах, отвечает за распознавание простых образов (например, геометрических форм).

V1 состоит из шести слоев, наибольшее количество аксонов ЛКТ подходит к IV слою, который разделяется еще на четыре подслоя. Клетки V1 бывают двух видов: простые и сложные. Простые клетки встречаются в слоях IV и VI, они реагируют на ориентацию (угол), расположение (относительно центра визуального поля) и яркость объектов. По строению они имеют возбуждающий центр и тормозящую периферию или наоборот (см. рис.). Их ответ на стимул прямо пропорционален соответствию этого стимула «идеалу». Другими словами, у клетки есть «идеальный» стимул, в ответ на который реакция будет наиболее интенсивна, чем дальше стимул от «идеального», тем менее интенсивна реакция. Сложные клетки находятся в слоях II, III, и V, они также имеют предпочитаемую ориентацию, но не чувствительны к местонахождению и яркости объекта. Сложная клетка совмещает в себе две простые клетки с совпадающей предпочитаемой ориентацией, центр клетки полярен периферийным частям.

как мозг воспринимает информацию. Смотреть фото как мозг воспринимает информацию. Смотреть картинку как мозг воспринимает информацию. Картинка про как мозг воспринимает информацию. Фото как мозг воспринимает информациюкак мозг воспринимает информацию. Смотреть фото как мозг воспринимает информацию. Смотреть картинку как мозг воспринимает информацию. Картинка про как мозг воспринимает информацию. Фото как мозг воспринимает информацию

Разница реакций простых и сложных клеток

Условия эксперимента: несколько оптимально ориентированных линий движутся через визуальное поле.

Реакция простых клеток: Клетки реагируют синусоидальными колебаниями мембранного потенциала в соответствии с чередованием черных линий и просветов, проходящих через визуальное поле. Потенциалы действия возникают только в фазе деполяризации.

Реакция сложных клеток: Наблюдается постоянная деполяризация, потенциалы действия выглядят беспорядочными.

как мозг воспринимает информацию. Смотреть фото как мозг воспринимает информацию. Смотреть картинку как мозг воспринимает информацию. Картинка про как мозг воспринимает информацию. Фото как мозг воспринимает информацию

Ice Cube Model

Эта гипотетическая кубическая модель придумана для пояснения устройства клеток первичной визуальной коры, а именно – как устроены предпочитаемые ориентации и, соответственно, реакции нейронов V1. Так, V1 можно условно поделить на кубы 2 ммˆ3, каждый из которых получает сигналы от обоих глаз. Клетки с одинаковыми ориентационными предпочтениями формируют горизонтальные колонки, при этом соседние вертикальные колонки имеют слегка отличающиеся ориентационные предпочтения.

как мозг воспринимает информацию. Смотреть фото как мозг воспринимает информацию. Смотреть картинку как мозг воспринимает информацию. Картинка про как мозг воспринимает информацию. Фото как мозг воспринимает информацию

Чувствительные к цветам клетки также собраны в столбцы (также их называют каплями, гиперколонками, шариками) 0,5 мм в диаметре в зонах соответствующих превалирующих глаз (картинка с цилиндрами). Каждый такой столбец содержит реагирующие либо на красно-зеленый, либо на сине-желтый контрасты.

как мозг воспринимает информацию. Смотреть фото как мозг воспринимает информацию. Смотреть картинку как мозг воспринимает информацию. Картинка про как мозг воспринимает информацию. Фото как мозг воспринимает информацию

Оптическая репрезентация карты зрительной коры у млекопитающих (кошки)

Суть эксперимента: Данные регистрируются инвазивным способом. В черепной кости делается отверстие в необходимой зоне (в данном случае V1), кора подсвечивается, на нее направляется линза и камера, которая позволяет регистрировать изменение кровяного потока. Данные регистрируются до и после предъявления животному стимула (линии с определенной ориентацией), две картинки сравниваются для выявления наиболее активных в момент демонстрации стимула зон. Эксперимент повторяется много раз со стимулами разной ориентации, для каждой из них берется сумма значений.

как мозг воспринимает информацию. Смотреть фото как мозг воспринимает информацию. Смотреть картинку как мозг воспринимает информацию. Картинка про как мозг воспринимает информацию. Фото как мозг воспринимает информацию

Подписи к картинке: (А) Организация эксперимента: – экран, на котором показана светлая полоска; – регистрация сигналов со зрительной коры. (В) – ориентация презентуемых стимулов; – реакция на стимулы; – время (секунды).

Затем каждая ориентация кодируется определённым цветом для построения карты, где цвета накладываются друг на друга и отображают скопления нейронов с одинаковыми ориентационными предпочтениями, кроме того, соседние цветовые сегменты карты имеют похожие предпочтения. На пересечениях цветовых сегментов ориентационное предпочтение быстро меняется упорядоченным образом, т.е. в этих областях происходят отклики на стимулы с разной ориентацией. Однако данный эксперимент измеряет активацию нейронов только косвенным образом. Вывод можно сделать следующий: организация кортикальных нейронов в аспекте ориентационных предпочтений несколько сложнее, нежели в кубической модели.

Составление ориентационных карт:

как мозг воспринимает информацию. Смотреть фото как мозг воспринимает информацию. Смотреть картинку как мозг воспринимает информацию. Картинка про как мозг воспринимает информацию. Фото как мозг воспринимает информацию

Ориентация и зрение

как мозг воспринимает информацию. Смотреть фото как мозг воспринимает информацию. Смотреть картинку как мозг воспринимает информацию. Картинка про как мозг воспринимает информацию. Фото как мозг воспринимает информацию

Подписи к картинке: (А) ориентационные предпочтения; (В) окулярная доминантность – пересечения – пики доминантности; (C) пики пересечений и окулярной доминантности на карте доминантности; (D) бинарная карта окулярной доминантности с пересечениями

Свойства образования топографической карты в зрительной системе

В ретинотопических картах соседние клетки сетчатки представлены соседними клетками V1, такая карта демонстрирует изоморфизм и непрерывное отображение. Также как в других полушарных структурах мозга, репрезентация левого визуального поле отражается в правой части зрительной коры и наоборот. Также ввиду большего количества рецепторов в центре сетчатки, он шире представлен в зрительной коре, нежели периферия. В топографической карте отображаются: ориентационные предпочтения, доминирующий глаз, пространственное разрешение.

Слепое зрение

Слепое зрение — возможность видеть и распознавать объекты, будучи неосведомленным об этом. Феномен проявляется в некоторых случаях повреждения зрительной коры и говорит о том, что видеть и быть осведомленным — разные мозговые функции.

Условия эксперимента, доказывающего феномен слепого зрения: субъекту предъявляются стимулы, которые движутся либо в одну, либо в другую сторону. И хотя субъект утверждает, что не видит их, при просьбе его «угадать» в какую сторону двигался объект, то правильные ответы статистически значительно превышали случайную вероятность. Из этого эксперимента можно заключить, что сетчатка может иметь путь передачи визуальной информации помимо латерального коленчатого тела, и эта информация каким-то образом анализируется мозгом.

Подготовила: Алмазова Т.А.

H. Hubel, T. N. Wiesel. Receptive fields of single neurones in the cat’s striate cortex, – J Physiol. 1959 Oct; 148(3): 574–591.

Carandini, D. Ferster Membrane. Potential and Firing Rate in Cat Primary Visual Cortex, – Journal of Neuroscience, 1 January 2000, 20 (1) 470-484.

G. Matthews. Neurobiology: Molecules, Cells and Systems, – Blackwell Science, 1998.

К. Ю. М. Смит. Биология сенсорных систем, – М.: БИНОМ, 2013.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *