как размножаются клетки мозга
Биологи впервые увидели, как рождаются новые клетки мозга
МОСКВА, 8 фев – РИА Новости. Швейцарские и британские биологи впервые увидели то, как формируются новые клетки внутри «взрослого» мозга, научившись следить за движением одиночных стволовых клеток в центре памяти мышей, говорится в статье, опубликованной в журнале Science.
До 1960-х годов считалось, что у взрослых млекопитающих не появляются новые нейроны, а гибель нервных клеток компенсируется за счет перераспределения функций среди оставшихся. В 1962 году Жозеф Олтман из США в экспериментах на крысах впервые показал, что у взрослых грызунов идет процесс нейрогенеза, а через 30 лет, в 1998 году группа Петера Эрикссона обнаружила, что новые клетки образуются и в мозге взрослых людей.
Последние наблюдения за работой мозга человека и других млекопитающих показывают, что некоторые клетки мозга, к примеру, центр обоняния, обновляются практически непрерывно, а в других его регионах, в том числе в гиппокампе, центре памяти, присутствуют достаточно большие колонии стволовых клеток, которые предположительно участвуют в нейрогенезе.
Как рассказывает Джессбергер, многие ученые сомневаются в этом, так как процесс превращения стволовых клеток в полноценные нейроны никто раньше не документировал и не видел, что давало пищу для «скептиков», считающих, что эти клетки не участвуют в обновлении нервной ткани, а лишь заменяют умершие астроциты, глию и другие вспомогательные клетки мозга.
Для проверки этих теорий ученые из Швейцарии и Британии провели серию многомесячных наблюдений за одиночными стволовыми клетками, обитающими в гиппокампе, центре памяти, у нескольких подопытных мышей.
Подобные наблюдения, по словам Джессбергера, стали возможны благодаря двум вещам – модификации ДНК мышей, автоматически помечавшей стволовые клетки мозга при помощи светящихся белковых молекул, и особой системы анализа снимков с лазерного микроскопа, удалявшей почти все шумы с изображений.
Эти наблюдения велись следующим образом – биологи вырезали небольшое «окошко» в той части черепа, под которой находился гиппокамп, и затем обстреливали мозг двумя лучами инфракрасного лазера. Эти лучи проникали вглубь нервной ткани, взаимодействовали с молекулами белков и заставляли их светиться на другой частоте, что позволяет отделить сигнал, порожденный стволовыми клетками, от фонового шума.
Подобные наблюдения помогли ученым проследить за размножением стволовых клеток, их распространением по гиппокампу мышей и изменениями в их форме. Примерно через два месяца наблюдений часть этих клеток прекратила размножаться и превратилась в полноценные нейроны, которые стали частью гиппокампа и начали участвовать в формировании новых воспоминаний.
Как надеются ученые, собранные ими данные и новые опыты со стволовыми клетками мозга помогут нам понять, какие принципы и гены управляют их ростом, миграциями и превращением во взрослые клетки. Эти сведения, в свою очередь, могут стать основой для первых методик лечения болезни Альцгеймера, эпилепсии, инсультов и прочих болезней, сопровождающихся потерей большого числа нейронов.
Нервничать можно! Но осторожно
«Незрелые клетки, способные самообновляться и превращаться в специализированные клетки организма, получили название стволовых». Цитата из материала «Нобелевка за стволовые клетки. Как Синъя Яманака повернул развитие вспять»
Чтобы жизнь продолжалась, клетки должны размножаться, что и происходит с большинством их разновидностей. Активнее всего процесс восстановления протекает в клетках эпителия и органах кроветворения (красный костный мозг).
Процесс регулярного «клеточного умирания»
запрограммирован в самих клетках
Иное дело нейроны (а также клетки сердечной мышцы). В них гены, ответственные за размножение делением, «выключены». Но тогда встаёт закономерный вопрос: если нейроны гибнут и не обновляются, то каким образом нам удаётся сохранять психические способности до достаточно почтенного возраста?
«Ты не один»: негимнастическая пластичность
Функции погибших нейронов берут
на себя выжившие «собратья»
Почему же способности нервной системы возвращаются? Ведь клетки погибли? Как оказалось, функции погибших нейронов берут на себя выжившие «собратья». Они становятся больше и образуют новые связи, компенсируя потерянные функции. В этом и заключается суть пластичности нервной системы.
Не пластичностью единой: развенчание мифа
В начале 60-х годов XX века в высокорейтинговом научном издании «Science» появилась статья, в которой было показано, что в головном мозге крысы могут образовываться новые клетки. В следующие нескольких лет автор исследования опубликовал ещё ряд работ, подтверждающих возможность нейрогенеза (появления новых нервных клеток в головном мозге взрослых млекопитающих).
Феноменальное по сути открытие почему-то не вызвало энтузиазма у специалистов по нейробиологии, так что развития работы не получили.
Применительно к человеку полагают, что нейрогенез может иметь место в более протяжённых областях мозга, в том числе в коре больших полушарий.
Феномен нейрогенеза довольно широко используется в терапии нейродегенеративных патологий.
Размножение стволовых клеток сопровождается
риском развития злокачественных новообразований
В США уже существуют «библиотеки» нейрональных стволовых клеток, взятых из зародышевой ткани. Их пересадки выполняются больным людям. Вместе с тем пока ещё существует серьёзная проблема: размножение стволовых клеток сопровождается риском развития злокачественных новообразований. Надёжно предотвращать такой побочный эффект пока не научились. Однако, несмотря на это, этот вид терапии без сомнения займёт одно из ведущих мест в лечении таких нейродегенеративных патологий, как болезни Альцгеймера и Паркинсона, ставших значимой социальной проблемой современной цивилизации.
Не только ждать, но и действовать
Исключаем вредности для нашего мозга. Это, среди прочего, хроническое переутомление, недосыпание, нерациональное питание, злоупотребление спиртными напитками, малая подвижность.
Лечимся. Депрессия, тревожные расстройства, стресс, синдром хронической усталости, травмы и другие недуги негативно отражаются на нервной системе. А потому своевременно получайте квалифицированную помощь, не игнорируя имеющиеся проявления.
«Интересно отметить, что стресс одинаковой интенсивности может вызвать как значимая угроза, так и творческая удача». Цитата из материала «Существует ли прививка от стресса?»
Учимся новому. Учёные доказали, что освоение новых видов деятельности позволяет сохранять и развивать «гибкость» нервных процессов до самой старости.
Меняем взгляды на жизнь. Психическому и нервному здоровью может помочь пересмотр жизненных ориентиров. Новые цели, вера в свои силы, принятие людей с их особенностями, умение справляться со стрессом, хорошие поступки. Не всегда легко, но точно имеет смысл попробовать.
Автор: Энвер Алиев
Как размножаются клетки мозга
В теле человека бессчетное количество клеток, каждая из которых имеет собственную функцию. Среди них самые загадочные – нейроны, отвечающие за любое совершаемое нами действие. Попробуем разобраться как работают нейроны и в чем их предназначение.
Что такое нейрон (нейронные связи)
Нейроны работают при помощи электрических сигналов и способствуют обработке мозгом поступающей информации для дальнейшей координации производимых телом действий.
Эти клетки являются составляющей частью нервной системы человека, предназначение которой состоит в том, чтобы собрать все сигналы, поступающие из вне или от собственного организма и принять решение о необходимости того или иного действия. Именно нейроны помогают справиться с такой задачей.
Каждый из нейронов имеет связь с огромным количеством таких же клеток, создаётся своеобразная «паутина», которая называется нейронной сетью. Посредством данной связи в организме передаются электрические и химические импульсы, приводящие всю нервную систему в состояние покоя либо, наоборот, возбуждения.
К примеру, человек столкнулся с неким значимым событием. Возникает электрохимический толчок (импульс) нейронов, приводящий к возбуждению неровной системы. У человека начинает чаще биться сердце, потеют руки или возникают другие физиологические реакции.
Мы рождаемся с заданным количеством нейронов, но связи между ними еще не сформированы. Нейронная сеть строится постепенно в результате поступающих из вне импульсов. Новые толчки формируют новые нейронные пути, именно по ним в течение жизни побежит аналогичная информация. Мозг воспринимает индивидуальный опыт каждого человека и реагирует на него. К примеру, ребенок, схватился за горячий утюг и отдернул руку. Так у него появилась новая нейронная связь.
Стабильная нейронная сеть выстраивается у ребенка уже к двум годам. Удивительно, но уже с этого возраста те клетки, которые не используются, начинают ослабевать. Но это никак не мешает развитию интеллекта. Наоборот, ребенок познает мир через уже устоявшиеся нейронные связи, а не анализирует бесцельно все вокруг.
Познание нового опыта на протяжении всей жизни приводит к отмиранию ненужных нейронных связей и формированию новых и полезных. Этот процесс оптимизирует головной мозг наиболее эффективным для нас образом. Например, люди, проживающие в жарких странах, учатся жить в определенном климате, а северянам нужен совсем другой опыт для выживания.
Сколько нейронов в мозге
Нервные клетки в составе головного мозга занимают порядка 10 процентов, остальные 90 процентов это астроциты и глиальные клетки, но их задача заключается лишь в обслуживании нейронов.
Подсчитать «вручную» численность клеток в головном мозге также сложно, как узнать количество звезд на небе.
Тем не менее ученые придумали сразу несколько способов для определения количества нейронов у человека:
Строение нейрона
На рисунке приведено строение нейрона. Он состоит из основного тела и ядра. От клеточного тела идет ответвление многочисленных волокон, которые именуются дендритами.
Мощные и длинные дендриты называются аксонами, которые в действительности намного длиннее, чем на картинке. Их протяженность варьируется от нескольких миллиметров до более метра.
Аксоны играют ведущую роль в передаче информации между нейронами и обеспечивают работу всей нервной системы.
Место соединения дендрита (аксона) с другим нейроном называется синапсом. Дендриты при наличии раздражителей могут разрастись настолько сильно, что станут улавливать импульсы от других клеток, что приводит к образованию новых синаптических связей.
Синаптические связи играют существенную роль в формировании личности человека. Так, личность с устоявшимся позитивным опытом будет смотреть на жизнь с любовью и надеждой, человек, у которого нейронные связи с негативным зарядом, станет со временем пессимистом.
Виды нейронов и нейронных связей
Нейроны можно обнаружить в различных органах человека, а не исключительно в головном мозге. Большое их количество расположено в рецепторах (глаза, уши, язык, пальцы рук – органы чувств). Совокупность нервных клеток, которые пронизывают наш организм составляет основу периферической нервной системы. Выделим основные виды нейронов.
Слаженная работа нейронов трех типов выглядит так: человек «слышит» запах шашлыка, нейрон передает информацию в соответствующий раздел мозга, мозг передает сигнал желудку, который выделяет желудочный сок, человек принимает решение «хочу есть» и бежит покупать шашлык. Упрощенно так это действует.
Самыми загадочными являются промежуточные нейроны. С одной стороны, их работа обуславливает наличие рефлекса: дотронулся до электричества – отдернул руку, полетела пыль –зажмурился. Однако, пока не объяснимо как обмен между волокнами рождает идеи, образы, мысли?
Единственное, что установили ученые, это тот факт, что любой вид мыслительной деятельности (чтение книг, рисование, решение математических задач) сопровождается особой активностью (вспышкой) нервных клеток определенного участка головного мозга.
Есть особая разновидность нейронов, которые именуются зеркальными. Их особенность заключается в том, что они не только приходят в возбуждение от внешних сигналов, но и начинают «шевелиться», наблюдая за действиями своих собратьев – других нейронов.
Функции нейронов
Без нейронов невозможна работа организма человека. Мы увидели, что эти наноклетки отвечают буквально за каждое наше движение, любой поступок. Выполняемые ими функции до настоящего времени в полной мере не изучены и не определены.
Существует несколько классификаций функций нейронов. Мы остановимся на общепринятой в научном мире.
Функция распространения информации
Данная функция:
Суть ее в том, что нейронами обрабатываются и переносятся в головной мозг все импульсы, которые поступают из окружающего мира или собственного тела. Далее происходит их обработка, подобно тому, как работает поисковик в браузере.
По результатам сканирования сведений из вне, головной мозг в форме обратной связи передает обработанную информацию к органам чувств или мышцам.
Мы не подозреваем, что в нашем теле происходит ежесекундная доставка и переработка информации, не только в голове и на уровне периферической нервной системы.
До настоящего времени создать искусственный интеллект, который бы приблизился к работе нейронных сетей человека, не удалось. У каждого из 85 миллиардов нейронов имеется, как минимум, 10 тысяч обусловленных опытом связей, и все они работают на передачу и обработку информации.
Функция аккумуляции знаний (сохранения опыта)
Человек обладает памятью, возможностью понимать суть вещей, явлений и действий, которые он единожды или многократно повторял. За формирование памяти отвечают именно нейронные клетки, точнее нейротрансмиттеры, связующие звенья между соседними нейронами.
Таким образом, за память отвечает не какая-то отдельная часть мозга, а маленькие белковые мостики между клетками. Человек может потерять память, когда произошло крушение этих нервных связей.
Функция интеграции
Данная функция позволяет взаимодействовать между собой отдельным долям головного мозга. Как мы уже сказали, сигналы от разных органов чувств поступают в разные отделы мозга.
Нейроны посредством «вспышек» активности передают и принимают импульсы в разных частях мозга. Так происходит процесс появления мыслей, эмоций и чувств. Чем больше таких разноплановых связей, тем эффективнее человек мыслит. Если человек способен к размышлениям и аналитике в определенном направлении, то он будет хорошо соображать и в другом вопросе.
Функция производства белков
Нейроны – настолько полезные клетки, что не ограничиваются только передаточными функциями. Нервные клетки вырабатывают необходимые для жизни человека белки. Опять же ключевую роль в производстве белков имеют нейротрансмиттеры, которые отвечают за память.
Всего в невронах индуцируется порядка 80 белков, вот основные из них, влияющие на самочувствие человека:
Прекращение выработки белков или их выпуск в недостаточном количестве способны привести к тяжелым заболеваниям.
Восстанавливаются ли нервные клетки
При нормальном состоянии организма нейроны могут жить и функционировать очень долго. К сожалению, случается так, что они начинают массово погибать. Причин разрушения нервных волокон может быть много, но до конца механизм их деструкции не изучен.
Установлено, что нервные клетки погибают из-за гипоксии (кислородное голодание). Нейронные сети рушатся при отдельных травмах головного мозга, человек теряет память или утрачивает способность к хранению информации. В этом случае сами нейроны сохранены, но теряется их передаточная функция.
Отсутствие допамина ведет к развитию болезни Паркинсона, а его переизбыток является причиной шизофрении. Почему прекращается выработка белка не известно, спусковой механизм не выявлен.
Гибель нервных клеток происходит при алкоголизации личности. Алкоголик со временем может совершенно деградировать и утратить вкус к жизни.
Формирование нервных клеток происходит при рождении. Долгое время ученые полагали, что со временем нейроны отмирают. Поэтому с возрастом человек утрачивает способность накапливать информацию, хуже соображает. Нарушение функции по выработке допамина и серотонина связывается с наличием практически у всех пожилых людей депрессивных состояний.
Гибель нейронов, действительно неизбежна, в год исчезает примерно 1 процент от их количества. Но есть и хорошие новости. Последние исследования показали, что в коре головного мозга есть особенный участок, именуемый гипокаммом. Именно в нем генерируются новые чистые нейроны. Подсчитано примерное количество генерируемых ежедневно нервных клеток – 1400.
В науке обозначилось новое понятие «нейропластичность», обозначающее возможность мозга регенерироваться и перестраиваться. Но есть одна тонкость: новые нейроны еще не имеют никакого опыта и наработанных связей. Поэтому с возрастом или после заболевания мозг нужно тренировать, как и все иные мышцы тела: получать новые знания, анализировать происходящие события и явления.
Подобно тому, как мы усиливаем бицепс при помощи гантели, активизировать процесс включения новых нервных клеток можно следующими способами:
Механизм возрождения прост. У нас имеются совершенно не задействованные новые клетки, которые нужно заставить работать, а сделать это можно лишь путем постановки новых задач и изучения неизвестных предметных сфер.
НЕРВНЫЕ КЛЕТКИ ВОССТАНАВЛИВАЮТСЯ
Доктор медицинских наук В. ГРИНЕВИЧ.
Природа закладывает в развивающийся мозг очень высокий запас прочности: при эмбриогенезе образуется большой избыток нейронов. Почти 70% из них гибнут еще до рождения ребенка. Человеческий мозг продолжает терять нейроны и после рождения, на протяжении всей жизни. Такая гибель клеток генетически запрограммирована. Конечно же погибают не только нейроны, но и другие клетки организма. Только все остальные ткани обладают высокой регенерационной способностью, то есть их клетки делятся, замещая погибшие. Наиболее активно процесс регенерации идет в клетках эпителия и кроветворных органах (красный костный мозг). Но есть клетки, в которых гены, отвечающие за размножение делением, заблокированы. Помимо нейронов к таким клеткам относятся клетки сердечной мышцы. Как же люди умудряются сохранить интеллект до весьма преклонных лет, если нервные клетки погибают и не обновляются?
Смысл пластичности в том, что функции погибших нервных клеток берут на себя их оставшиеся в живых «коллеги», которые увеличиваются в размерах и формируют новые связи, компенсируя утраченные функции. Высокую, но не беспредельную эффективность подобной компенсации можно проиллюстрировать на примере болезни Паркинсона, при которой происходит постепенное отмирание нейронов. Оказывается, пока в головном мозге не погибнет около 90% нейронов, клинические симптомы заболевания (дрожание конечностей, ограничение подвижности, неустойчивая походка, слабоумие) не проявляются, то есть человек выглядит практически здоровым. Значит, одна живая нервная клетка может заменить девять погибших.
Первое сообщение о нейрогенезе появилось в 1962 году в престижном научном журнале «Science». Статья называлась «Формируются ли новые нейроны в мозге взрослых млекопитающих?». Ее автор, профессор Жозеф Олтман из Университета Пердью (США) с помощью электрического тока разрушил одну из структур мозга крысы (латеральное коленчатое тело) и ввел туда радиоактивное вещество, проникающее во вновь возникающие клетки. Через несколько месяцев ученый обнаружил новые радиоактивные нейроны в таламусе (участок переднего мозга) и коре головного мозга. В течение последующих семи лет Олтман опубликовал еще несколько работ, доказывающих существование нейрогенеза в мозге взрослых млекопитающих. Однако тогда, в 1960-е годы, его работы вызывали у нейробиологов лишь скепсис, их развития не последовало.
В конце 1980-х годов нейрогенез был также обнаружен у взрослых амфибий в лаборатории ленинградского ученого профессора А. Л. Поленова.
Как было показано, новые нейроны появляются из стволовых клеток взрослого организма и у низших позвоночных. Однако потребовалось почти пятнадцать лет, чтобы доказать, что аналогичный процесс происходит и в нервной системе млекопитающих.
Развитие нейробиологии в начале 1990-х годов привело к обнаружению «новорожденных» нейронов в головном мозге взрослых крыс и мышей. Их находили большей частью в эволюционно древних отделах головного мозга: обонятельных луковицах и коре гиппокампа, которые отвечают главным образом за эмоциональное поведение, реакцию на стресс и регуляцию половых функций млекопитающих.
Для того чтобы понять, какие условия влияют на нейрогенез в гиппокампе и обонятельной луковице, профессор Гейдж из Университета Салка (США) построил миниатюрный город. Мыши там играли, занимались физкультурой, отыскивали выходы из лабиринтов. Оказалось, что у «городских» мышей новые нейроны возникали в гораздо большем количестве, чем у их пассивных сородичей, погрязших в рутинной жизни в виварии.
В некоторых лечебных учреждениях в США уже сформированы «библиотеки» нейрональных стволовых клеток, полученных из зародышевой ткани, и проводятся их пересадки пациентам. Первые попытки трансплантации дают положительные результаты, хотя на сегодняшний день врачи не могут разрешить основную проблему подобных пересадок: безудержное размножение стволовых клеток в 30-40% случаев приводит к образованию злокачественных опухолей. Пока не найдено подхода к предотвращению подобного побочного эффекта. Но, несмотря на это, трансплантация стволовых клеток, несомненно, будет одним из главных подходов в терапии таких нейродегенеративных заболеваний, как болезни Альцгеймера и Паркинсона, ставших бичом развитых стран.
«Наука и жизнь» о стволовых клетках:
От астроцита до нейрона: история одного превращения в живом мозге
От астроцита до нейрона: история одного превращения в живом мозге
Главные герои статьи — астроциты
Автор
Редакторы
Статья на конкурс «Био/Мол/Текст»: Ученые провели множество исследований, в которых превращали одни виды клеток в другие. Также не менее популярным остается изучение причин развития болезни Паркинсона и способов ее терапии. В этой статье вы узнаете о том, как ученые убили двух зайцев сразу: провели превращение клеток в мозге живой мыши и при помощи этого шага избавили ее от проблем, вызванных гибелью клеток мозга.
Конкурс «Био/Мол/Текст»-2020/2021
Эта работа опубликована в номинации «Свободная тема» конкурса «Био/Мол/Текст»-2020/2021.
Генеральный партнер конкурса — ежегодная биотехнологическая конференция BiotechClub, организованная международной инновационной биотехнологической компанией BIOCAD.
Спонсор конкурса — компания SkyGen: передовой дистрибьютор продукции для life science на российском рынке.
Спонсор конкурса — компания «Диаэм»: крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.
Дисклеймер
Обычно «Биомолекула» не публикует статьи по одинаковым инфоповодам, но в этом году мы приняли две работы, базирующиеся на одной и той же публикации в Nature 2020 года. Статья, которую вы читаете, — новостная, а вот и ее парная обзорная [8].
Не секрет, что двигательные расстройства при болезни Паркинсона обусловлены потерей дофаминергических нейронов в черной субстанции головного мозга. Причина гибели этих клеток кроется в нарушении их метаболизма: рост концентрации белка α-синуклеина и выведение из строя «энергетических станций клетки» — митохондрий — приводит к необратимым последствиям [1]. Признаки болезни — повышение тонуса мышц, дрожь в руках, замедленные движения, — развиваются постепенно, по мере снижения уровня дофамина. Наряду с двигательными расстройствами появляется тревога, нарушается сон и страдают когнитивные функции. Борьба с недугом основывается на лекарстве леводопе [2]. Прием этого вещества позволяет компенсировать симптомы, но не предотвратить потерю нейронов. Поэтому исследователи разрабатывают альтернативные пути лечения: например, применение нейротрофических факторов [3]. Еще один способ восполнить утраченное — получить нейроны путем превращения в них других клеток, иными словами, репрограммированием. Именно так поступили главные герои этой статьи — ученые, которым удалось получить нейроны из клеток глии в живом мозге мыши! Как исследователи совершили этот шаг? И, самое главное, помог ли он восстановиться мышкам, у которых воспроизвели симптоматику болезни Паркинсона? Ответы в статье перед вами, написанной по мотивам Reversing a model of Parkinson’s disease with in situ converted nigral neurons [4].
Глава 1. ВКультуре
В качестве материала для армии новых нейронов американские и китайские исследователи выбрали астроциты — клетки глии и вспомогательные клетки-помощники по отношению к нервным клеткам. Количество астроцитов в мозге велико, и оно легко восстанавливается даже после травмы, что вместе с высокой пластичностью сделало эти клетки подходящим объектом для репрограммирования [5].
Один шаг отделял астроцит от превращения в нейрон: было необходимо снизить экспрессию гена, кодирующего РНК-связывающий белок PTB1. Это усиливало образование его нейронного брата-белка nPTB1 и впоследствии приводило к изменению активности генов, обусловливающих созревание нервных клеток [6].
Совершать такие манипуляции непосредственно в мозге живого организма рискованно, поэтому ученые опробовали разработанную методику на культуре мышиных и человеческих астроцитов. В них подавили выработку белка PTB1, что пробудило гены, активность которых характерна для нервных клеток. Через месяц после воздействия 50–80% клеток в этой культуре преобразились в нейроны как по внешним признакам, так и по внутренним: в них обнаружили характерные белки-маркеры (MAP2, NSE и другие), а также зарегистрировали работу Na- и К-каналов, то есть электрическую активность.
Глава 2. ВМозге мыши
Этап проверки прошел успешно, и исследователи перешли к работе на клетках мозга живой мыши. К слову, мыши были не совсем обычными: ученые работали с трансгенными мышами, астроциты которых синтезировали cre-рекомбиназу. Этот фермент выступил в качестве «маячка» для вектора, сконструированного для репрограммирования астроцитов в головном мозге. Исследователи собрали вектор на основе аденовирусной молекулы ДНК: в нее встроили ген блокатора PTB1 и ген красного флуоресцентного белка, который активировался в клетках с cre-рекомбиназой (рис. 1). Вектор ввели в черную субстанцию, и спустя некоторое время в ней обнаружили астроциты с красными метками. Через 3 недели после внедрения вектора с блокатором PTB1 20% этих клеток, а через 10 недель уже 80% обладали маркерами зрелых нейронов. Около 35% клеток несли маркеры дофаминергических нейронов, чья электрическая активность соответствовала таковой у зрелого нейрона, выделяющего дофамин в качестве медиатора.
Рисунок 1. а — Схематичное изображение (слева) и срез (справа) области черной субстанции, в которую вводили вектор. б — Красный флуоресцентный белок активен в астроцитах трансгенных мышей (справа), но не мышей дикого типа (слева).
На среднем мозге, в котором находится черная субстанция, ученые не остановились и дополнительно ввели вектор в кору и нижележащие структуры — стриатум (рис. 2). Метод репрограммирования через подавление белка PTB1 показал свою эффективность и в этих областях мозга. Одновременно с этим исследователи обратили внимание на различие в наборе маркеров у нейронов, образовавшихся в среднем мозге, стриатуме и коре (рис. 3, верх). Активность генов в астроцитах областей мозга, выбранных для введения вектора, изначально могла быть разной. Также вероятно, что вклад микроокружения клеток оказался более существенным, ведь более эффективно превращение в дофаминергические нейроны протекало в среднем мозге мыши, нежели в культуре отдельных клеток: 35% против 10%.
Рисунок 2. Волокна нейронов черной субстанции (SN) достигают стриатума и образуют нигростриарный путь (nigrostriatal pathway). Дофаминергические нейроны обнаружены и в другой структуре среднего мозга — вентральной тегментальной области (VTA). Их волокна протягиваются в лимбические структуры и кору и образуют мезолимбический (mesolimbic) и мезокортикальный (mesocortical) пути соответственно [2]. На рисунке показан мозг мыши.
Рисунок 3. Сверху — новоиспеченные нейроны в разных областях мозга несут разные маркеры (NeuN, TH) — окрашены зеленым цветом. Нижний ряд — красным окрашены волокна нейронов, прорастающие к стриатуму.
Однако нейроны-новобранцы были тепло приняты в живом мозге и успешно встроились в его структуры. Ученые отследили путь и плотность волокон подкрашенных дофаминергических клеток среднего мозга. Количество волокон возросло, и они достигли подкорковых ядер (стриатума) — скорлупы и прилежащего ядра, а также структур лимбической системы — септальных ядер и обонятельного бугорка (рис. 3, низ). Более того, через день после введения в клетки скорлупы гранулы с зеленым красителем обнаружили в новых нейронах черной субстанции, что стало еще одним свидетельством интеграции образовавшихся дофаминергических нейронов в живой мозг мыши.
Глава 3. ВМозге мыши: борьба с болезнью Паркинсона
Поможет ли репрограммирование астроцитов восполнить утрату нейронов, происходящую при болезни Паркинсона, и окажет ли восстанавливающий эффект? Интрига сохранялась. Чтобы получить ответ на эти вопросы, исследователи применили на мышах модель, при которой симптомы болезни вызывают введением 6-гидроксидофамина — токсичного аналога дофамина, провоцирующего гибель дофаминергических нейронов. Через месяц после локальной инъекции этого вещества число нейронов в черной субстанции сократилось на 90%: от около 3000 до 266–300 клеток. Введение спасительного вектора с блокатором PTB1 восстановило 600 с лишним нейронов, восполнив 30% от их первоначального количества (рис. 4). Аналогичные процентные пропорции были обнаружены и в отношении динамики волокон.
Рисунок 4. Дофаминергические нейроны черной субстанции в неповрежденном мозге (а) и в поврежденном мозге после введения вектора с блокатором PTB1 (б)
Еще один эффект введения токсичного аналога заключался в снижении на три четверти уровня дофамина, который замеряли в стриатуме. Введение вектора и дальнейшее репрограммирование астроцитов привело к заметному повышению уровня до 65% от такового в неповрежденном мозге.
И, наконец, блокировка PTB1 и формирование совокупности новых нейронов из астроцитов восстановило двигательную функцию. Гибель нейронов из-за инъекции 6-гидроксидофамина носила унилатеральный характер, то есть затронула области мозга только с одной стороны. Это привело к тому, что мыши предпочитали использовать лапки одной стороны для прикосновения к предметам. И вы наверняка догадались, что репрограммирование астроцитов устранило это предпочтение и позволило животным использовать лапки каждой стороны в равной мере. Схожие результаты были получены в наблюдении за двигательной активностью, вызванной введением наркотических веществ.
Эпилог. Это вылечит людей?
Как отмечают исследователи, есть несколько препятствий на пути применения данной методики для терапии людей с болезнью Паркинсона. Одним из них выступает побочный эффект от случайного репрограммирования нецелевых астроцитов. Истощение числа этих клеток также может нести неблагоприятные последствия. Второй важный аспект, который необходимо учитывать, заключается в возрастных ограничениях для подобных превращений клеток. Установлено, что у людей пожилого возраста астроциты менее пластичны, что может снизить эффективность репрограммирования их в нейроны.
Еще одна проблема заключается в самой модели болезни Паркинсона, которую исследователи воспроизвели на мышах. Схожее в модели и болезни — дегенерация нейронов в черной субстанции и истощение дофамина в стриатуме. Однако другие особенности патогенеза болезни Паркинсона в модели не учтены. Например, гибель нейронов после введения токсичного аналога дофамина происходит однократно и не прогрессирует со временем.
Несмотря на описанные выше трудности, методика репрограммирования клеток в живом мозге имеет большое значение. Она позволяет по-новому взглянуть на терапию болезни Паркинсона и других нейродегенеративных заболеваний, а также предоставляет один из инструментов (или его прообраз) для успешной победы над недугом.