каковы современные методы исследования физиологии головного мозга
Как проходит исследование головного мозга?
Рассказываем о высокоточных методах диагностики, которые используют для обследования головного мозга.
Головной мозг — самый сложный орган человеческого тела, ведь он связывает между собой все системы организма. Именно поэтому исследование головного мозга проходит с применением самых высокотехнологичных устройств диагностики.
Когда нужно обследовать мозг
С помощью высокоточной диагностики головного мозга врач может поставить диагноз или отследить развитие заболевания. Назначить обследования мозга или сосудов могут невролог, флеболог и травматолог из-за следующих жалоб:
При подозрении на инсульт и диагностике опухолей и эпилепсии, исследования просто необходимы — с их помощью можно обнаружить новообразования, закупорки и разрывы сосудов, гематомы, инородные тела и нефункционирующие участки мозга. Так как патологии в разных участках головы могут вызывать совершенно разнообразные симптомы, врачи очень часто назначают исследования головного мозга.
Виды исследований головного мозга
Самые распространённые и информативные виды исследований головного мозга — это компьютерная и магнитно-резонансная томография. Они позволяют получить качественные снимки мозга в нескольких проекциях, что помогает в диагностике любого недуга.
Магнитно-резонансная томография головного мозга
Абсолютно безопасный способ обследования, который практически не имеет противопоказаний. Опасен только пациентам с кардиостимуляторами и металлическими имплантатами в теле — магнитное поле томографа может сместить или нагреть предметы из металла и нарушить работу механизмов.
На полученном изображении можно рассмотреть плотные и мягкие ткани, сосуды и новообразования. Снимок МРТ проводится в нескольких проекциях на необходимой глубине, поэтому доктор может оценить состояние любого участка мозга.
Перед процедурой необходимо снять все металлические предметы и аксессуары. Чтобы не раздеваться перед исследованием, можно просто надеть одежду без молний и металлических пуговиц.
Для проведения МРТ пациент ложится на кушетку. Лаборант может дать наушники, защищающие от очень громких звуков во время процедуры. Затем пациента помещают внутрь томографа. Нужно сохранять неподвижность, так как смена положения тела исказит изображение. Обследование мозга обычно проводится не более получаса. По желанию пациента, если он почувствует себя некомфортно, процедуру можно прекратить или приостановить без вреда для информативности исследования.
Компьютерная томография головного мозга
Работает на основе рентгеновских лучей, поэтому её не рекомендуется проводить детям, беременным и кормящим женщинам. Но для всех остальных пациентов она абсолютно безопасна.
После КТ можно получить 3D-снимок головного мозга. Он такой же качественный, как и МРТ: на нём видны все структуры мозга и сосудов. Поэтому выбор между двумя видами томографии основан только на имеющихся противопоказаниях.
Металлические предметы также будет необходимо снять: они не опасны, как при МРТ, но мешают прохождению излучения. Если этого не сделать, часть изображения потеряется.
Существенный плюс компьютерной томографии — небольшие изменения положения тела не скажутся на результате. В остальном процедура мало отличается от проведения МРТ. Пациента на кушетке помещают в томограф и наблюдают за ним во время процедуры. Исследование длится не больше 15–20 минут и его можно прекратить в любой момент по просьбе пациента.
Томографию могут провести с использованием контрастного вещества, чтобы получить более детальные и чёткие снимки. Для этого сначала проходит обычное исследование, а затем пациенту внутривенно вводят красящее вещество. После этого процедура продолжается в течение нескольких минут.
Другие виды исследований
Кроме томографии, для обследования головного мозга применяются ещё несколько видов диагностики:
Как проходит исследование сосудов?
Для обследования вен и артерий головного мозга применяют ангиографию и ультразвуковое исследование. Оба варианта безопасны, информативны и имеют минимум противопоказаний.
Магнитно-резонансная ангиография
Даёт лучший результат при исследовании мелких сосудов и нервных стволов. В ходе исследования врач получит снимок всех сосудов вашего головного мозга. Это поможет диагностировать микроинсульты и тромбозы, которые не видны на обычном МРТ-снимке головы. Часто её назначают хирурги после операций для контроля состояния.
МРА проходит так же, как и обычная магнитно-резонансная томография, и имеет те же особенности и противопоказания. Перед процедурой нужно снять все металлические предметы, а во время работы томографа нельзя двигать головой. Часто, для правильной диагностики, ангиографию следует совмещать с МРТ головного мозга — это позволит более детально рассмотреть участок патологии.
Компьютерная ангиография
КА сосудов головного мозга по проведению схожа с компьютерной томографией. По итогам процедуры врач получит трёхмерная модель сосудов головы. На полученном изображении можно рассмотреть аномалии строения вен и артерий, атеросклероз, сужение просвета сосудов и новообразования.
Доктор может назначить это обследование как для подготовки к оперативному вмешательству, так и для контроля после лечения. Кроме того, такой вид обследования — выход для пациентов, которые по противопоказаниям не могут провести МРА.
При компьютерной ангиографии можно использовать контрастное вещество, чтобы лучше визуализировать повреждённые участки. Противопоказания для процедуры те же, что и для КТ: беременность и детский возраст.
Ультразвуковая допплерография
Датчик УЗИ ставят на самые тонкие кости черепа. С помощью ультразвука можно найти сужение или тромбоз в сосудах мозга, измерить скорость движения крови, обнаружить аневризмы и участки с изменённым направлением кровотока. Изображение показывается на экране монитора, и, при необходимости, можно распечатать нужный кадр.
С помощью УЗИ можно обследовать как сосуды внутри черепа, так и в шее, если из-за них был нарушен кровоток в мозге. У метода нет противопоказаний, он абсолютно безопасен для пациентов любого возраста. УД не требует дополнительной подготовки или обследований, однако, перед процедурой лучше воздержаться от приёма продуктов и лекарств, влияющих на тонус сосудов.
От чего зависит выбор исследования?
Самые распространённые методы исследований головного мозга: МРТ, КТ и УЗИ. Они достаточно информативны для абсолютного большинства возможных заболеваний. Если вы не знаете своего диагноза и хотите прийти к врачу с уже готовыми анализами, лучшим вариантом будет МРТ или КТ. Они дают достаточно информации по состоянию как самого мозга, так и костных тканей, на них можно различить крупные сосуды.
При травмах головы сначала следует провести краниографию. Она даст достаточную информацию о целостности черепа, и, если инородные тела не попали в мозг, другие виды диагностики будут не нужны. Если травма более серьёзная, с внутренним кровотечением и поражением мозга, то вам обязательно сделают томографию.
Если доктор назначил вам обследование сосудов головного мозга, то следует ориентироваться на собственные противопоказания, а также доступность исследований. И томография, и УЗИ показывают одинаково хороший результат.
Решающим фактором при выборе исследований остаётся решение врача. Серьёзная диагностика проводится только по направлению от доктора. Вполне возможно, что он назначит вам сразу несколько процедур для более полного обследования и точной постановки диагноза.
Тема 2. Современные методы исследования физиологии головного мозга.
В настоящее время широко применяются следующие методы исследования функционирования головного мозга:
n электрофизиологические методы исследования: метод вызванных потенциалов; электроэнцефалография;
n томографические методы исследования: метод магнитно-резонансной томографии (МРТ); метод позитронно-эмиссионной томографии (ПЭТ);
n нейробиологические методы исследования;
n нейропсихологические методы исследования.
В распоряжении нейрофизиологов имеются различные электрофизиологические методы исследования. Они совершенно не опасны для мозга человека и позволяют наблюдать течение физиологических процессов в нем в диапазоне от долей миллисекунды до нескольких часов. Использование этих методов имеет глубокие исторические корни.
Гальвани проводил опыты по животному электричеству: открыл и исследовал феномен сокращения мышц препарированной лягушки под влиянием электрического тока; обратил внимание на то, что мышца сокращается при одновременном прикосновении к ней двух разных металлов. Гальвани объяснил эти явления существованием «животного электричества». Результаты наблюдений и теорию «животного электричества» он изложил в 1791 в работе «Трактат о силах электричества при мышечном движении». Новыми опытами (опубликованы в 1797) Гальвани доказал, что мышца лягушки сокращается и без прикосновения к ней металла – в результате непосредственного её соединения с нервом. Исследования Гальвани имели большое значение для медицинской практики и разработки методов физиологического эксперимента.
В конце XIX века английский ученый, а по совместительству мэр города Манчестера, Г. Катон впервые поместил металлические электроды на затылочные доли головного мозга собаки. При этом он зарегистрировал колебания электрического потенциала, направляя свет в глаза животному. Тогда же появились первые струнные гальванометры, которые могли фиксировать слабые электрические потенциалы от биологических объектов.Колебания электрического потенциала, аналогичные наблюдаемым Катонном, сейчас называют вызванными потенциалами (ВП) и широко используют при исследовании функций мозга и сенсорных систем человека. В основе метода лежит регистрация биоэлектрических реакций мозга в ответ на внешнее раздражение (в случае сенсорных ВП) и при выполнении когнитивной задачи. Запись ВП производится при помощи электроэнцефалографических электродов, расположенных на поверхности головы. Поскольку амплитуда ВП (5-15 мкВ) гораздо меньше амплитуды ЭЭГ в состоянии бодрствования (20-70 мкВ), то для выделения ВП проводят усреднение сигнала: стимул предъявляется несколько раз, после чего компьютер суммирует отрезки ЭЭГ, которые следуют сразу после предъявления стимула. В результате постоянные компоненты ВП суммируются и выделяются, а «случайные» компоненты ЭЭГ, наложившиеся на запись во время регистрации ВП, нивелируются. Характеристиками вызванных потенциалов являются латентный период (латентность), амплитуда (или площадь), полярность (негативная/позитивная) и форма. Для диагностических целей наибольшее применение получили коротколатентные звуковые, соматосенсорные, зрительные и моторные ВП. Например, стволовые звуковые ВП используются в качестве стандартного нейрофизиологического теста для исследования поражений ствола мозга и объективной оценки нарушений слуха. Соматосенсорные и моторные ВП позволяют выявить и оценить степень нарушения функции проводящих путей спинного мозга. Зрительные ВП имеют важное значение в диагностике рассеянного склероза.
В настоящее время методы электроэнцефалографии сделали значительный шаг вперед благодаря применению компьютеров. Обычно на поверхность скальпа при клиническом обследовании больного накладывают несколько десятков электродов (наиболее распространены мостиковые, чашечковые и игольчатые). Далее эти электроды соединяют с многоканальным усилителем. Достаточно мощный компьютер обрабатывает ЭЭГ по каждому каналу. Электроэнцефалография дает возможность качественного и количественного анализа функционального состояния головного мозга и его реакций при действии раздражителей. Основными характеристиками являются частота и амплитуда сигнала. На их основе выделяют несколько основных ритмов, которые соответствуют определенным состояниям мозга и связаны с определенными мозговыми механизмами (см. таблицу).
| Ритм | Частота (Гц) | Амплитуда(мкВ) | Функциональное состояние |
| альфа-ритм | 8-13 | 30-70 | Спокойное бодрствование |
| бета-ритм | 14-40 | 5-30 | Активное бодрствование |
| тета-ритм | 4-6 | 100-150 | стресс-ритм или ритм напряжения |
| дельта-ритм | 0,5-3 | >100 | 4-я стадия медленного сна, кома |
| гамма-ритм | >40 | 30-170 | Повышенное внимание |
Основные ритмы электроэнцефалограммы
1 – бета-ритм, 2 – альфа-ритм, 3 – тета-ритм, 4 – дельта-ритм
Еще более высоким разрешением обладает метод позитронно-эмиссионной томографии (ПЭТ). Исследование основано на введении в мозговой кровоток позитрон-излучающего короткоживущего изотопа. Данные о распределении радиоактивности в мозге собираются компьютером в течение 15-30 мин сканирования и затем реконструируются в трехмерный образ. Во время регистрации исследуемого просят заняться определенной интеллектуальной деятельностью, например почитать (про себя или вслух), послушать музыку или решить математическую задачу. Метод позволяет наблюдать в головном мозге очаги возбуждения, например, при продумывании отдельных слов, при их проговаривании вслух, что свидетельствует о его высоких разрешающих возможностях. Вместе с тем многие физиологические процессы в головном мозге человека протекают значительно быстрее тех возможностей, которыми обладает томографический метод. В исследованиях ученых немаловажное значение имеет также финансовый фактор, т. е. стоимость исследования. К сожалению, томографические методы очень дороги.
В последние годы все шире применяют прижизненные срезы головного мозга новорожденных крысят и морских свинок и даже культуру нервной ткани, выращенную в лаборатории. Данный метод позволяет исследовать механизмы функционирования отдельных нервных клеток и их отростков.
Рис. Культура нервной ткани, извлеченной из мозга крысы и высеянная на чашку Петри с впаянными в дно мультиканальными электродами
Для регистрации биоэлектрической активности нейронов и их отростков применяют специальные приемы, которые называются микроэлектродной техникой. Микроэлектроды могут быть введены даже внутрь нейрона, продолжающего при этом некоторое время нормально функционировать. Такими методами получены сведения о том, как развиваются процессы возбуждения и торможения в различных типах нейронов, каковы внутриклеточные механизмы этих процессов, как осуществляется переход активности от одной клетки на другую.
Рис. Металлический микроэлектрод приближается к нейрону
Для регистрации активности одиночных нейронов микроэлектрод закрепляют в специальном манипуляторе, который позволяет продвигать его в мозге животного с высокой точностью. Характер регистрируемой биоэлектрической активности определяется диаметром кончика микроэлектрода. Например, при диаметре кончика микроэлектрода не более 5 мкм можно зарегистрировать потенциалы действия одиночных нейронов (в этих случаях кончик микроэлектрода должен приблизиться к исследуемому нейрону на расстояние около 100 мкм). При диаметре кончика микроэлектрода больше 10 мкм одновременно регистрируется активность десятков, а иногда сотен нейронов.
Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.
Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.
Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.
Головной мозг. Методы исследования головного мозга.
Проблема исследования мозга человека, проблема соотношения мозга и психики одна из самых захватывающих задач, которые ставились в науке. Несмотря на значительный прогресс в изучении головного мозга в последние годы, многое в его работе до сих пор остаётся загадкой. Функционирование отдельных клеток достаточно хорошо объяснено, однако понимание того, как в результате взаимодействия тысяч и миллионов нейронов мозг функционирует как целое, доступно лишь в очень упрощённом виде и требует дальнейших глубоких исследований.
Методы и исследования мозга:
Развитие современных методов исследований функционального состояния головного мозга напрямую связано с прогрессом в технической области.
На сегодняшний день основными нейрофизиологическими методиками, определяющими функциональное состояние головного мозга человека, являются следующие:
I. Электроэнцефалография (ЭЭГ) — метод исследования функционального состояния головного мозга, основанный на регистрации его биоэлектрической активности через неповрежденные покровные ткани головы. Применяется для оценки функционального состояния коры головного мозга.
Первая запись биотоков головного мозга была произведена в 1928 г. Гансом Бергером.
На ЭЭГ регистрируется электрическая активность мозга, генерирующаяся в коре, синхронизирующаяся и модулирующаяся таламусом (область головного мозга, отвечающая за перераспределение информации от органов чувств, за исключением обоняния, к коре головного мозга) и ретикулярными активирующими структурами (сетчатая структура ствола мозга). Регистрация биоэлектрических потенциалов головного мозга и графическое их изображение фотографическим методом или путем чернильной записи производятся специальным прибором — электроэнцефалографом.
Электроэнцефалография является одним из основных методов нейрофизиологического исследования у пациентов с заболеваниями и повреждениями нервной системы. ЭЭГ является методом, позволяющим судить о наличии, локализации, динамике и, в определенной степени, о характере патологического процесса в головном мозге – это ключ в диагностике таких патологических состояний головного мозга, как эпилепсия, эпилептоидные абсансы (разновидности эпилептических приступов) и другие подобные заболевания, а также в исследовании физиологии сна и речевых расстройств.
Как проводится электроэнцефалография:
Исследование должно проводиться в свето- и звукоизолированном помещении.
На голову человека одевается специальная шапочка с электродами-антенами, соединенными с самим прибором. Сигналы, поступающие с коры головного мозга, передаются на электроэнцефалограф, который преобразует их в графическое изображение (волны). Это изображение напоминает ритм сердца на электрокардиограмме (ЭКГ).
В процессе регистрации биотоков мозга пациент находится в кресле в удобном положении (полулежа). При этом ему не следует:
а) находиться под воздействием седативных средств;
б) быть голодным (в состоянии гипогликемии);
в) быть в состоянии психоэмоционального возбуждения.
Информативность электроэнцефалограммы повышается, если запись ее производится у пациента, находящегося в состоянии сна.
С помощью ЭЭГ получают информацию о функциональном состоянии мозга при разных уровнях сознания пациента. Достоинством этого метода являются его безвредность, безболезненность, неинвазивность.
Электроэнцефалограммой (ЭЭГ) называется, записанная кривая, отражающая характер биотоков мозга
Электроэнцефалограмма отражает суммарную активность большого количества клеток мозга и состоит из многих компонентов. Анализ электроэнцефалограммы позволяет выявить на ней волны, различные по форме, постоянству, периодам колебаний и амплитуде (вольтажу). Электроэнцефалограмма (ЭЭГ) здорового человека имеет характерные черты: от всех областей коры отводится ритмическая активность с частотой около 10 Гц и амплитудой 50–100 мкВ — альфа-ритм. На электроэнцефалограмме (ЭЭГ) регистрируются также другие ритмы: как более низкие — дельта- (имеющие частоту 0,5—3 Гц и амплитуду до 20—40 мкВ) и тета- (с частотой 4—7 Гц и с амплитудой в тех же пределах), так и более высокие— бета-ритмы (с частотой колебаний больше 13 Гц (чаще 16—30) и амплитудой до 15 мкВ), но амплитуда в норме их невысока и они перекрываются альфа-колебаниями.
Электроэнцефалограмма (ЭЭГ) изменяется при изменении функционального состояния. Например, при переходе ко сну доминирующими становятся медленные колебания, а альфа-ритм исчезает.
У здорового человека выражена альфа-активность, а дельта- и тета-ритмы практически не заметны, так как они перекрываются имеющим более выраженную амплитуду альфа-ритмом. Однако, при значении патологической активности на ЭЭГ взрослого бодрствующего человека являются тета- и дельта-активность, а также эпилептическая активность.
Предрасположенность к судорожным состояниям и проявляющейся следующими признаками:
1) острые волны (пики) — колебание потенциала, имеющего крутое нарастание и крутой спад, при этом острота волны обычно превышает амплитуду фоновых колебаний, с которыми они сочетаются; острые волны могут быть единичными или групповыми, выявляются в одном или многих отведениях;
2) комплексы пик—волна, представляющие собой колебания потенциала, состоящие из острой волны (пика) и сопутствующей ей медленной волны; при эпилепсии эти комплексы могут быть единичными или следуют друг за другом в виде серий;
3) пароксизмальные ритмы — ритмы колебаний в форме вспышек высокой амплитуды разной частоты, обычны пароксизмальные ритмы тета- и дельта-колебаний или медленных волн 0,5—1,0 Гц.
По данным ЭЭГ возможно отличить диффузное поражение мозга от локального патологического процесса, установить сторону и в определенной степени локализацию патологического очага, отдифференцировать поверхностно расположенный патологический очаг от глубинного, распознать коматозное состояние и степень его выраженности; выявить фокальную и генерализованную эпилептическую активность.
Электроэнцефалография позволяет объективно оценить выраженность асимметрии ЭЭГ, наличие и генерализованных, и очаговых изменений электрической активности мозга, проявляющихся непосредственно во время ЭЭГ-исследования.
II. Эхоэнцефалография (ЭхоЭГ) — неинвазивный (на кожу не оказывается никакого воздействия с помощью игл или различных хирургических инструментов). метод исследования головного мозга с помощью ультразвуковой эхографии (ультразвука с частотой от 0,5 до 15 МГц/с). Звуковые волны такой частоты обладают способностью проникать сквозь ткани организма и отражаются от всех поверхностей, лежащих на границе тканей разного состава и плотности (мягкие покровы головы, кости черепа, мозговые оболочки, мозговое вещество, ликвор, кровь). Отражающими структурами могут быть и патологические образования (очаги размозжения, инородные тела, абсцессы, кисты, гематомы и др.). Применяется для оценки изменений в тканях мозга.
У детей до 1,5 лет, пока еще не зарос родничок, через который проводится исследование ЭхоЭГ позволяет оценить все мозговые структуры. У взрослых эхоэнцефалография применяется, прежде всего, для выявления объемных образований мозга при следующих патологиях:
головная боль,
головокружение,
травма головы,
диффузный и локальный отек мозга,
гематомы внутричерепные,
абсцессы,
опухоли мозга,
внутричерепная гипертензия,
гидроцефалия,
воспалительные заболевания головного мозга,
другие церебральные заболевания.
Эхоэнцефалография (ЭхоЭГ) используется для диагностики заболеваний:
Ишемия мозга, инсульт
Сотрясение, ушиб мозга
Вертебробазилярная недостаточность
Вегето-сосудистая дистония (ВСД)
Нарушение мозгового кровотока
Головная боль
Головокружение
Шум в ушах
Внутричерепное давление
Травма шеи
Энцефалопатия
Болезнь Паркинсона
Аденома гипофиза
Ход ЭхоЭг исследования:
Обследование производят преимущественно лежа, последовательно с правой, затем с левой боковой поверхности головы от лобной до затылочной области. Наиболее постоянным импульсом является эхо-сигнал, отраженный от срединных структур головного мозга (прозрачная перегородка, третий желудочек, эпифиз), названный «М-эхо».
Эхоэнцелография расшифровка результатов:
Эхоэнцефалография (ЭхоЭГ) основанна на регистрации ультразвука, отраженного от границ внутричерепных образований и сред с различным акустическим сопротивлением (кости черепа, мозговое вещество, кровь, ЦСЖ). В неврологическую практику его ввел шведский врач Л. Лекселл (L. Leksell, 1956). Предназначенный для этого аппарат эхоэнцефалограф создает возбуждающий генераторный импульс и обеспечивает возможность регистрации отраженного эхосигнала на экране осциллографа (эхоэнцефалоскопия), которая может быть зафиксирована и в записи (собственно эхоэнцефалография).
Из эхосигналов от внутримозговых структур важнейшим является сигнал с наибольшей амплитудой — М-эхо (первый диагностический критери Лекселла), отраженный от срединных структур головного мозга, расположенных в сагиттальной плоскости (III желудочек и его стенки, прозрачная перегородка, большой серповидный отросток, межполушарная щель, эпифиз); расположенные
по сторонам от М-эха дополнительные сигналы значительно меньшей амплитуды (второй диагностический критерий Лекселла) в норме обычно являются отражением от стенок боковых желудочков.
В норме структуры, образующие М-эхо, расположены строго в сагиттальной плоскости и находятся на одинаковом расстоянии от симметричных точек правой и левой сторон головы, поэтому на эхоэнцефалограмме при отсутствии патологии сигнал М-эхо в равной степени отстоит от начального и конечного комплексов.
Отклонение срединного М-эха более чем на 2 мм в одну из сторон должно рассматриваться как проявление патологии.
Различное число эхосигналов левого и правого полушарий мозга рассматривается как ультразвуковая межполушарная асимметрия, причиной которой может быть патологический очаг различного происхождения в одном или в обоих полушариях мозга.
В последние годы разработаны методы многоосевой ЭхоЭГ и эхопульсография, позволяющая оценивать форму и амплитуду пульсирующих эхосигналов от сосудов и стенок желудочковой системы, определять степень дислокации сосудов и судить о выраженности внутричерепной гипертензии.
Основным достоинством метода является то, что он помогает диагностировать заболевания, приводящие к смещению внутричерепных структур от средней линии головного мозга.
Физической основой метода реоэнцефалографии (РЭГ) является разница между электропроводностью крови и тканей тела, в связи с чем пульсовые колебания кровенаполнения вызывают прежде всего колебания электропроводности исследуемого участка.
Реоэнцефалография (РЭГ) применяется для диагностики заболеваний:
Ишемия мозга, инсульт
Лабильность внутричерепного давления
Сотрясение мозга, ушиб мозга
Травма шеи, шейно-черепной синдром
Головная боль
Головокружение
Гипертоническая болезнь
Шум в ушах
Вертебробазилярная недостаточность
Вегето-сосудистая дистония
Нарушение мозгового кровотока
Аденома гипофиза
Энцефалопатия
Болезнь Паркинсона
Ход обследования и расшифровка результатов:
Реоэнцефалография (РЭГ) предоставляет информацию об интенсивности мозгового кровенаполнения, состоянии сосудистого тонуса и эластичности стенок сосудов, о состоянии венозного оттока из полости черепа, а также о реактивности сосудов при действии факторов, изменяющих кровообращение.
Реоэнцефалографию назначают при перенесенных черепно-мозговых травмах, инсультах, в качестве профилактики и при периодических осмотрах, при необходимости, а также при головной боли, головокружении, гипертонической болезни.
При исследованиях применяют специальные функциональные пробы, которые дают возможность разграничить функциональные и органические изменения. Наиболее часто используют пробу нитроглицерином (в малых дозах, сублингвально), повороты головы, изменения положения тела. В качестве функциональных нагрузок используют гипервентиляцию (1-2 мин), задержку дыхания, ингаляцию углекислоты, различные (сосудорасширяющие или сосудосуживающие) фармакологические агенты, ортостатическую пробу, а для выявления степени развития коллатерального кровообращения применяют поочередные пережатия сонных или позвоночных артерий. Остро возникающие сдвиги артериального давления отражаются на реоэнцефалограмме изменением тонуса и даже уровня пульсового кровенаполнения, что также необходимо учитывать при анализе кривых.
При повышении сосудистого тонуса на реоэнцефалографии увеличивается время подъема пульсовой кривой, уплощается вершина, исчезают дополнительные волны. Понижение сосудистого тонуса характеризуется укорочением расстояния между зубцом Q на ЭКГ и началом волны, уменьшением времени восходящей части волны, заострением вершины при наличии 2–3 дополнительных волн на нисходящей части кривой.










